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Abstract. In this paper, numerical solutions of linear partial differential equations of parabolic
type are investigated. We first solve heat equation numerically with Crank-Nicolson, Homotopy
Perturbation and Adomian Decomposition methods and then compare the obtained numerical
results. As a result of this comparison, we obtain that the Homotopy Perturbation and Adomian
Decomposition methods are more stable than the Crank-Nicolson method.

1 Introduction

Parabolic partial differential equations show up in a wide range of applications in a natural sci-
ence, engineering, and technology; typically, they must be solved numerically and there are many
finite-difference and finite-element schemes in order to do this. The biggest advantage of this
method is that some problems that cannot acquire analytic solution can be solved numerically
with these methods.

In this study, we use Crank-Nicolson, Homotopy Perturbation and Adomian Decomposition
methods to numerically solve the linear partial differential equations of the parabolic type. We
investigate the stability properties of these methods with appropriate initial and boundary condi-
tions.

The Crank-Nicolson method was developed by Crank and Nicolson in 1947. They discussed
a numerical method developed by the authors in which both derivatives were replaced by finite
difference ratios and the solution proceeded by finite steps in time[6].

Adomian Decomposition method was developed by George Adomian in the 1980s[2, 3, 4].
A considerable amount of research work has been invested recently in applying this method to a
wide class of linear and nonlinear ordinary differential, partial differential and integral equations
as well. This technique is based on the representation of a solution to a functional equation as a
series of function. Each term of the series is obtained from a polynomial generated by a power
series expansion of an analytic function.

The Homotopy Perturbation method is a new and effective method for solving various dif-
ferential and integral equations. This method was introduced and developed by Ji-Huan He
in [9, 10, 11] and combined a homotopy technique of topology and a perturbation technique.
Choosing an appropriate initial approach and homotopy is important for solving the problem.
Considerable research work has recently been conducted in applying this method to a class of
linear and nonlinear equations. It can be said that this method is a universal one, and is able to
solve various kinds of nonlinear functional equations[1, 5, 7, 8, 12, 13]. It continuously deforms
the difficult equation under study into a simple equation, easy to solve. Approximate solutions
solved by the perturbation methods are valid only for the small values of the parameters. But the
proposed method, requiring no small parameters in the equations, can readily eliminate the lim-
itations of the traditional perturbation techniques. The advantage of the method is that it doesn’t
need a small parameter in linear and nonlinear problems.
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2 Numerical Methods

2.1 Crank-Nicolson Implicit Method

There are many implicit-finite difference methods that are used to find approximate solutions of
the parabolic differential equation. Given the stability in the problem, since the calculations must
be made for a large period of time, the number of time steps and hence the number of operations
will increase. One of the differential approaches, which is not limited by the §¢ = k time step that
removes this negativity, is the Crank-Nicolson implicit solution approach. Crank and Nicolson
proposed and used a method that reduces the total volume of calculation and is valid (convergent

and stable) for all finite values of r. They replaced g;@‘ by the mean of its finite-difference

representations on the (5 + 1)th and jth time rows and approximated the equation
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where r = % The left side of equation (3) contains three unknowns and the right side three

knowns, pivotal values of . If there are n international mesh points along each time row then for
j=0and¢=1,2,...,n, equation (3) gives n simultaneous equations for the n unknown pivotal
values along the first time row in terms of known initial and boundary values. Similarly j = 1
expresses n unknown values of « along the second time row in terms of the calculated values
along the first, etc. A method such as this where the calculation of an unknown pivotal value
necessitates the solution of a set of simultaneous equations is described as an implicit one[14].

2.2 Homotopy Perturbation Method

Considering the differential equation

Alu) — f(r)=0, reQ 2.4
with boundary conditions
ou
B(u,—) = r 2.
(u, an) 0, re (2.5)

where A is a general differential operator, f(r) is a known analytic function, B is a boundary
and I' is the boundary of the domain . The operator A can be divided into two parts, namely,
linear (L) and nonlinear (N), and equation (4) can be rewritten in the form of

L(u) 4+ N(u) — f(r) =0. (2.6)
Using homotopy technique, one can construct a homotopy v : Q x [0, 1] — R which satisfies
H(I/(’I"7p>7p) = (1 7]))[[1(1/) - L(UO)] +p[A(I/) - f(?")} =0 , PE [Oa 1] (27)
or
H(v(r,p),p) = L(v) = L(uo) + pL(uo) + p[N(v) — f(r)] = 0 (2.8)

where p € [0, 1] is an embedding parameter, uy is an initial approximation of equation (4), which
satisfies the boundary conditions. It is obvious from (7) and(8) that

