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Abstract We derive, using matrices, new classes of linear recurrence identities linking the
general term of the so called Horadam sequence with those of an associated ‘cohort’ sequence
that differs only in its initial values.

1 Introduction

Denote by {wn}∞n=0 = {wn}∞0 = {wn(a, b; p, q)}∞0 , in standard format, the four-parameter
Horadam sequence arising from the second order linear recursion

wn+2 = pwn+1 − qwn, n ≥ 0, (1.1)

for which w0 = a and w1 = b are arbitrary initial values. For any fixed p, q, let C(p, q) be the
collection, or cohort, of associated sequences of individual form {vn}∞0 = {wn(v0, v1; p, q)}∞0
that each arise as a particular instance of (1.1) with variable start values v0 and v1; any pair v0, v1
describes a so called cohort sequence within C(p, q), and there are an infinite number of them.

2 Result and Proof

Defining
α(a, b; p, q) = qa2 + b2 − pab (2.1)

(assumed non-zero), and

β1(v0, v1, a, b; p, q) = bv1 − a(pv1 − qv0),

β2(v0, v1, a, b; q) = q(av1 − bv0),

β3(v0, v1, a, b) = bv0 − av1,

β4(v0, v1, a, b; p, q) = bv1 − (pb− qa)v0, (2.2)

we state and prove a new result. For fixed recurrence parameters p, q of (1.1), the general Ho-
radam term wn(a, b; p, q) is expressible as a linear combination of neighbouring terms from a
cohort sequence {wn(v0, v1; p, q)}∞0 within C(p, q) according to an interesting and new linear
recurrence relation that we illustrate accordingly.

Governing Identity. For n ≥ 1,

(β1β4 − β2β3)wn(a, b; p, q) = α[β4wn(v0, v1; p, q)− β2wn−1(v0, v1; p, q)].

Evidently, the Governing Identity describes classes of identities because it holds for all cohort
sequences characterised by p, q (which latter variables, as a pair, give rise to any single class).

Proof. Let

H = H(p, q) =

(
p −q
1 0

)
, (P.1)
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from which the recursion (1.1) readily delivers the matrix power relation(
wn(a, b; p, q)
wn−1(a, b; p, q)

)
= Hn−1(p, q)

(
b

a

)
(P.2)

that holds for n ≥ 1. We identify, and make use of, a matrix (formed by the parameters
α, β1, . . . , β4 of (2.1) and (2.2))

B = B(v0, v1, a, b; p, q) =
1
α

(
β1 β2

β3 β4

)
(P.3)

that has the following crucial algebraic properties (where T denotes transposition):

Property 1: B(b, a)T = (v1, v0)T ;

Property 2: BHB−1 = H.

Given these (which the reader is invited to check as an exercise, or else the Appendix may
be referred to for details), and assuming β1β4 6= β2β3 (so that B is non-singular), the proof is a
straightforward one for we write, from (P.2),

(wn, wn−1)
T = (wn(a, b; p, q), wn−1(a, b; p, q))T

= Hn−1(b, a)T

= [B−1B]Hn−1[B−1B](b, a)T

= B−1[BHn−1B−1]B(b, a)T

= B−1[BHB−1]n−1B(b, a)T

= B−1[H]n−1B(b, a)T (by Property 2)

= B−1Hn−1(v1, v0)
T (by Property 1)

= B−1(wn(v0, v1; p, q), wn−1(v0, v1; p, q))T

= B−1(vn, vn−1)
T (P.4)

(having used (P.2) with a = v0, b = v1), whose components read

wn =
α

(β1β4 − β2β3)
(β4vn − β2vn−1) (P.5)

and
wn =

α

(β1β4 − β2β3)
(−β3vn+1 + β1vn). (P.6)

