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Abstract This paper addresses the characterization of the multipliers for Gelfand pairs. More
precisely we obtain a theorem of Wendel type for the space of integrable bi-invariant functions
on a locally compact group. We also obtain some results concerning the double multipliers for
Gelfand pairs.

1 Introduction

In [16], Larsen pointed out the origin of the concept of a multiplier. It is extremely linked up
with the summability of Fourier series. From then it became ubiquitous in harmonic analysis and
other areas of pure and applied mathematics among which one can mention the general theory of
Banach algebras, the theory of singular integrals and fractional integration, stochastic processes,
time-frequency analysis, the theory of semigroups of operators and partial differential equations.
The theory of multipliers is a very active field and it would be pretentious to name all those who
contributed to its success. However let us mention some pioneers works in this area: multipli-
ers for semisimple commutative Banach algebras (Helgason [10]), multipliers for commutative
faithful Banach algebras (Wang [20] and Birtel [1]), multipliers for group algebras (Wendel
[21, 22] and Edwards [7]).
More recently, A. Riazi and M. Adib [18] generalized the concept of multipliers on faithful Ba-
nach algebras to ϕ-multipliers where ϕ is an algebra homomorphism.
In this paper we study the multipliers and double multipliers related to Gelfand pairs. To do this
we may consider a locally compact second countable group with a certain compact subgroup.
Then the concept of Gelfand pair is linked to the commutativity of a certain Banach algebra. The
main purpose of this paper is to study the multipliers of this commutative Banach algebra.
The rest of the paper is organized as follows. In Section 2 we collect some results on the mul-
tipliers for the group algebra L1(G) where G is a locally compact abelian group. Section 3 is
devoted to the Gelfand transform, the Gelfand pairs and the spherical functions. In Section 4 we
set our results on the multipliers for Gelfand pairs. Section 5 is concerned by double multipliers
for Gelfand pairs. Finally, in Section 6, our main result is related to multipliers in the framework
of hypergroups.

2 Multipliers for the group algebra L1(G)

Let G be a locally compact group endowed with a fixed left Haar mesure dx. In this section we
present the concept of multipliers for the group algebra L1(G), the latter being the linear space
of equivalence classes of Lebesgue integrable complex valued functions on G. The set L1(G)
has the natural norm

‖f‖1 =

∫
G

|f(x)|dx, (2.1)

and is endowed with the convolution product

f ∗ g(x) =
∫
G

f(xy−1)g(y)dy, f, g ∈ L1(G). (2.2)

Under the above norm and product, the space L1(G) is a Banach algebra. This algebra is
commutative if and only if G is a commutative group [9, page 49]. It is possible to extend the
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structure of Banach algebra to the set M(G) of complex Radon measures on G. For this purpose
one defines the norm

‖µ‖ = |µ|(G) (2.3)

where |µ| stands for the total variation of the measure µ. The total variation of µ is defined by

|µ|(E) = sup
∑
A∈Π

|µ(A)| (2.4)

where the supremum is taken over all the partitions Π of E into pairwise disjoint Borel sets. One
defines on the space M(G) the convolution product

µ ∗ ν(f) =
∫
G

∫
G

f(xy)dµ(x)dν(y), µ, ν ∈M(G), f ∈ Cc(G), (2.5)

where Cc(G) is the space of continuous complex functions with compact support. Then (M(G), ‖ · ‖, ∗)
is a Banach algebra with identity which is the Dirac measure δ [9, page 50].

