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Abstract The notion and some properties of (strongly) B-rings, in a natural way, are ex-
tended to (strongly) B- and (strongly) BJ -semirings which is somewhat similar to the notion of
rings having stable range 2. Results are given showing the connection between several types of
semirings whose finite sequences satisfy some stability condition, some involving the Jacobson
k-radical of the semiring R. Besides some examples and other results, our main objective is to
study the conditions under which R[x], the semiring of polynomials over a semiring R, is not
a B-type semiring [i.e., (strongly) B-, (strongly) BJ -semirings, S-relative B-, and S-relative
BJ -semirings].

1 Introduction

The main goal of this paper is to discuss some conditions under whichR[x] (the semiring of poly-
nomials over a semiring R) is not a B-type semiring (see the ∗ statement below). We will recall
the notion of stable range in commutative semirings from [8] (here Definition 1.3) for compar-
ing the stable range of B-type and n-stable semirings. We merely focus on those properties of
B-type semirings that are required only for our main results related to nonstability conditions of
R[x] (See the last section). In the next section, we will review some properties of commutative
semirings that are required in this paper and mainly follow [5] throughout.

The concept of stable range was initiated by H. Bass in his investigation of the stability prop-
erties of the general linear group in algebraic K-theory [2]. In ring theory, stable range provides
an arithmetic invariant for rings that is related to interesting issues such as cancellation, substi-
tution, and exchange. The simplest case of stable range 1 has especially proved to be important
in the study of many ring-theoretic topics.

∗ In this paper a semiring (ring) R, unless otherwise indicated, is commutative with identity
1 6= 0 and 0a = 0 for all a ∈ R; and U(R) denotes the set of units of R. By a B-type semiring,
we mean a (strongly) B-, or a (strongly) BJ -, or an S-relative B-, or an S-relative BJ -semiring,
where S is a nonempty subset of R. Also by a sequence of elements of R, we mean a finite
sequence and will use it implicitly without any confusion in the context.

Definition 1.1. Let R be a commutative semiring (ring) and s ≥ 1 an integer. A sequence
(a1, a2, . . . , as, as+1) of elements of R is said to be stable if (a1, a2, . . . , as, as+1) = (a1 +
b1as+1, a2+b2as+1, . . . , as+bsas+1) for some b1, b2, . . . , bs ∈ R. A sequence (a1, a2, . . . , as, as+1)
of elements of R is said to be a unimodular sequence if 1 is in the ideal (a1, a2, . . . , as, as+1).

Remark 1.2. As in [4], we use (a1, a2, . . . , as, as+1), s ≥ 1, to denote both a sequence and the
ideal generated by the elements of the sequence; but the context will always make our meaning
clear. Also, we follow [4] for the term “unimodular sequence" instead of “primitive vector" as
used in [6]. For a detailed study of stable range in commutative rings and (strongly) B-rings; see
[4], [6], [7], [9], and [10].

We continue this section by recalling some definitions and results from [8] (Definition 1.3
and Remark 1.5) and [6] and will end the section with a note about the organization of the paper.
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In Section 2, we also recall some properties of B- and BJ -semirings from [8] (Definition 3.1 and
Remark 3.5). Note that the main result of [8] is a classification of BJ -semirings which follows
with two examples that can only occur in a nonring commutative semiring.

Definition 1.3. Let R be a commutative semiring and s ≥ 1 an integer. A fixed integer n ≥
1 is said to be in the stable range of R (or simply, R is n-stable) if every unimodular se-
quence (a1, a2, . . . , as, as+1), s ≥ n, of elements of R is stable. The semiring R is said to
be nJ -stable if every unimodular sequence (a1, a2, . . . , as, as+1), s ≥ n, of elements of R with
(a1, a2, . . . , as−1) 6⊆ Jk(R) is stable.

Note that in the above definition for the 1J -stable case, it is obvious that we assume a1 /∈
Jk(R) when a sequence (a1, a2) of size two is under consideration.

