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Abstract. In this paper, we give some new convergence results of reversed martingale con-
sisting of strongly measurable and Pettis-integrable random variable (resp. random set). We also
present a new version of Mosco convergence of conditional expectation for Pettis-integrable
multifunctions of the form EBnXn, where (Bn)n≥1 is a decreasing sequence of sub-σ-algebras
of F and (Xn)n≥1 is a sequence of Pettis-integrable convex and weakly compact random sets in
a separable Banach space.

1 Introduction

The convergence of conditional expectation of random variables (resp. random sets) plays a
crucial role in the probability theory. This concept was used in many concrete problems, more
precisely in the theory of martingales, optimization and control, stochastic geometry and in the
mathematical economics.
The conditional expectation of random variables (resp. random sets) Bochner-integrable always
exists and has been treated by several authors (see. for example Neveu [13], Hiai [10], Hess
[9], Hiai and Umegaki [11], Ezzaki [7], Wei-an [17], Ezzaki et al [3] and others). However, the
conditional expectations of Pettis-integrable random variables (resp. random sets) doesn’t gen-
erally exist (see. Rybakov [14] and Talagrand [15]). Recently, several authors have studied the
existence of this operator (see. El harami and Ezzaki [6], Akhiat et al [2], Oulghazi and Ezzaki
[19][20] and Castaing et al [1]).
By using the recent tools established in this theory, we prove an extension of results stated by
Hiai [10] and by Ezzaki el al [3] in Pettis integration. More precisely the aim of this work is the
study of almost sure Mosco convergence of a sequences of random setsEBnXn, where (Bn)n≥1
is a decreasing sequence of sub-σ-algebra of F and (Xn)n≥1 is a sequence of Pettis-integrable
convex and weakly compact random sets in a separable Banach space. It is interesting to know
that the same result for vector valued Pettis-integrable function is not established yet.
Our paper is organized as follows. In Section 2, we present some definitions, preliminaries and
needed results. Section 3 is devoted to the convergence of the conditional expectation for se-
quences of Pettis-integrable vector valued random variables; we state a new version of Levy’s
theorem and dominated convergence theorem in Pettis integration. At the last section of this pa-
per, we present the almost sure Mosco convergence of Pettis-integrable random sets (EBnX)n≥1
and (EBnXn)n≥1, where (Bn)n≥1 is a decreasing sequence of sub-σ-algebras of F and (Xn)n≥1
as well as X are the convex and weakly compact Pettis-integrable random sets.

2 Notations and preliminaries

Throughout this paper (Ω,F, P ) is a complete probability space, (Bn)n≥1 is a decreasing se-
quence of sub-σ-algebras of F and B∞ = ∩n≥1Bn. Let E be a separable Banach space with the
dual space E∗. Let cwk(E) (resp. cc(E)) be the family of all nonempty convex and weakly
compact subsets of E (resp. the family of all nonempty closed convex subsets of E). Let
L1
E(F) (resp. L1

cwk(E)(F)) be the family of all F-measurable and Bochner-integrable func-
tions X : Ω −→ E (resp. the family of integrably bounded random sets with values in cwk(E)).
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Given B in cwk(E), the distance function and the support function of B are defined by

d(x,B) = inf{‖x− y‖, y ∈ B}, (x ∈ E).

δ∗(x∗, B) = sup{≺ x∗, y �, y ∈ B}, (x∗ ∈ E∗).

For any B in cwk(E), we get
|B| = sup{‖x‖, x ∈ B}.

A cwk(E)-valued sequence (An)n≥1 is called Mosco convergent to a closed convex and weakly
compact set A∞ (see. [12]), if A∞ = s− li An = w − ls An, where

s− li An = {y ∈ E, yn −→ y, yn ∈ An, ∀n ≥ 1}

w − ls An = {y ∈ E, yk
w−→ y, yk ∈ Ank

,∀k ≥ 1},

where (Ank
)k≥1 is a subsequence of (An)n≥1. If (An)n≥1 Mosco converges to A∞ in cwk(E),

we write M − limAn = A∞.
The topology determined by the convergence of support functions is denoted by τs. A sequence
An is τs-convergent to subset A∞ if limn→+∞ δ∗(x∗, An) = δ∗(x∗, A∞) for all x∗ ∈ E∗.
A measurable function g : Ω −→ E is Pettis-integrable, if g is scalarly integrable (i.e. < x∗, g >
is integrable), and for each A ∈ F, there exists xA in E, such that∫