Since, however, qβ3 = −β2 and β1 − pβ3 = β4 (as seen in (A.3) of the Appendix), the r.h.s. ex-
pressions of (P.5),(P.6) are, deploying (1.1), seen to be identical, and so we have but one (inde-
pendent) algebraic relation (the Governing Identity). This completes the proof, noting that the
result holds trivially in the case v0 = a, v1 = b (it is self-satisfying, with β2 = β3 = 0 and
β1 = β4 = α(a, b; p, q); a Horadam sequence lies within its own set of cohort sequences), while
setting v0 = 1, v1 = p recovers Identity II of [2] (namely, wn(a, b; p, q) = awn(1, p; p, q)− (pa−
b)wn−1(1, p; p, q)) that has previously been generated by a different approach altogether.

3 Examples

We finish by demonstrating the validity of our result, choosing to involve well known sequences
(that is, the Fibonacci and Lucas sequences). Consider the part specialised Horadam (or quasi-
Fibonacci) sequence given by setting p = 1 and q = −1, for which

{wn(a, b; 1,−1)}∞0 = {a, b, a+ b, a+ 2b, 2a+ 3b, 3a+ 5b, 5a+ 8b, . . .}, (3.1)
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with all cohort sequences in C(1,−1) likewise of the form

{wn(v0, v1; 1,−1)}∞0 = {v0, v1, v0 + v1, v0 + 2v1, 2v0 + 3v1, 3v0 + 5v1, 5v0 + 8v1, . . .} (3.2)

for arbitrary v0, v1; we make the (easily proven) observation that, for n ≥ 1,

wn(v0, v1; 1,−1) = Fn−1v0 + Fnv1 (3.3)

(where {Fn}∞0 = {0, 1, 1, 2, 3, 5, 8, . . .} = {wn(0, 1; 1,−1)}∞0 is the celebrated Fibonacci se-
quence), which is key to our cases; we feel these examples are instructive in seeing the structure
of the Governing Identity.

Case (i): a = 0, b = 1
With α(0, 1; 1,−1) = 1, together with β1(v0, v1, 0, 1; 1,−1) = v1, β2(v0, v1, 0, 1;−1) = β3(v0,
v1, 0, 1) = v0, and β4(v0, v1, 0, 1; 1,−1) = v1−v0, we confirm the Governing Identity for general
n.

Firstly, we see that its l.h.s. is (β1β4 − β2β3)wn(0, 1; 1,−1) = (v2
1 − v0v1 − v2

0)Fn. On the
other hand, the r.h.s. is (v1− v0)wn(v0, v1; 1,−1)− v0wn−1(v0, v1; 1,−1) = (v1− v0)(Fn−1v0 +
Fnv1)− v0(Fn−2v0 +Fn−1v1) = (v2

1 − v0v1)Fn− v2
0(Fn−1 +Fn−2) = (v2

1 − v0v1)Fn− v2
0Fn =

(v2
1 − v0v1 − v2

0)Fn = l.h.s.

Case (ii): a = 2, b = 1
Here {wn(2, 1; 1,−1)}∞0 is the familiar Lucas sequence {2, 1, 3, 4, 7, 11, 18, . . .} = {Ln}∞0 , say.
This time α(2, 1; 1,−1) = −5, β1(v0, v1, 2, 1; 1,−1) = −(v1 + 2v0), β2(v0, v1, 2, 1;−1) =
β3(v0, v1, 2, 1) = v0 − 2v1, and β4(v0, v1, 2, 1; 1,−1) = v1 − 3v0; validation runs along similar
lines to those of Case (i).