Remark 1.4. It is clear that if R is n-stable, then it is m-stable for any integer m ≥ n. Note that
the term “R is n-stable" is used in [7] (for convenience) and is exactly the same as the statement
“n is in the stable range of R", which is used by D. Estes and J. Ohm [4, p. 345]. A ring R is
said to be 2-stable provided that any unimodular sequence of elements in R of size strictly larger
than 2 is stable.

In the following remark, we recall some results (related to n-stable semirings) from [8] for
the sake of comparison and completeness.

Remark 1.5. The following facts are true in a commutative semiring.

(a) If all unimodular sequences of size n+1 (n ≥ 1 a fixed integer) of a commutative semiring
R are stable, then any unimodular sequence of size larger than n is stable (see [8, Theorem
2.6]).

(b) Let n ≥ 1 be a fixed integer and R a commutative semiring in which every maximal ideal
is subtractive. Then R is n-stable if and only if R is nJ -stable (see [8, Theorem 2.8]).

(c) Let R be a commutative semiring in which every maximal ideal is subtractive [in par-
ticular, R is a subtractive semiring (i.e., a semiring in which every ideal is subtractive)]
and (a1, a2, . . . , an, an+1), n ≥ 1, a unimodular sequence of R. Then (a1, a2, . . . , ai +
an+1, . . . , an) = R provided that ai ∈ Jk(R) for some 1 ≤ i ≤ n. Further, (a1, a2, . . . , ai +
an+1, . . . , an) = R for each 1 ≤ i ≤ n provided that an+1 ∈ Jk(R) (see [8, Proposition
2.18]).

We now recall some definitions and results from [6] which are related to this paper.

• Let J(R) be the Jacobson radical of a commutative ring R. A ring R is said to be a B-ring
if for any unimodular sequence (a1, . . . , an+1), n ≥ 2 with (a1, . . . , an−1) 6⊆ J(R), there exists
an element b in R such that (a1, . . . , an + ban+1) = R.

• Similarly,R is defined to be a stronglyB-ring (or SB-ring for short) if d ∈ (a1, . . . , an, an+1),
n ≥ 2, and (a1, a2, . . . , an−1) 6⊆ J(R) implies that there exists b ∈ R such that d ∈ (a1, a2, . . . , an−1, an+
ban+1).

In [6], Moore and Steger have studied some properties of (strongly) B-rings in detail. Be-
sides many other results regarding B- and SB-rings, they showed that R[X] is a B-ring ([6,
Theorem 2.7]) [resp. an SB-ring ([6, Theorem 3.4])] if and only if R is completely primary (a
ring consisting of units and nilpotents) [resp. a field]; and we will discuss some of these results
for B-type semirings in the sequel.

∗∗ The organization of this paper is as follows: In Section 1 we recall some standard defini-
tions from semiring theory and prove some results on semirings that will be used in the sequel.
Section 2 is devoted to those properties of B-type semirings [i.e., (strongly) B-, (strongly) BJ -
semirings (Definitions 3.1 and 3.2), S-relative B-, and S-relative BJ -semirings (Definition 3.9)]
that are required for our main results in Section 3. In our study of these semirings, it suffices
only to consider (arbitrary) unimodular triples instead of (arbitrary) unimodular (n + 1)-tuples
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(Theorems 3.6 and 3.12) [note that for S-relative case (Theorem 3.12), sequences of size 3 need
not be unimodular (i.e., should satisfy a special condition)]. We also in this section, study the
homomorphic image of (strongly B- and (strongly) BJ -semirings (Theorem 3.13). Finally, in
Section 3, besides some examples, we study the conditions under which R[x] (the semiring of
polynomials over a semiring R) is not a B-type semiring (Theorems 4.1], 4.4, and Corollary
4.6). In Theorem 4.4 [resp. Theorem 4.1], we show that R[x] can not be a B-semiring [resp.
BJ -semiring] with respect to I[x] when I is a strong proper ideal of R.