A

< x∗, g > dP =< x∗, xA >, ∀x∗ ∈ E∗.

xA is called the Pettis-integral of g over A. We will denote by P 1
E(F) the space of all F-

measurable and Pettis-integrable E-valued function defined on (Ω,F, P ). We consider the space
P 1
E(F) provided with the following topologies:

• The topology of the usual Pettis norm

‖g‖Pe = sup
x∗∈BE∗

∫
Ω

| < x∗, g > |dP.

• The topology induced by the duality (P 1
E(F), L

∞ ⊗E∗). Recall that a sequence (gn)n≥1 in
P 1
E(F) converges to g in this topology, if for each h ∈ L∞(F) and for all x∗ ∈ E∗, one has

lim
n→+∞

∫
Ω

h(ω) < x∗, gn(ω) > dP (ω) =

∫
Ω

h(ω) < x∗, g(ω) > dP (ω).

This topology is known as the weak topology and is denoted by w-Pe.

A multifunction X : Ω −→ cc(E) is said to be measurable, if for every open set U of E the
subset

X−(U) = {ω ∈ Ω/X(ω) ∩ U 6= ∅}.

is an element of F. The Effros σ-field ξ on cc(E) is generated by the subsets U− = {F ∈
cc(E), /F ∩U 6= ∅}, so the multifunction X : Ω −→ cc(E) is measurable if, for any B ∈ ξ, one
has X−(B) ∈ F. A measurable multifunction is called a random set.
A measurable function f : Ω −→ E is said to be a selection of X, if, for any ω ∈ Ω, f(ω) ∈
X(ω). We denote by S1

X(F) the set of all F-measurable and integrable selections of X . It is
known that if E is a complete space (see. theorem 1.0 in [11]) a closed and convex valued
multifunction X is measurable if and only if dom(X) ∈ F and X has a Castaing representation
(i.e. there exists a sequence (fn)n≥1 of measurable selections of X such that for all ω ∈ Ω,
X(ω) = cl{fn(ω), n ≥ 1}), or if and only if the real function d(x,X(.)) is measurable for any
x in E .
The random set X : Ω −→ cwk(E) is scalarly integrable, if for any x∗ ∈ E∗, the real function
δ∗(x∗, X(.)) is integrable. We say that the random set X is Pettis-integrable, if X is scalarly
integrable and for each A ∈ F, there exists KA ∈ cwk(E) such that∫

A

δ∗(x∗, X)dP = δ∗(x∗,KA), ∀x∗ ∈ E∗.
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KA :=
∫
A
XdP is called the Pettis-integral of X over A.

A random set X is said to be Aumann-Pettis integrable if SPe
X 6= φ and the multivalued Aumann

Pettis-integral of a random set X over Ω is defined by∫
Ω

XdP = {
∫

Ω

fdP, f ∈ SPe
X (F)}.

We will denote by P 1
cwk(E)(F) the set of all cwk(E)-valued Pettis-integrable random set.

Let X be in L1
E(F) and B a sub-σ-algebra of F. It is known in the literature (see. Neuveu

[13]) that the conditional expectation of X relative to B exists and is the unique almost surely
B-measurable and Bochner integrable random variable such that∫

A

EBXdP =

∫
A

XdP, ∀A ∈ B.

The extension of this result is stated by Hiai and Umegaki [11] of integrable random sets;
If X is an integrable random set and B is a sub-σ-algebra of F, then there exists a unique almost
surely B-measurable and integrable random set denoted EBX such that

S1
EBX(B) = cl{EBf, f ∈ S1

X(F)},

where the closure is taken with respect to the norm in L1
E(F).

The conditional expectation for Pettis-integrable random variable not always exists ( see. Ry-
bakov [14] and Talagrand [15]). Recently Akhiat et al ([1], [2]), Ezzaki and El harami [6] and
Uhl [16] gave a sufficient conditions of the existence of this operator for Pettis-integrable vector
random variables and Pettis-integrable random sets. For the convenience of the reader, we recall
the following propositions which will be used after.