From now to the end of this section, G is assumed to be a locally compact abelian group. A
group homomorphism from G into the unit circle T is called a character of G. All the characters
of G form a group called the dual group of G and it is denoted by Ĝ. In Ĝ the group law
is the multiplication of functions. When Ĝ is endowed with the compact-open topology then

it becomes a locally compact abelian group and the Pontrjagin duality states that ̂̂
G ' G [4,

Chapter 3].
Now one can define the Fourier transformation. The Fourier transform of a function f ∈ L1(G)
is defined by

f̂(χ) =

∫
G

χ(x)f(x)dx, χ ∈ Ĝ. (2.6)

and the Fourier-Stieltjes transform of a measure µ ∈M(G) is defined by

µ̂(χ) =

∫
G

χ(x)dµ(x), χ ∈ Ĝ. (2.7)

The following relations are well-known in the literature. See for instance [9, page 94].

f̂ ∗ g = f̂ ĝ, f, g ∈ L1(G). (2.8)

µ̂ ∗ ν = µ̂ν̂, µ, ν ∈M(G). (2.9)

For x ∈ G the translation operator associated with x and denoted by τx is defined by

(τxf)(y) = f(yx−1). (2.10)

The following proposition characterizes linear transformations on L1(G) which commute
with the translation operators. This proposition is the bedrock of the theory of multipliers for
commutative Banach algebras [16].

Proposition 2.1. Let T : L1(G) −→ L1(G) be a continuous linear transformation. Then the
following assertions are equivalent.

(i) τxT = Tτx, ∀x ∈ G.

(ii) T (f ∗ g) = Tf ∗ g, ∀f, g ∈ L1(G).

(iii) There exists a unique function P defined on Ĝ such that T̂ f = Pf̂ , ∀f ∈ L1(G).

(iv) There exists a unique measure µ ∈M(G) such that T̂ f = µ̂f̂ , ∀f ∈ L1(G).

(v) There exists a unique measure µ ∈M(G) such that Tf = f ∗ µ, ∀f ∈ L1(G).

A multiplier for L1(G) is a continuous linear operator on L1(G) that satisfies one of the above
equivalent assertions.
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3 The Gelfand transform, Gelfand pairs and spherical functions

In this section, we are interested in the Gelfand transform on a commutative Banach algebra, the
Gelfand pairs and the spherical functions. All this concepts will pave the way for the study of
the multipliers for Gelfand pairs.
Let us briefly recall the definition of the Gelfand transform on a commutative Banach algebra A.
For more details one may refer to [13]. An interesting treatment of the subject can also be found
in the lecture notes [15]. Let ∆(A) be the set of all the non-zero continuous algebra homomor-
phisms of A into C. One denotes by ∆(A) the structure space of A. One has ∆(A) ⊂ A∗. So
we endow ∆(A) with the relative w∗−topology of A∗ which is called the Gelfand topology. This
topology turns ∆(A) into a locally compact Hausdorrf space. One denotes by C0(∆(A)) the set
of all the continuous functions on ∆(A) which vanish at infinity. Equipped with the sup-norm
and the ordinary product of functions, C0(∆(A)) is a Banach algebra. The Gelfand transform of
A is the map G : A→ C0(∆(A)) defined by

(Ga)(ω) = ω(a). (3.1)

We will often denote the Gelfand transform of a by â instead of Ga. A Banach algebra is said
to be semisimple if the Gelfand transformation a 7→ â is injective. For instance the convolution
Banach algebra L1(G) seen in the above section is semisimple.

Let us notice that the Fourier transform is the Gelfand transform for a particular Banach al-
gebra. For instance the Fourier transform on the locally compact abelian group G is the Gelfand
transform for the commutative Banach algebra L1(G).

Now let G be a locally compact group and let K be a compact subgroup of G.

Definition 3.1. A function f : G→ C is said to be K−bi-invariant if

f(k1xk2) = f(x), ∀x ∈ G, ∀k1, k2 ∈ K. (3.2)

We denote by Cc(G) the set of compact supported complex functions on G and Cc(G//K)
stands for functions in Cc(G) which are K−bi-invariant. The convolution product (2.2) is de-
fined on Cc(G//K). Let us denote by L1(G//K) the set of integrable bi-invariant functions.
Since the convolution product is separately continuous and sinceCc(G//K) is dense in the space
L1(G//K), the convolution product is uniquely extended to L1(G//K). The space L1(G//K)
is a Banach algebra under the convolution product and the L1- norm. The space Cc(G//K) is a
dense subalgebra of L1(G//K).