H(v(r,0),0) = L(v) — L(ug) =0, H(v(r,1),1) = A(v) — f(r) = 0. (2.9)

The process of changes in p from zero to unity is that of v(r, p) changing from ug(r) to u(r). We
assume that solution for (7) or (8) can be written as a power series of p:

v=uy+pv + pPrr+ ... (2.10)
When p — 1, it yields the approximate solution for (4) in the form

u=limv=yy+v;+uvs+.. (2.11)
p—1
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2.3 Adomian Decomposition Method

At first we consider how to use the Adomian Decomposition Method (ADM) by the linear dif-
ferential equation written in an operator form by

Lu+Ru=g (2.12)

where L is mostly the lower order derivative which is assumed to be invertible, R is other linear
differential operator, and g is a source term. The standard Adomian method defines the solution
u by an infinite series of components given as bellow,

u(@,y) = un(z,y) (2.13)
n=0
Rewriting the equation (12) as
Lu=g— Ru (2.14)
and then applying L~ to both sides of equation (14) and using the given condition, we get
u=f— L "(Ru) (2.15)

where the function f represents the terms arising from integrating the source term g. Decom-
posed series solution function can be written as

u = iun (2.16)
n=0

Considering (15) and (16), we obtain

iun =f- L—l(R(iun)). (2.17)
n=0 n=0

For simplicity, equation (17) can be rewritten as
ug +uy +uy 4 ... = f — LY (R(up 4+ uy +us + ...)). (2.18)

The zeroth component wy is usually defined by the function f described above. And then we
obtain the terms u; ,uy,u3,... by using the term ug . These terms can be illustrated by using
recursive relation as below

uo = f,

U1 = —Lil(R(uk)) k> 0.

Finally to obtain solution u , these terms are plugged in the equation (16).

3 Numerical Results

In this section, we work out an example, one dimensional heat flow equation, in details. We
solve it by using three methods that we described in previous sections.

3.1 Example

We consider one dimensional heat flow equation. The boundary and the initial conditions are
follow as
Up — Uz =0, O<x <7, t>0
u(z,0) = sin(z) + 3sin(2z), 0 <z <7 3.1
u(0,t) = u(mt) =0, t >0

with the exact solution u(x,t) = e~!sin(x) + 3e~*sin(2z).
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Solution by ADM

Equation (19) can be rewritten in operator form as
Liu = L,u (3.2)

where L; symbolizes the easily invertible linear differential operator. These operators are defined
as

0 1 K 9
Li=—,L; (. dt \L, = — 33
=g L0 = [0 - (33)
Applying L; ! to both sides of equation (20), we have
Ly'Lyu= L' Lyu (3.4)
or
u(z,t) — u(z,0) = L7 Lou. (3.5)
Decomposed series solution function can be written as
u="> un(z,t) (3.6)
n=0
Substituting (24) in (23), we find
Zun(az,t) = sin(x) + 3sin(2x) + Ly Zun z,t))). 3.7)
The zeroth component is
up = sin(z) + 3sin(2z)
Other components by using recursive relation as below
uns(2,0) = Ly (LoD un(z,1)))
n=0
u; = L;'Lyug = —t(sin(z) + 12sin(2x))
2
uy = Li'Lyu; = j(sm(m) + 48sin(2x))
1 . .
w3 = L; Lyup = —y(SZTl(;C) + 192sin(2x))

Thus, the solution can be expressed as

— o £ _ £ 3 @) ()’
u=sin(z)(l —t+4% a3 +..) +3sin(2z)(1 — 4t + S5 — -+ ...)
u = e"tsin(x) + 3e *sin(2z)

Solution by Homotopy Perturbation Method

From Equation (19), one can establish the following homotopy

ov  Ouyg v duyg
H(v,p) = E*ﬁ*(@*ﬁ) 0 (3.8)

Now the homotopy parameter p is used to expand the solution v(z, t) as follows

v=uy+pv +ptrr+ ... 3.9
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Setting p = 1 leads to the approximate solution of the problem:

u=limv=vy+v+1r+.. (3.10)
p—1

Considering the initial condition and comparing the coefficients of equal p powers, we obtain

o, In_ du _
P o T e T
Lo ow
P Tor T o2 T o
2 . % . 321/1
L
3 . % o 621/2
P ot 02?2
Then
vy(z,t) = sin(z) + 3sin(2x)
vi(z,t) = —t(sin(z)+4.3sin(2x))
2
v(z,t) = %(sm(x) + 42 3sin(2z))
t3
v3(z,t) = —a(sm(m) + 43 3sin(2x))

Collecting the components together, we obtain
u=sin(z)(l —t+ ;—2, - 3—3, +...) + 3sin(2z) (1 — 4t + (
u = e tsin(x) + 3e *sin(2z)

4t)? 4t)°
2!) - (3!) +..)

