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Abstract. The paper presents analytical and semi-numerical solution of magneto-hydrodynamic
(MHD) boundary layer flow of an electrically conducting incompressible Casson fluid over a per-
meable stretching/shrinking sheet. The governing equation admits a similarity solution, thereby
reducing the model partial differential equations into nonlinear ordinary differential equations
along with appropriate boundary conditions. The solution of the resulting third order boundary
value problem in an infinite domain is obtained approximately using Dirichlet series method and
also in exact analytical closed-form viz. method of stretching of variables. These methods have
the advantage of obtaining the derived quantities accurately and require less computer memory
space as compared with pure numerical methods.

1 Introduction

The study of viscous boundary layer flows induced by a moving boundary find many important
applications in several engineering processes such as extrusion processes in plastic and metal
industries [1, 2, 3]. The phenomena of velocities on the boundary towards a fixed point are
known as shrinking phenomena, which often occur in the situations such as rising shrinking bal-
loon. In certain situations, the shrinking sheet solutions do not exist, since the velocity cannot
be confined in a boundary layer. These solutions may exist if either the magnetic field or the
stagnation flow is taken into account. Sakiadis [4, 5] investigated the boundary layer flow on a
continuously stretching surface with constant speed and carried out pioneering work in this area.
Tsou et al. [6] experimentally verified the Sakiadis work. Many researchers [7, 8, 9, 10] investi-
gated the following work of Sakiadis and they have generalized the boundary conditions on the
surface. Liao [11] discussed a new branch solution for both impermeable and permeable stretch-
ing sheet which indicates multiple solutions for the stretching surfaces under certain conditions.
Miklavcic and Wang [12] examined the flow over a shrinking sheet, in this flow configuration,
fluid is stretched towards a slot and flow is entirely different from the stretching case. Crane [7]
found a closed form solution for steady two-dimensional stretching where the velocity on the
boundary is away and proportional to the distance from the fixed point. Wang [13] discussed the
exact solutions which are based on the boundary layer assumption and are not exact solutions
of Navier-Stokes (NS) equations except results by Crane [7]. Makinde [14] analysed the effects
of convective cooling on nanofluids flow over an unsteady stretching sheet. Recently, Khan et
al. [15] numerically investigated the non-aligned MHD stagnation point flow of variable viscos-
ity nanofluids past a stretching sheet with radiative heat. Noor et al. [16][ investigated simple
non-perturbative solution for MHD viscous flow due to a shrinking sheet by series solution us-
ing Adomain decomposition method (ADM). Raftari and Yildirim [17], analysed MHD viscous
flow due to a shrinking sheet by employing the homotopy perturbation method (HPM) and Pade’
approximants.

Moreover, studies related to the flows of non-Newtonian fluid have attracted much attention
of researchers in recent time due to their increasing industrial and technological applications such
as in geothermal energy, cooling of nuclear reactor, underground disposal of nuclear wastes,
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Figure 1. Problem geometry

petroleum reservoir operations, building insulation, irrigation systems, cooling of electronic
component, etc. For instance, in a non-Newtonian fluid, the relation between the shear stress and
the shear rate is different and can even be time-dependent. Therefore, the use of non−Newtonian
fluids as the coolant or heat exchangers may reduce the required pumping power in some cases.
There are several models in the literature to describe the flow behaviour of non-Newtonian fluid
and one of them is Casson fluid model. Casson fluid can be defined as a shear thinning liquid
which is assumed to have an infinite viscosity at zero rates of shear, a yield stress below which
no flow occurs and a zero viscosity at an infinite rate of shear. Ibrahim and Makinde [18] numer-
ically investigated the MHD stagnation point flow and heat transfer of Casson nanofluid past a
stretching sheet with slip and convective boundary condition. Battacharyya et al. [19] found the
analytic solution for MHD boundary layer flow of Casson fluid over a stretching /shrinking sheet
with wall mass transfer. Meanwhile, Dirichlet series is particularly useful for obtaining solution
of fluid flow problem and the derived quantities exactly. In a pioneering work, Kravnchenko
and Yablonskii [20, 21] employed the Dirichlet series for solving third order nonlinear boundary
value problem over an infinite domain. A general discussion of the convergence of the Dirichlet
series may also be found in Riesz [22]. The accuracy as well as uniqueness of the solution can
be confirmed using other powerful semi−numerical schemes. Sachdev et al. [23] have analyzed
various problems from fluid dynamics of stretching sheet using this approach and found more
accurate solution compared with earlier numerical findings. Awati et al. [24, 25] and Kudenatti
et al. [26] have analyzed the problems from MHD boundary layer flow with nonlinear stretching
sheet using these methods and found more accurate results compared with the classical numer-
ical methods. Bhattacharyya [27] examined the effects of heat source/sink on the steady two
dimensional MHD boundary layer flow and heat transfer over a shrinking sheet with wall mass
suction using finite difference method.