Proposition 2.1. ([1]) Assume that E is a separable Banach space. Let B be a sub-σ-algebra
of F and let X be a Pettis-integrable E-valued function such that EB|X| ∈ [0,+∞[. Then there
exists a unique B-measurable and Pettis-integrable E-valued function denote by EBX which
enjoys the following property, for every h ∈ L∞(B), one has∫

Ω

hEBXdP =

∫
Ω

hXdP.

EBX is called the Pettis conditional expectation of X relative to B.

Proposition 2.2. ([1], [6]) Assume thatE∗ is separable. Let B be a sub-σ-algebra of F and letX
be a cwk(E)-valued Pettis-integrable random set such that EB|X| ∈ [0,+∞[. Then there exists
a unique B-measurable cwk(E)-valued Pettis-integrable random set which enjoys the following
property, for every h ∈ L∞(B), one has∫

Ω

hEBXdP =

∫
Ω

hXdP.

EBX is called the Pettis conditional expectation of X relative to B such that

SPe
EBX = {EBf, f ∈ SPe

X (F)}.

We close this section with the following lemmas. the first one is known as Levy’s theorem for
decreasing sequence of sub-σ-algebras (Bn)n≥1 and the second is the dominated convergence
theorem for the conditional expectation of Bochner integrable random variables.

Lemma 2.3. ([18]) Let (Bn)n≥1 be a decreasing sequence of a sub σ algebras of F and let
f ∈ L1

E(F), set B∞ = ∩n≥1Bn. Then

lim
n→+∞

EBnf(.) = EB∞f(.) a.s.

Lemma 2.4. ([3]) Let (Bn)n≥1 be a decreasing sequence of a sub-σ-algebras of F and set
B∞ = ∩n≥1Bn. Let Y be a positive random variable satisfying EB∞Y ∈ [0,+∞[ and
(Xn)n≥1 in L1

E(F) such that:
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(i) ∀n ≥ 1, |Xn| ≤ Y.

(ii) limn→+∞Xn(.) = X∞(.) a.s.

Then the following equality hold true

lim
n→+∞

EBnXn(.) = EB∞X∞(.) a.s.

3 Levy’s theorem and dominated convergence theorem of conditional
expectation for a sequences of E-valued Pettis-integrable random variables

In this section, we give an extension of Lemma 2.3 and Lemma 2.4 in Pettis integration case.

Theorem 3.1. Let (Bn)n≥1 be a decreasing sequence of a sub-σ-algebras of F and set B∞ =
∩n≥1Bn. Let f ∈ P 1

E(F) such that EB∞ |f | ∈ [0,+∞[. Then

lim
n→+∞

EBnf(.) = EB∞f(.) a.s.

Proof. Since EB∞ |f | ∈ [0,+∞[, so is EBn |f | for each n ≥ 1. Then by Proposition 2.1, EBnf
exists and is in P 1

E(Bn). The condition EB∞ |f | < +∞ provides a B∞-measurable partition
(Ak)k≥1 of Ω such that fk = f1Ak

∈ L1
E(F). Using Lemma 2.3, we obtain

lim
n→+∞

EBnfk = EB∞fk a.s.

As Ak ∈ B∞ ⊂ Bn, for every n ∈ N∗ and for every k ∈ N∗, then by using Proposition 2.1, it
is easy to see that

EBnfk = EBn1Ak
f = 1Ak

EBnf a.s.

On the other hand
EB∞f =

∑+∞
k=1 E

B∞fk =
∑+∞

k=1 limn→+∞EBnfk a.s.

=
∑+∞

k=1 1Ak
limn→+∞EBnf = limn→+∞EBnf a.s.

We conclude that
lim

n→+∞
EBnf(.) = EB∞f(.) a.s.

Now, we give a new version of dominated convergence theorem for a sequences of E-valued
Pettis-integrable random variables.

Theorem 3.2. Let (Bn)n≥1 be a decreasing sequence of a sub-σ-algebras of F and set B∞ =
∩n≥1Bn. Let Y be a positive random variable satisfying EB∞Y ∈ [0,+∞[. Let (Xn)n≥1 be a
sequence in P 1

E(F) such that

(i) ∀n ≥ 1, |Xn(.)| ≤ Y (.)