Herafter is the definition of a Gelfand pair. Interested readers may refer to [5], [8] or [12].

Definition 3.2. A Gelfand pair is a couple (G,K) such that the Banach algebra Cc(G//K) is
commutative.

By density of Cc(G//K) in L1(G//K), the definition implies that L1(G//K) is also com-
mutative. L1(G//K) is semisimple by the Gelfand-Raikov theorem.

The following proposition gives a necessary condition for a pair (G,K) to be a Gelfand pair
[12].

Proposition 3.3. If (G,K) is a Gelfand pair, then G is unimodular.

The following proposition gives sufficient condition for a pair (G,K) to be a Gelfand pair.
The proof can be found in [12, page 220].

Proposition 3.4. Let G be a locally compact group and let K be a compact subgroup of G. Then
the pair (G,K) is a Gelfand pair if there exists a continuous involutive automorphism θ of G
such that θ(x) ∈ Kx−1K, ∀x ∈ G.

Harmonic analysis on Gelfand pairs is based on the concept of spherical function, with par-
ticular emphasis on the bounded ones, and on the spherical Fourier transform.
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Definition 3.5. Let (G,K) be a Gelfand pair. A spherical function is a K-bi-invariant continuous
function ϕ on G, such that the mapping

f 7−→ χ(f) =

∫
G

f(x)ϕ(x−1)dx (3.3)

is a non-zero continous homomorphism (character) of the convolution algebra Cc(G//K), that
is χ is linear, continuous and

χ(f ∗ g) = χ(f)χ(g), ∀f, g ∈ Cc(G//K). (3.4)

For instance if G = R and K = {0} then spherical functions are the exponential functions
ϕλ(x) = eiλx, λ ∈ R.
The following proposition is proved in [6].

Proposition 3.6. A non-zero function ϕ ∈ Cc(G//K) is a spherical function for a Gelfand pair
(G,K) if and only if ∫

K

ϕ(xky)dk = ϕ(x)ϕ(y), ∀x, y ∈ G. (3.5)

The following proposition can be found in [6].

Proposition 3.7. Let ϕ be a continuous K-bi-invariant function on G. Then ϕ is a spherical
function if and only if ϕ(e) = 1 and ∀f ∈ Cc(G//K), f ∗ ϕ = χ(f)ϕ.

There is a link between the bounded spherical functions and the characters of the Banach
algebra L1(G//K).

Proposition 3.8. Each non-zero character χ of the convolution Banach algebra L1(G//K) is of
the form

χ(f) =

∫
G

f(x)ϕ(x−1)dx (3.6)

where ϕ is a bounded spherical function on G.

We refer again to [6, page 208] for the proof.

In this paper, we denote by S(G,K) the set of all the bounded spherical functions for the
Gelfand pair (G,K). The latter is endowed with the topology of the uniform convergence on
compact subsets defined by the seminorms

NA(ϕ) = sup
x∈A
|ϕ(x)| (3.7)

where A runs in the set of all the compact subsets of G. From the Proposition 3.8 it is clear
that S(G,K) can be identified with the structure space of L1(G//K). Therefore one obtains the
spherical Fourier transform. The following definition precises the notion.

Definition 3.9. The spherical Fourier transform of a function f ∈ L1(G//K), denoted by f̂ , is
defined by

f̂(ϕ) =

∫
G

f(x)ϕ(x−1)dx, ϕ ∈ S(G,K). (3.8)

The spherical Fourier transform satisfies the following relation:

f̂ ∗ g = f̂ × ĝ, ∀f, g ∈ L1(G//K). (3.9)

4 Multipliers for Gelfand pairs

We state our main results in this section. Our main goal is to characterize the multipliers of the
commutative Banach algebra L1(G//K) by the means of the spherical Fourier transform.