2 Commutative Semirings

In this section we recall some definitions and prove some results concerning semirings which
will be used in the sequel and mainly follow Golan [5]. By a semiring (R,+, ·), we will mean a
nonempty setR with two binary operations of addition and multiplication defined onR such that
(R,+) and (R, ·) are commutative monoids with identity elements 0 and 1, respectively, where
Multiplication distributes over addition (from either side) and 0a = 0 for all a ∈ R and 1 6= 0.

• A nonempty subset I of a semiring R will be called an ideal if a, b ∈ I and r in R implies
a + b in I and ra in I . A prime ideal of R is a proper ideal P of R in which x ∈ P or y ∈ P
whenever xy ∈ P (see also [5, Corollary, 6.5]). Note that in [5, Chapter 5], Golan defines an
ideal I of a semiring R to be (proper) different from R, but we don’t follow this assumption and
make it clear when there is any confusion in the context.

Definition 2.1. A subtractive ideal (= k-ideal) I of a semiring S is an ideal such that if a, a+b ∈
I , then b ∈ I . An ideal I of S is said to be a strong ideal (= a strongly k-ideal) if and only if
a+ b ∈ I implies that a ∈ I and b ∈ I .

Remark 2.2. From the above definition, it is clear that (0) is a k-ideal of S. Also, every strongly
k-ideal of a semiring S is a k-ideal of S. But the converse need not be true in general. For
example, the set 2N of all nonnegative even integers is a subtractive ideal of the semiring of
all nonnegative integers. But it is not a strongly k-ideal since 3 + 5 ∈ 2N while neither 3 nor
5 belong to 2N . Note that in [5], Golan uses the term “subtractive ideal", [resp. strong] for a
k-ideal [resp. strongly k-ideal] but in the literature of semirings, authors use equivalently the
term “k-ideal" [resp. strongly k-ideal] as well. Throughout this work, except for some cases in
this section, we mainly follow Golan in [5]. Also, for some examples of nonsubtractive ideals in
a semiring, see Chapter 5 of [5].

• A non-zero element a of a semiring R is said to be a semiunit in R if there exist r, s ∈ R
such that 1 + ra = sa.

• We define the Jacobson k-radical of a semiring R, denoted by Jk(R) (= Jac(R) as used
in [8]), to be the intersection of all maximal k-ideals of R. Note that by [11, Corollary 2.2],
the Jacobson k-radical of R always exists and it can easily be seen that it is a k-ideal since the
intersection of any number of k-ideals is a k-ideal.

We now follow Golan [5, Chapter 8, p. 92] to define a morphism of semirings as follows.

Definition 2.3. If R and S are semirings then a function f : R → S is a morphism of semirings
if and only if:

(a) f(0R) = 0S ;

(b) f(1R) = 1S ; and

(c) f(r + r′) = f(r) + f(r′) and f(rr′) = f(r)f(r′) for all r and r′ in R.

We now begin considering some properties of morphisms of semirings.

Proposition 2.4. (cf. [5, Proposition 8.37]) Let f : R→ S be a morphism of semirings.

(a) If H is an ideal of S, then f−1(H) is an ideal of R. Moreover, if H is subtractive then so is
f−1(H).
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(b) If f is a surjective morphism and if I is an ideal of R, then f(I) is an ideal of S.

(c) If f is a surjective morphism, then the kernel of f is a subtractive ideal of R.

(d) If f is a surjective morphism, then u is a unit in R if and only if f(u) is a unit in S.

Proof. Parts (a) and (b) follows from [5, Proposition 8.37] and (c) follows from (a) since ker(f) =
f−1({0}). The necessary part of (d) is clear since 1S = f(1R) = f(uu−1) = f(u)f(u−1). Con-
versely, let u ∈ R, I = (u) an ideal of R, and f(u) be a unit in S. Clearly f(I) = S since
f(u) is a unit in S and so I = R. Otherwise, I 6= R implies 1R ∈ R \ I , which implies
1S = f(1R) /∈ f(I) = S, yielding a contradiction. Thus u is a unit in R.