Solution by Crank-Nicolson Implicit Method

Although this method is valid for all finite values of » = % ,the %1; approach leads to an incorrect

approach for a large value of r . Take h = {j for instance. A suitable value is » = 1 and has the
advantage of making the coefficient of u; ; zero in (3). Then £ = 0,098696 and (3) reads as
Ui 141 T AU 51— Uil 1 = Wim1,j + Uipl,j

Denote u; j11 by u; (i =1,2,...,9). The values of u for the firs time step satisfy

—0+4u; —uy = 0+ 3,440952
—uy +4uy —uy = 2,072370 + 3,662187
—up +Aus —uy = 3,440952 +2,714412
—uy +dug —ug = —2,044150 — 1,454340
—ug+dug —0 = —2,265384+0

These are solved by Gauss elimination method and the results are
up = 1,477999 ,up = 2,471047 ,u3 = 2,671634 ,us = 2,060125 ,



SOLUTIONS OF LINEAR PARABOLIC EQUATIONS 125

us = 0,906681 ,us = —0,335515 ,u7; = —1,204594 ,ug = —1,405181 ,

ug = —0,917641

Then u values are calculated until ¢ = 0,888264 by continuing in this way. At the time ¢t =
0, 888264 , the analytical solution of the partial differential equation together with comparing
finite-difference solution is given in Table 1.

X Analytical Solution(Exact) Crank-Nicolson Method(CNM) Error

0 0 0 0
0,314159 0,177614 0,194688 0,017074
0,628318 0,323499 0,355773 0,032274
0,942477 0,414507 0,460275 0,045768
1,256637 0,441729 0,505842 0,064113
1,570796 0,411368 0,527900 0,116532
1,884955 0,340738 0,652625 0,311887
2,199114 0,251100 0,352960 0,10186
2,513274 0,160092 0,198292 0,0382
2,827433 0,076624 0,090646 0,014022
3,141592 0 0 0

Table 1. Comparing of the analytical solution at the time ¢ = 0, 888264 with the results obtained
using the Crank-Nicolson implicit solution method

X Analytical Solution CNM HPM-ADM Error Error
(Exact) (N=12) | Uezact —UCNM | | Uezact — UmPM |

0 0 0 0 0 0
0,314159 0,177614 0,194688  0,165953 0,017074 0,011661
0,628318 0,323499 0,355773  0,304631 0,032274 0,018868
0,942477 0,414507 0,460275  0,395639 0,045768 0,018868
1,256637 0,441729 0,505842  0,430069 0,064113 0,01166
1,570796 0,411368 0,527900  0,411369 0,116532 0,000001
1,884955 0,340738 0,652625  0,352400 0,311887 0,011662
2,199114 0,251100 0,352960  0,269969 0,10186 0,018869
2,513274 0,160092 0,198292  0,178961 0,0382 0,018869
2,827433 0,076624 0,090646  0,088285 0,014022 0,011661
3,141592 0 0 0 0 0

Table 2. Comparing of the analytical solution at the time ¢ = 0, 888264 with the results obtained
using the Crank-Nicolson implicit solution method(CNM) and Homotopy Perturbation method
(HPM) for example 1

4 Conclusions

To sum up, this article investigates numerical solutions of linear partial differential equations
of parabolic type. Crank-Nicolson, Homotopy Perturbation and Adomian Decomposition meth-
ods are used to solve these equations numerically with suitable initial and boundary conditions.
The numerical results obtained are given in the table. As a result, Homotopy Perturbation and
Adomian Decomposition methods are more stable and convergent than Crank-Nicolson method.
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In addition, Homotopy Perturbation and Adomian Decomposition methods are found to be re-
lated in application in the sense that the computational size is reduced and they give close form
solution.

In the forthcoming paper, we will extend the homotopy perturbation method to obtain the
numerical solutions of nonlinear parabolic equations.
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