We set the following definition of a multiplier.
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Definition 4.1. A multiplier for a Gelfand pair (G,K) is a transformation

T : L1(G//K)→ L1(G//K)

such that
T (f ∗ g) = Tf ∗ g, ∀f, g ∈ L1(G//K). (4.1)

A note in [16, page 13] shows that the condition in the above definition implies the linearity
and the contuinity of the multiplier T . We denote byM(G,K) the set of all the multipliers for
the Gelfand pair (G,K). The following proposition gives a characterization of a multiplier for
(G,K) by the means of the spherical Fourier transform.

Proposition 4.2. Let (G,K) be a Gelfand pair. Let T : L1(G//K)→ L1(G//K) be a transfor-
mation. Then the following assertions are equivalent.

(i) T is a multiplier for (G,K).

(ii) There exists a unique function P defined on S(G,K) such that

T̂ f = Pf̂ , ∀f ∈ L1(G//K).

Proof. (1)⇒ (2)

Assume T (f ∗ g) = Tf ∗ g for all f, g ∈ L1(G//K). Since (G,K) is a Gelfand pair then
L1(G//K) is commutative under the convolution product. Therefore we have

Tf ∗ g = T (f ∗ g) = T (g ∗ f) = Tg ∗ f.

Using a property of the spherical Fourier transform we obtain

T̂ f × ĝ = T̂ g × f̂ .

For each spherical function ϕ, let us choose g in L1(G//K) such that ĝ(ϕ) 6= 0.

Now, define P by P(ϕ) =
T̂ g(ϕ)

ĝ(ϕ)
(this definition does not depend on the choice of g because of

the relation T̂ f × ĝ = T̂ g × f̂ ). Therefore we have T̂ f(ϕ) = P(ϕ)f̂(ϕ) for all ϕ ∈ S(G,K).
Hence T̂ f = Pf̂ .

Let’s show the unicity of P. If R is a second function on S(G,K) such that T̂ f = Rf̂ = Pf̂ for
all f ∈ L1(G//K) then the equation (P−R)f̂ = 0 for all f ∈ L1(G//K) reveals that P = R.
(2)⇒ (1)
Let us assume that there exists a function P defined on S(G,K) such that T̂ f = Pf̂ , ∀f ∈
L1(G//K). For f, g ∈ L1(G//K), f ∗ g is in L1(G//K). Applying the hypothesis, one has
̂T (f ∗ g) = P(̂f ∗ g) = Pf̂ ĝ = T̂ f ĝ = T̂ f ∗ g. Since L1(G//K) is semisimple, we have
T (f ∗ g) = Tf ∗ g.

We denote by L(G,K) the space of all the continuous linear operators from L1(G//K) to
L1(G//K). Then clearlyM(G,K) is a closed commutative subalgebra of L(G,K) which con-
tains the identity operator of L(G,K).

For g ∈ L1(G//K), consider the convolution operator

mg : L1(G//K)→ L1(G//K), f 7→ mgf = g ∗ f. (4.2)

Proposition 4.3. We have mg ∈M(G,K).

Proof. Let f, g, h ∈ L1(G//K).

mgf ∗ h = (g ∗ f) ∗ h = g ∗ (f ∗ h) = mg(f ∗ h)

Thus mg ∈M(G,K).
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Proposition 4.4.M(G,K) is a maximal commutative subalgebra of L(G,K).

Proof. Suppose that M(G,K) is not a maximal commutative subalgebra of L(G,K). Since
L(G,K) contains an identity, there exists a maximal commutative subalgebraN (G,K) ofL(G,K)
which contains properlyM(G,K).
Let T ∈ N (G,K). One has

f ∗ Tg = mf (Tg) = (mfT )g.

Since N (G,K) is commutative then we have

(mfT )g = (Tmf )g.

But

(Tmf )g = T (mfg)

= T (f ∗ g).

Since L1(G//K) is commutative, it follows that

Tg ∗ f = T (g ∗ f)

Thus T ∈M(G,K). This contradicts the construction of N (G,K).