(ii) limn→+∞Xn(.) = X∞(.) a.s.

Then
lim

n→+∞
EBnXn(.) = EB∞X∞(.) a.s.

Proof. By assymption (i), the condition EB∞Y < +∞ and Proposition 2.1, we have EBnXn

exists and it is in P 1
E(Bn). Since EB∞ |Y | < +∞ then, there exists a B∞-measurable partition

(Am)m≥1 of Ω such that
∫
Am

Y dP < +∞ for all m ≥ 1.
On the other hand

• |Xn|1Am
≤ Y 1Am

.

• limn→+∞Xn1Am
= X∞1Am

a.s.
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Then Xn1Am
and Y 1Am

satisfied all conditions of Lemma 2.4, consequently

lim
n→+∞

EBn(Xn1Am
) = EB∞(X∞1Am

) a.s. (3.1)

Since Am ∈ B∞ ⊂ Bn, for every n ∈ N∗ and for every m ∈ N∗, then

EBn(1AmXn) = 1AmE
BnXn a.s. (3.2)

By (3.1) and (3.2), we have EB∞X∞ =
∑

m≥1 E
B∞(X∞)1Am =

∑
m≥1 E

B∞(X∞1Am
) a.s.

=
∑

m≥1 limn→+∞EBn(Xn1Am
) =

∑
m≥1 limn→+∞ 1Am

EBn(Xn) =

= limn→+∞EBnXn a.s.
We conclude that

lim
n→+∞

EBnXn(.) = EB∞X∞(.) a.s.

4 Levy’s theorem and dominated convergence theorem of conditional
expectation for a cwk(E)-valued Pettis-integrable random sets

Now, we provide an extension of the Levy’s theorem for a cwk(E)-valued Pettis-integrable ran-
dom sets which extends Theorem 3.1.

Theorem 4.1. Assume thatE∗ is separable. LetX be a cwk(E)-valued Pettis-integrable random
set and let (B)n≥1 be a decreasing sequence of a sub-σ-algebras of F. Set B∞ = ∩n≥1Bn. If
EB∞ |X| ∈ [0,+∞[, we have

M − lim
n→∞

EBnX(.) = EB∞X(.) a.s.

Proof. • Step1: we prove that EB∞X(.) ⊂ s− li EBnX(.) a.s.
Since X is cwk(E)-valued Pettis-integrable random set, then by [5], SPe

X (F) 6= ∅. On the
other hand EB∞ |X| ∈ [0,+∞[, then by Proposition 2.2, EBnX exists and it is in P 1

cwk(E)(Bn).
Let h ∈ SPe

X (F), so EBnh exists and by [6], EBnh(.) ∈ EBnX(.) a.s. Using Theorem 3.1, we
have

lim
n→∞

EBnh(.) = EB∞h(.) a.s.

Since EB∞h is Pettis-integrable, then

EB∞h ∈ SPe
s−liEBnX(B∞), ∀h ∈ SPe

X (F).

By Proposition 2.2, we have SPe
EB∞X

(B∞) = {EB∞f, f ∈ SPe
X (F)}.

Therefore SPe
EB∞X

(B∞) ⊂ SPe
s−liEBnX

(B∞).
Consequently

EB∞X(ω) ⊂ s− li EBnX(ω) a.s.

• Step2: we chow that w − ls EBnX(.) ⊂ EB∞X(.) a.s.

Let (e∗k)k≥1 be a dense sequence in E∗ for the Mackey topology, so by [2] for all k ≥ 1 and for
all n ≥ 1, we have
δ∗(e∗k, E

BnX(.)) = EBnδ∗(e∗k, X(.)) a.s. and δ∗(e∗k, E
B∞X(.)) = EB∞δ∗(e∗k, X(.)) a.s.

This yields the existence of a negligible set N
′

1 such that, for every ω ∈ Ω \N ′1, for every n ≥ 1
and for every k ≥ 1 one has
δ∗(e∗k, E

BnX(ω)) = EBnδ∗(e∗k, X(ω)) and δ∗(e∗k, E
B∞X(ω)) = EB∞δ∗(e∗k, X(ω)).