In this present paper we employ the combination of Dirichlet series and the method of stretch-
ing of variables to tackle the nonlinear problem of hydro-magnetic boundary layer flow of Casson
fluid over a permeable stretching /shrinking sheet. In section 2, a mathematical formulation of
proposed problem with relevant boundary conditions is given. Section 3, is devoted to the so-
lution of the problem using Dirichlet series. Section 4, gives the closed form exact analytical
solution by means of method of stretching of variables. In Section 5, detailed results obtained
are compared with the corresponding numerical schemes and Section 6, is about the conclusion.

2 Mathematical Formulation

The steady laminar two-dimensional incompressible viscous boundary layer flow of an electri-
cally conducting Casson fluid over a continuously stretching or shrinking sheet is considered.
The stretching or shrinking surface moves along x-axis in the direction and y-axis is perpendic-
ular to it. The magnetic field strength of B is applied in the vertical direction and the induced
magnetic field is neglected. The sheet stretching or shrinking velocity is Uw = ±U0x (note
that positive sign indicates stretching while the negative sign indicate shrinking) and the wall
suction/injection velocity is ν = νw (see Figure 1). The rheological equation of state for an
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isotropic flow of a Casson fluid can be expressed as [19, 28, 29];

τij =

{
{µB + Py√

2π
}2eij , π > πc

{µB + Py√
2πc
}2eij , π < πc

(2.1)

In the above equation Py = eijeij and eij denotes the (i, j)th component of the deformation
rate, π be the product of the component of deformation rate with itself, πc be a critical value
of this product based on the non-Newtonian model, µB be the plastic dynamic viscosity of the
non-Newtonian fluid and Py be the yield stress of the fluid. From equation (2.1) we obtain (for
π < πc),

τij = µB(1 +
1
β
)2eij , (2.2)

where β = µ
√

2πc/Py is the Casson fluid parameter. The governing conservation of mass
and momentum boundary layer equations becomes [14, 19]

∂u

∂x
+
∂v

∂y
= 0 (2.3)

u
∂u

∂x
+ ν

∂u

∂y
= υ(1 +

1
β
)(
∂2u

∂x2 +
∂2u

∂y2 )−
σB2

ρ
u, (2.4)

The relevant boundary conditions for the present flow are

u = Uw = ±U0x, v = vw at y = 0, (2.5)

u = 0 as y →∞, (2.6)

where u and v are the liquid velocity components in the x and y directions respectively, υ
is the kinematic viscosity, ρ is the density of the fluid and σ is the electrical conductivity of the
fluid. The velocity components u and v are related to the physical stream function ψ defined by

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (2.7)

The stream function and similarity transformations can be defined in the form

ψ(x, y) = x
√
υU0f(η), η = y

√
U0

υ
. (2.8)

Using Eq.(2.8) the velocity components are expressed as u = xU0f(η), v = −
√
U0υf(η) and

the wall suction/injection velocity becomes vw = −
√
U0υf(0) , with these similarity variables

Eqs. (2.3)-(2.6) reduces to the following form

(1 +
1
β
)f ′′′ + ff ′′ − f ′2 −M2f ′ = 0, (2.9)

with
f(0) = fw, f ′(0) = ±1, f ′(∞) = 0. (2.10)

where the prime symbol represents the derivative with respect to η, M =
√

σB2

ρU0
is the magnetic

field parameter and fw = −νw/
√
U0υ is the parameter such that fw > 0 corresponds to suction

and fw < 0 corresponds to injection. Equations (2.9)-(2.10) can be conveniently written in a
more general third order nonlinear differential equation as

f ′′′ +Aff ′′ +Bf ′2 + Cf ′ = 0 (2.11)

with the relevant boundary conditions

f(0) = α1, f ′(0) = β1, f ′(∞) = 0, (2.12)
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where A,B and C are constants. This third order nonlinear differential equation with infinite
interval admits a Dirichlet series; necessary conditions for the existence and uniqueness of these
solutions may be found in [20, 21]. We observe in equation (2.11) that the sign of A is always
positive while that of B and C may be either positive, negative or zero. Other important quantity
of interest is the local skin friction Cf = τw