The l.h.s. is (β1β4 − β2β3)wn(2, 1; 1,−1) = [−(v1 + 2v0)(v1 − 3v0) − (v0 − 2v1)2]Ln =
−5(v2

1−v0v1−v2
0)Ln, while the r.h.s. is−5[(v1−3v0)wn(v0, v1; 1,−1)−(v0−2v1)wn−1(v0, v1;

1,−1)] = −5[(v1−3v0)(Fn−1v0+Fnv1)−(v0−2v1)(Fn−2v0+Fn−1v1)] = −5[A(Fn, Fn−1)v2
1−

B(Fn, Fn−2)v0v1 − C(Fn−1, Fn−2)v2
0], where A(Fn, Fn−1) = Fn + 2Fn−1, B(Fn, Fn−2) =

3Fn − 2Fn−2 and C(Fn−1, Fn−2) = 3Fn−1 + Fn−2; evidently, this last expression matches the
l.h.s. if each of the linear functions A,B,C reduces to Ln, which is simple to check using the
fundamental Lucas-Fibonacci relation Ln = Fn−1 + Fn+1 (n ≥ 1).

4 Summary

This short paper has formulated and illustrated a new result that describes classes of recurrence
identities connecting the general term of a Horadam sequence to successive terms in any accom-
panying cohort sequence. Note that it has been verified for a wide range of parameter values
in both sets of sequence types, and moreover—via algebraic software—in complete generality
using those long established sequence term closed forms for the two root cases (that is, degen-
erate and non-degenerate) of the characteristic equation associated with the recurrence equation
(1.1)—the latter are omitted here, but are readily available in the considerable Horadam literature
(see, for instance, the surveys [1, 3]).

Appendix

Here we establish Properties 1 and 2 underpinning the proof of the Governing Identity.

Property 1: Consider, from (P.3),

B

(
b

a

)
=

1
α

(
β1 β2

β3 β4

)(
b

a

)

=
1
α

(
bβ1 + aβ2

bβ3 + aβ4

)

=

(
v1

v0

)
, (A.1)
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since bβ1+aβ2 = αv1 and bβ3+aβ4 = αv0 trivially using (2.1),(2.2); Property 2 is also straight-
forward to derive.

Property 2: Consider, from (P.1),(P.3),

BHB−1 =
1
α

(
β1 β2

β3 β4

)
·

(
p −q
1 0

)
· α

(β1β4 − β2β3)

(
β4 −β2

−β3 β1

)

=
1

(β1β4 − β2β3)

(
β1(pβ4 + qβ3) + β2β4 −[β1(pβ2 + qβ1) + β2

2 ]

β3(pβ4 + qβ3) + β2
4 −[β3(pβ2 + qβ1) + β2β4]

)

=
1

(β1β4 − β2β3)

(
T1 T2

T3 T4

)
, (A.2)

say, after a little algebra. The entries T1, . . . , T4 are readily simplified upon deploying the rela-
tions (immediate from (2.2))

β2 + qβ3 = 0,

β1 − pβ3 = β4, (A.3)

as needed, for we see that, in order,

T1 = pβ1β4 + qβ1β3 + β2β4

= pβ1β4 + β1(−β2) + β2β4

= pβ1β4 − β2(β1 − β4)

= pβ1β4 − β2(pβ3)

= p(β1β4 − β2β3), (A.4)

T2 = −[pβ1β2 + qβ2
1 + β2

2 ]

= −[pβ1(−qβ3) + qβ1(pβ3 + β4) + β2(−qβ3)]

= −q(β1β4 − β2β3), (A.5)

T3 = pβ3β4 + qβ2
3 + β2

4

= (pβ3 + β4)β4 + (−β2)β3

= β1β4 − β2β3, (A.6)

T4 = −[pβ2β3 + qβ1β3 + β2β4]

= −[pβ2β3 + qβ1β3 + β2(β1 − pβ3)]

= −β1(qβ3 + β2)

= −β1(0)

= 0; (A.7)

given equations (A.4)-(A.7), the r.h.s. of (A.2) reduces to H (P.1) instantly, and Property 2 is
delivered.

Remark A.1. The reader may have noticed that Property 2 is a consequence of the commu-
tativity of the matrices B and H. It is, on investigation, a simple enough matter to see that this
condition requires the equations of (A.3) to hold, together with qβ1+pβ2 = qβ4 which is a trivial
relation derivable therefrom.
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