Using, the Lemma 2.3 applied to integrable real function δ∗(e∗k, X), so there exists a negligible
set N

′

2 such that for every k ≥ 1 and ω ∈ Ω \N ′2

lim
n→+∞

EBnδ∗(e∗k, X(ω)) = EB∞δ∗(e∗k, X(ω)). (4.1)
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So, let ω ∈ Ω \N ′1 ∪N
′

2 and x ∈ w− ls EBnX(ω), then there exists (xm)m≥1 in (EBnmX)m≥1

such that xm
w−→ x, where (EBnmX)m≥1 is a subsequence of (EBnX)n≥1. Then by (4.1)

< e∗k, x >= lim
m→+∞

< e∗k, xm >≤ lim sup
m→∞

δ∗(e∗k, E
BnmX(ω)) = lim sup

m→∞
EBnm δ∗(e∗k, X(ω)) =

= EB∞δ∗(e∗k, X(ω)) = δ∗(e∗k, E
B∞X(ω)), ∀k ≥ 1.

Therefore, for all k ≥ 1 and for almost surely ω ∈ Ω, < e∗k, x >≤ δ∗(e∗k, EB∞X(ω)).
Then x ∈ EB∞X(ω), which implies that

w − lsEBnX(.) ⊂ EB∞X(.) a.s.

This yields
M − lim

n→∞
EBnX(.) = EB∞X(.) a.s.

Now, we give a new version of Fatou’s lemma for the conditional expectation of the strong
lower limit of a cwk(E)-valued Pettis-integrable random sets. The following theorem is an
extension of Theorem 3.2 to multivalued case.

Theorem 4.2. Assume that E∗ is separable. Let (Bn)n≥1 be a decreasing sequence of a sub-σ-
algebras of F and set B∞ = ∩n≥1Bn. Let Y be a positive random variable satisfying EB∞Y ∈
[0,+∞[. Let (Xn)N∗∪{+∞} be a sequence of a cwk(E)-valued Pettis-integrable random sets
such that,

(i) ∀n ∈ N∗ ∪ {+∞}, |Xn(.)| ≤ Y (.).

(ii) X∞(.) ⊂ s− li Xn(.) a.s.

Then
EB∞X∞(.) ⊂ s− liEBnXn(.) a.s.

Proof. By (i) and the condition EB∞Y ∈ [0,+∞[, EBnXn exists and it is in P 1
cwk(E)(F) and

by [6], we have

SPe
EBnXn

= {EBng, g ∈ SPe
Xn

(F)} (4.2)

Since Xn is cwk(E)-valued Pettis-integrable random set, then by [8] there exists a sequence
(fk)k≥1 of Pettis-integrable selections of Xn such that, ∀ω ∈ Ω, Xn(ω) = cl{fk(ω), k ≥ 1}.
Let g ∈ SPe

X∞
(F) and ω ∈ Ω, set

Hn(ω) = {y ∈ Xn(ω), ‖g(ω)− y‖ ≤ d(g(ω), Xn(ω)) +
1
n
}.

On the other hand, we have

d(g(ω), Xn(ω)) = inf{‖g(ω)− z‖, z ∈ Xn(ω)} = inf
k≥1

d(g(ω), fk(ω)).

Then, according to the lower bound property, there exists p ∈ N∗ such that

‖g(ω)− fp(ω)‖ ≤ d(g(ω), Xn(ω)) +
1
n
,

which implies that Hn(ω) 6= φ.
It is not hard to see thatHn(ω) is closed and convex. SinceXn(ω) is convex and weakly compact
so isHn(ω), thenHn(ω) ∈ cwk(E). It follows from theorem III.41 in [4] thatHn is measurable
and by theorem III.6 in [4], there is a measurable selection gn of Hn. So gn is also a measurable
selection of Xn. Then by theorem 5.4 in [5], gn is Pettis-integrable and for all ω ∈ Ω, we have

‖g(ω)− gn(ω)‖ ≤ d(g(ω), Xn(ω)) +
1
n
.
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By (ii), we have X∞(.) ⊂ s− li Xn(.) a.s. and since g(.) ∈ X∞(.) a.s.
then limn→+∞ d(g(.), Xn(.)) = 0 a.s. Therefore

lim
n→+∞

‖g(.)− gn(.)‖ = 0 a.s.