ρU2
w

given as

Re1/2
x Cf = (1 +

1
β
)f ′′(0), (2.13)

where Rex = Uwx/υ is the local Reynolds number and the wall shear stress τw is define as

τw = µ(1 +
1
β
)

{
∂u

∂y

}
y=0

. (2.14)

3 Dirichlet Series Solution

We use Dirichlet series which is an elegant semi-numerical scheme to solve both categories of
the problem. We seek Dirichlet series solution of Eq.(2.11) in the form [21]

f = γ1 +
6γ
A

∞∑
i=1

bia
ie−iγη (3.1)

where γ and a are parameters which are to be determined. Substituting Eq.(3.1) into Eq.(2.11),
we get

∞∑
i=1

{−γ2i3 +Aγγ1i
2 − Ci}biaie−iγη +

6γ2

A

∞∑
i=2

i−1∑
k=1

{Ak2 +Bk(i− k)}bkbi−kaie−iγη = 0

(3.2)
For i=1, we have

γ1 =
γ2 + C

A
(3.3)

Substituting Eq.(3.3) into Eq. (3.2), the recurrence relation for obtaining coefficients is given
by

bi =
6γ2

Ai(i− 1){γ2i− C}

i−1∑
k=1

{Ak2 +Bk(i− k)}bkbi−k, i = 2, 3, 4, .... (3.4)

Eq.(3.1) converges absolutely and uniformly when γ > 0 for some η0, in the half plane
Re al(η) ≥Real(η0). It represents an analytic 2π/γ periodic function at f = f(η0) such that
f ′(∞) = 0 [21]. Moreover, Eq. (3.1) contains two free parameters namely a and γ. These
unknown parameters are determined from the remaining boundary conditions in Eq.(2.12) at
η = 0.

f(0) =
γ2 + C

Aγ
+

6γ
A

∞∑
i=1

bia
i = α1 = fw, (3.5)

and

f ′(0) =
6γ2

A

∞∑
i=1

(−i)biai = β1 (3.6)

The solution of the above transcendental Eq. (3.5) and Eq. (3.6) yield constants a and γ. The
solution of the above transcendental equations is equivalent to the unconstrained minimization
of the functional [

γ2 + C

Aγ
+

6γ
A

∞∑
i=1

bia
i − α1

]2

+

[
6γ2

A

∞∑
i=1

(−i)biai − β1

]2

(3.7)

We use Powell’s method of conjugate directions [30] which is one of the most efficient tech-
niques for solving unconstrained optimization problems. This helps in finding the unknown
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parameters a and γ uniquely for different values of the parameters A,B,C, α1 = fw, β1 = 1 for
stretching sheet, β1 = −1 for shrinking sheet. Alternatively, Newton’s method is also used to
determine the unknown parameters a and γ accurately. The local skin friction coefficient at the
sheet surface is given by

f ′′(0) =
6γ
A

∞∑
i=1

bia
i(iγ)2 (3.8)

The velocity profiles of the problem is given by

f ′(η) =
6γ2

A

∞∑
i=1

(−i)biaie−iγη (3.9)

4 Method of Stretching of Variables

Many nonlinear ODEs arising in MHD boundary layer problems which are not amenable for ob-
taining analytical solutions. In such situations, attempts have been made to develop an approxi-
mate analytical method for the solution of these problems. Method of stretching of variables is
used here for the solution of such problems and obtained the closed form exact solution. In this
method, we choose suitable derivative function H ′ such that the derivative boundary conditions
are satisfied automatically and integration of H ′ will satisfy the remaining boundary condition.
Substitution of this resulting function into the given equation gives the residual of the form
R(ξ, α) called the defect function. The residual of the defect function can be minimized using
least squares approximation method (for details see Ariel, [31]). Applying the transformation
f = fw + F into Eq. (2.11), we get