5 Double multipliers for Gelfand pairs

Here we study the double multipliers for the Banach algebra L1(G//K). We start by giving the
general definition of a double multiplier.

Definition 5.1. Let A be a Banach algebra. A pair (S, T ) of maps S : A −→ A,
T : A −→ A is called a double multiplier for A if

f(Sg) = (Tf)g, ∀f, g ∈ A. (5.1)

We are interested in the double multipliers for the convolution Banach algebra L1(G//K).
For this algebra the definition is reformulated as follows.

Definition 5.2. Let (G,K) be a Gelfand pair. A pair (S, T ) of maps S : L1(G//K) −→
L1(G//K), T : L1(G//K) −→ L1(G//K) is called a double multiplier for (G,K) if

f ∗ (Sg) = (Tf) ∗ g, ∀f, g ∈ L1(G//K). (5.2)

We denote byMd(G,K) the set of all the double multipliers for (G,K).

Proposition 5.3. Let (G,K) be a Gelfand pair and let (S, T ) ∈Md(G,K). Then one has

(i) S, T ∈M(G,K).

(ii) S = T .

Proof. (1) Let f, g, h ∈ L1(G//K). We have

h ∗ T (f ∗ g) = Sh ∗ (f ∗ g)
= (Sh ∗ f) ∗ g
= (h ∗ Tf) ∗ g
= h ∗ (Tf ∗ g)

Since L1(G//K) is semisimple, it implies that T (f ∗g) = Tf ∗g. Thus T ∈M(G,K). Similarly,
S ∈M(G,K).
(2) Let f, g ∈ L1(G//K). We have

g ∗ Sf = Tg ∗ f = f ∗ Tg = T (f ∗ g) = T (g ∗ f) = g ∗ Tf.

Since L1(G//K) is semisimple, we have Sf = Tf for all f ∈ L1(G//K). Hence S = T .
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Proposition 5.4. Let (G,K) be a Gelfand pair. If T is a multiplier for (G,K) then the following
assertions are equivalent.

(i) T is involutive.

(ii) T−1 exists and (T, T−1) ∈Md(G,K).

Proof. If (1) holds then T is bijective and T = T−1. So T−1 exists and T−1 ∈M(G,K). Since
T is a multiplier we have Tf ∗ g = f ∗ Tg, ∀f, g ∈ L(G//K).

T = T−1 =⇒ Tf ∗ g = f ∗ T−1g

=⇒ (T, T−1) ∈Md(G,K)

Thus (1) =⇒ (2).

The converse is a consequence of the Proposition 5.3.

A general Banach algebra A is said to be without order if for x ∈ A,

xy = 0,∀y ∈ A =⇒ x = 0.

Via the Gelfand transform in A, one sees that if A is a commutative semisimple Banach algebra
then A is without order.
To go further, we may need the following result in [11].

Lemma 5.5. Let A be a Banach algebra without order . Let x, z ∈ A such that xyz = zyx for
all y ∈ A. If x 6= 0 then there exists λ ∈ C, such that x = λz.

Proposition 5.6. Let (G,K) be a Gelfand pair. Let T, T ′ ∈M(G,K) be such that

Tf ∗ T ′g = T ′f ∗ Tg, ∀f, g ∈ L1(G//K). (5.3)

If T 6= 0 then there exists λ ∈ C such that T = λT ′.

Proof. For the proof we borrow the method from [23, Theorem 2.2]. Let T, T ′ ∈ M(G,K) and
let f, g, h ∈ L1(G//K). Replacing g by g ∗ h in (5.3), we have

Tf ∗ T ′(g ∗ h) = T ′f ∗ T (g ∗ h) ⇐⇒ Tf ∗ (g ∗ T ′h) = T ′f ∗ (g ∗ Th)
⇐⇒ Tf ∗ g ∗ T ′h = T ′f ∗ g ∗ Th. (F)

In the case f = h, using the Lemma 5.5 under the assumption Tf 6= 0, we deduce the existence
of a constant λ(f) ∈ C depending a priori on f such that T ′f = λ(f)Tf . Now let us show
that the constant λ(f) is independent of f . If f1 and f2 are such that T ′f1 = λ(f1)Tf1 and
T ′f2 = λ(f2)Tf2 then we have

λ(f2)Tf1 ∗ g ∗ Tf2 = λ(f1)Tf1 ∗ g ∗ Tf2, ∀g ∈ L1(G//K).