From the conditions (i), we deduce that the sequence (gn)n≥1 satisfied all conditions of the
Theorem 4.1, which implies that

lim
n→+∞

EBngn(.) = EB∞g(.) a.s.

By the definition of the strong upper limit (s-li) and (4.2), we conclude that

EB∞g(.) ∈ s− li EBnXn(.) a.s.

Then
EB∞g ∈ SPe

s−liEBnXn
(B∞), ∀g ∈ SPe

X∞(F).

On the other hand SPe
EB∞X∞

(B∞) = {EB∞f, f ∈ SPe
X∞

(F)}.
Therefore

SPe
EB∞X∞

(B∞) ⊂ SPe
s−liEBnXn

(B∞).

Consequently
EB∞X∞(.) ⊂ s− li EBnXn(.) a.s.

Now, let us state the Mosco convergence of the conditional expectation for a cwk(E)-valued
Pettis-integrable random sets.

Theorem 4.3. Assume that E∗ is separable. Let (Bn)n≥1 be a decreasing sequence of a sub-σ-
algebras of F and set B∞ = ∩n≥1Bn. Let Y be a positive random variable satisfying EB∞Y ∈
[0,+∞[. Let (Xn)N∗∪{+∞} be a sequence of a cwk(E)-valued Pettis-integrable random sets
such that

(i) ∀n ∈ N∗ ∪ {+∞}, |Xn(.)| ≤ Y (.).

(ii) X∞(.) ⊂ s− li Xn(.) a.s.

(iii) limn→+∞ δ∗(x∗, Xn) = δ∗(x∗, X∞) a.s. ∀x∗ ∈ E∗.

Then
M − lim

n→+∞
EBnXn = EB∞X∞ a.s.

Proof. By condition (i), (ii) and Theorem 4.2, we conclude that

EB∞X∞(.) ⊂ s− li EBnXn(.) a.s.

So, it is enough to check that w − ls EBnXn(.) ⊂ EB∞X∞(.) a.s.
By the condition (i) and (iii), it is easy to check that, the sequence (δ∗(x∗, Xn))n≥1 satisfied all
conditions of Lemma 2.4, then

∀x∗ ∈ E∗, lim
n→+∞

EBnδ∗(x∗, Xn(.)) = EB∞δ∗(x∗, X∞(.)) a.s.

Let (e∗k)k≥1 be a dense sequence in E∗ for the Mackey topology, so by [2] for all k ≥ 1 and for
every n ≥ 1, we have
EBnδ∗(e∗k, Xn(.)) = δ∗(e∗k, E

BnXn(.)) a.s. andEB∞δ∗(e∗k, X∞(.)) = δ∗(e∗k, E
B∞X∞(.)) a.s.

This yields the existence of a negligible set N
′

3 such that, for every ω ∈ Ω \N ′3 and every k ≥ 1,
one has
EBnδ∗(e∗k, Xn(ω)) = δ∗(e∗k, E

BnXn(ω)), EB∞δ∗(e∗k, X∞(ω)) = δ∗(e∗k, E
B∞X∞(ω)) and

lim
n→+∞

EBnδ∗(e∗k, Xn(ω)) = EB∞δ∗(e∗k, X∞(ω)).
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Let ω ∈ Ω\N ′3 and x ∈ w− ls EBnXn(ω), then there exists (xm)m≥1 in (EBnmXnm
)m≥1 such

that xm
w−→ x, where (EBnmXnm

)m≥1 is a subsequence of (EBnXn)n≥1. Then

< e∗k, x >= lim
m→+∞

< e∗k, xm >≤ lim sup
m→∞

δ∗(e∗k, E
BnmXnm(ω)) =

= lim sup
m→∞

EBnm δ∗(e∗k, Xnm(ω)) = EB∞δ∗(e∗k, X∞(ω)) = δ∗(e∗k, E
B∞X∞(ω)),∀k ≥ 1.

Therefore x ∈ EB∞X∞(ω). This yields w − lsEBnXn(.) ⊂ EB∞X∞(.) a.s. Hence

M − lim
n→+∞

EBnXn(.) = EB∞X∞(.) a.s.
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