F ′′′ +A(fw + F )F ′′ +BF ′2 + CF ′ = 0. (4.1)

The boundary conditions in Eq.(2.12) then become

F (0) = 0, F ′(0) = ±1, F ′(∞) = 0 (4.2)

where β1 = 1 represents stretching sheet and β1 = −1 represents shrinking sheet. Introducing
two variables ξ = αη and G in the form

G(ξ) = αF (η) (4.3)

where α > 0 is an amplification factor. Substituting Eq.(4.3) into Eqs. (4.1)-(4.2), we obtain

α2G′′′ +A(fwα+G)G′′ +BG′2 + CG′ = 0, (4.4)

with
G(0) = 0, G′(0) = ±1, G′(∞) = 0. (4.5)

For stretching sheet case:
We choose a trail velocity profile

G′ = exp(−ξ) (4.6)

which satisfies the derivative conditions in Eq.(4.5). Integrating Eq. (4.5) with respect to ξ from
0 to ξ using conditions (4.5), we get

G = 1− exp(−ξ). (4.7)

Substituting Eq.(4.7) into Eq. (4.4), we get the residual of defect function

R(ξ, α) = (α2 −Afwα−A+ C)exp(−ξ) + (A+B)exp(−2ξ). (4.8)

Eq. (4.8) can be minimized using least squares approximation method as discussed in Ariel [31]
for which

∂

∂α

∫ ∞
0

R2(ξ, α)dξ = 0 (4.9)
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Substituting (4.8) into Eq. (4.9) and solving cubic equation in α for a positive root, we get

α =
Afw

2
, α =

1
6
(3Afw ±

√
3
√

4A− 8B − 12C + 3A2f2
w). (4.10)

Once the amplification factor is calculated, then using Eq.(4.3), original function f can be written
as

f = fw +
1
α
(1− exp(−αη)) (4.11)

with α defined in Eq. (4.10). Thus Eq. (4.11) gives the solution of Eq. (2.11) for all A,B,C, fw
and β1. It is striking that Eq.(2.11) also admits the following two analytical solutions. For
A = 1

D , B = −1
D , C = −M

D and β1 = −1, where D = (1 + 1
β ). Eq. (4.11) reduces to closed-

form exact solution of [19]

f(η) = fw+
2(1 + 1

β )

fw +
√
f2
w + 4(1 + 1

β )(1 +M)
−

2(1 + 1
β )

fw +
√
f2
w + 4(1 + 1

β )(1 +M)
e
−
fw+
√
f2
w+4(1+ 1

β
)(1+M)

2(1+1/β) η

(4.12)
For shrinking sheet case:
We choose a trail velocity profile

G′ = −exp(−ξ), (4.13)

which satisfies the derivative conditions in Eq.(4.5). Integrating Eq. (4.12) with respect to ξ from
0 to ξ using conditions (4.5), we get

G = exp(−ξ)− 1. (4.14)

Substituting Eq.(4.13) into Eq. (4.4), we get the residual of defect function

R(ξ, α) = (−α2 +Afwα−A− C)exp(−ξ) + (A+B)exp(−2ξ). (4.15)

Using the least squares method as discussed in Ariel [31] the equation (4.14) can be minimized
for which

∂

∂α

∫ ∞
0

R2(ξ, α)dξ = 0 (4.16)

Substituting (4.14) into equation (4.15) and solving cubic equation in α for a positive root, we
get

α =
1
6
(3Afw ±

√
3
√
−4A+ 8B − 12C + 3A2f2

w) (4.17)

Once the amplification factor is calculated, then using Eq.(4.3), original function f can be written
as

f = fw +
1
α
(exp(−αη)− 1) (4.18)

with α defined in Eq. (4.17). Thus Eq. (4.18) gives the solution of Eq. (2.11) for all A,B,C, fw
and β1 . It is striking that Eq. (2.11) also admits the following two analytical solutions. For
A = 1, B = −1, C = −M2 and β1 = −1 . Eq. (4.18) reduces to closed-form exact solution of
[32]

f(η) = fw −
2

fw ±
√
f2
w − (4− 4M2)