That is [λ(f2)− λ(f1)]Tf1 ∗ g ∗ Tf2 = 0, ∀g ∈ L1(G//K). So λ(f2) = λ(f1) = λ.
Now if Tf = 0 the relation (F) gives T ′f ∗ g ∗ Th = 0, ∀g, h ∈ L1(G//K). So T ′f = 0.
Therefore T ′f = λTf .
Finally we have T ′f = λTf,∀f ∈ L1(G//K).

6 Multipliers in the framework of hypergroups

The results of the previous sections are obtained in the framework of topological group theory.
However, multipliers have been intensively studied in the framework of hypergroups; see [2, 3,
14] and references therein. The definiton of hypergroup can be found in [2]. For the convenience
of the reader we recall it here.

A hypergroup is a locally compact Hausdorff spaceH with an involution − and a convolution
∗ on the space M(H) of bounded Radon measures on H such that (M(H), ∗) is an algebra and
∀x, y ∈ H ,
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(i) δx ∗ δy is a probability measure on H with compact support, where δx is the point measure
at x,

(ii) The maps H2 → M(H), (x, y) 7→ δx ∗ δy and H2 → C(H), (x, y) 7→ supp(δx ∗ δy) are
continuous, C(H) being the set of nonvoid compact subsets ofH with the Michael topology
[17],

(iii) There exists an e ∈ H , called identity, satisfying δx∗δe = δe∗δx = δx and e ∈ supp(δx∗δy)
if and only if x = y−,

(iv) (δx ∗ δy)− = δy− ∗ δx− .

A hypergroup H is called commutative if for all x, y ∈ H , δx ∗ δy = δy ∗ δx.

Set

f(x ∗ y) =
∫
H

f(z)d(δx ∗ δy)(z). (6.1)

For functions f, g and a measure µ on a hypergroupH , translation and convolution are defined
as follows.

T xf(y) = f(x ∗ y), (6.2)

(µ ∗ f)(x) =
∫
H

f(y− ∗ x)dµ(y), (6.3)

and

(f ∗ g)(x) =
∫
H

f(y− ∗ x)g(y)dy, (6.4)

where dy stands for the Haar measure of H , the existence of which was proved by Spector for
commutative hypergroups [19].
Let G be a locally compact group and K a compact subgroup of G. Consider the set H =
G//K = {KxK : x ∈ G} of double cosets of K. Then G//K is a hypergroup [2, Theorem
1.1.9]. If (G,K) is a Gelfand pair then G//K is a commutative hypergroup.

Our result (Proposition 4.2) completes Theorem 1.6.24 in [2, page 68] applied to the double
coset G//K viewed as a hypergroup to give the following proposition.

Proposition 6.1. If (G,K) is a Gelfand pair and if T : L1(G//K) → L1(G//K) is a bounded
linear operator then the following assertions are equivalent.

(i) TT x = T xT, ∀x ∈ G//K.

(ii) T (f ∗ g) = Tf ∗ g, ∀f, g ∈ L1(G//K).

(iii) There exists a unique bounded measure µ onG//K such that Tf = µ∗f, ∀f ∈ L1(G//K).

(iv) There exists a unique function Q defined on the set of spherical functions on G such that
T̂ f = Qf̂ , ∀f ∈ L1(G//K).

7 Conclusion

We obtain some results concerning the multipliers and the double multipliers for the convolution
Banach algebra L1(G//K). Further developments of this subject will consist of dropping the
commutativity provided by the fact that (G,K) is a Gelfand pair. Surely the notion of spherical
function according to a group representation developped in [12] may play an important rôle.
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