+
2

fw ±
√
f2
w − (4− 4M2)

e
fw±
√
f2
w−(4−4M2)

2 η (4.19)

ForA = 1/D,B = −1/D,C = −M/D, β1 = −1 and D = (1 + 1/β), Eq. (4.18) reduces to
closed-form exact solution of [19]

f(η) = fw−
2(1 + 1

β )

fw ±
√
f2
w − 4(1 + 1

β )(1−M)
+

2(1 + 1
β )

fw ±
√
f2
w − 4(1 + 1

β )(1−M)
e
fw±
√
f2
w−4(1+ 1

β
)(1−M)

2(1+1/β) η

(4.20)
It is interesting to note that the former exact solutions may also be obtained from the method of
stretching of variables (cf. Eq. (4.18)).
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5 Results and Discussion

The magneto-hydrodynamic (MHD) flow of Casson fluid due to a stretching or shrinking sheet
caused by boundary layer of an incompressible viscous flow is analyzed by the more suggestive
ways by using the Fortran programming and Mathematica. The third order nonlinear ordinary
differential Eq.(2.11) subject to the infinite boundary conditions (2.12) has been solved semi-
numerically using Dirichlet series method and method of stretching of variables. In Dirich-
let series method it is important that the edge boundary layer η → ∞ automatically satisfied.
Also, the closed-form exact analytical solution is given by the method of stretching of vari-
ables. The numerical computations were performed for various values of the physical parameters
viz.A,B,C, fw and β1. The present solution is also validated by comparing it with the previously
published work of Battacharyya [27] as shown in Table 1. Also the closed form exact analytical
solutions are compared with Battacharyya et al. [19], Fang and Zhang [32]. The graphs for the
function f ′(η) i.e. velocity profiles which corresponds to the axial velocity component u are
drawn against η for different values of parameters M,fw and β as shown in Figs. 2-4. These
figures match very well with that of earlier findings reported by Fang and Zhang [32]. The above
computations were performed using Dirichlet series. It is observed that for both shrinking and
stretching sheet, the dimensionless velocity profiles f ′(η) decreases with increasing values of
magnetic parameter M , suction parameter fw > 0 and the Casson parameter β. This inevitably
leads to a decrease in the momentum boundary layer thickness. Moreover, it is well known that
the presence of Lorentz force due to magnetic field tend to retard the fluid motion and conse-
quently, the fluid velocity decreases. Meanwhile, an increase in the fluid injection i.e. fw < 0
increases the momentum boundary layer thickness. Figs. 5-6 illustrate the local skin friction
coefficient at the sheet surface. It is interesting to note that for both stretching and the shrinking
sheet, the local skin friction coefficient increases with a rise in magnetic field intensity M and
the fluid suction fw > 0 but decreases with an increase in fluid injection fw < 0 and Casson
parameter β.

6 Conclusions

In this article, the analysis of a third order nonlinear ordinary differential equation modelling the
MHD Casson fluid flow over a stretching /shrinking sheet is performed using Dirichlet series
method and the method of stretching of variables for the closed form exact solution. The analyt-
ical method and semi-numerical scheme described here offer advantages over solutions obtained
by any pure numerical methods. The pertinent results are presented graphically and discussed
quantitatively. Finally, Dirichlet series solution is susceptible to the computer’s memory limita-
tions; it takes very less computer memory and can be employed to tackle a variety of nonlinear
boundary value problems modeling real systems.

Table 1. The skin friction coefficient f ′′(0) at A = 1, B = 1, C = −2 and β1 = −1 (Eq.(11) and
(12)) for various values of fw by Dirichlet series solution and Method of stretching of variables

fw Dirichlet Series method MSV Numerical solution[27]
a γ f ′′(0) f ′′(0) f ′′(0)

2 0.02859548 2.41421356 2.414214 2.4142136 2.414214
3 0.01527885 3.30277564 3.302776 3.3027756 3.302776
4 0.00928802 4.23606798 4.236067 4.2360679 4.236068
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Figure 2. Velocity profiles with increasing M

Figure 3. Velocity profiles with increasing fw
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Figure 4. Velocity profiles with increasing β

Figure 5. Skin friction coefficient for stretching sheet with increasing β,M and fw
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Figure 6. Skin friction coefficient for shrinking sheet with increasingβ,M and fw.
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