Remark 2.5. As defined on page 68 of [5]), an ideal I of a semiring R defines an equivalence
relation =I on R called the Bourne relation, given by r =I r

′ if and only if there exist elements
a and a′ of I satisfying r+a = r′+a′. Note that if r =I r

′ and s =I s
′ inR, then r+s =I r

′+s′

and rs =I r
′s′. We denote the set of all equivalence classes of elements of R under this relation

by R/I and will denote the equivalence class of an element r of R by r/I . Clearly this relation
is a congruence (i.e., an equivalence relation which is compatible with two binary operations of
R) and, consequently, R/I is well-defined for any ideal I of R. Also, a ∈ I implies a ∈ 0/I
since a =I 0 by the fact that a+ 0 = 0 + a. Thus I ⊆ 0/I . Moreover, if I is a subtractive ideal
of R, then 0/I = I since a+ i = 0+ j ∈ I implies a ∈ I . Thus, for any subtractive ideal I of R,
the factor semiring R/I and the surjective morphism f : R → R/I , given by r 7→ r/I , is well
defined and its kernel is I . See also Example 9.1 and Proposition 9.10 in [5].

We will use the following lemma for the proof of Lemma 2.7, which will be used in the proof
of our main result (Theorem 4.1).

Lemma 2.6. (cf. [3, Lemma 3.4]) Let R be a semiring and r ∈ R. Then:

(a) If r is a nilpotent element of R, then it is not a semiunit.

(b) If r ∈ Jk(R), then for every a ∈ R, the element 1 + ra is a semiunit of R.

Proof. See Lemma 3.4 in [3].

We will use the following lemma For the proof of our main result (Theorem 4.1).

Lemma 2.7. Let R[x] be the semiring of polynomials over a commutative semiring R. Suppose
1 + r 6= r for any r ∈ R [in particular, R is a cancellative semiring]. Then x2 can not lie in
Jk(R[x]).

Proof. Suppose to the contrary that x2 ∈ Jk(R[x]). Then by Lemma 2.6, 1 + x2 is a semiunit
in R[x]. Thus, 1 + s(x)(1 + x2) = t(x)(1 + x2) for some s(x) and t(x) in R[x]. Let s(x) =
s0 + s1x + · · · + snx

n and t(x) = t0 + t1x + · · · + tmx
m, where si, tj ∈ R for 0 ≤ i ≤ n

and 0 ≤ j ≤ m. without loss of generality (by inserting zeros for coefficients if it is required),
assume m = n. Let r = s0 + s1 + · · ·+ sn. Now it is not difficult to see that for n = 0, 1, 2, 3,
we get 1 + r = r, which is a contradiction by hypothesis. Next, in order to complete the proof,
it suffices to consider the following four different cases. That is, when n [resp. n− 1, n− 2, or
n − 3] is congruent mod 4 and we just discuss when 4 divides n (or n − 3 and leave the other
cases to the reader.

Suppose 1+ s(x)(1+ x2) = t(x)(1+ x2). Thus 1+ s0 + s1x+ (s0 + s2)x2 + (s1 + s3)x3 +
(s2 + s4)x4 + · · · + (sn−2 + sn)xn + sn−1x

n+1 + snx
n+2 = t0 + t1x + (t0 + t2)x2 + (t1 +

t3)x3 + (t2 + t4)x4 + · · ·+ (tn−2 + tn)xn + tn−1x
n+1 + tnx

n+2. Hence, 1 + s0 = t0, s1 = t1,
(s0 +s2) = (t0 + t2), (s1 +s3) = (t1 + t3), (s2 +s4) = (t2 + t4), . . . , (sn−2 +sn) = (tn−2 + tn),
sn−1 = tn−1, and sn = tn.

Next by a proper partitioning of the summations of si’s and ti’s, we get a contradiction as
follows:

Case 1: nmod4. r = s0+s1+s2+· · ·+sn = ((s0+s2)+(s1+s3))+((s4+s6)+(s5+s7))+
· · ·+((sn−4+(sn−2)+(sn−3+sn−1))+sn = ((t0+t2)+(t1+t3))+((t4+t6)+(t5+t7))+· · ·+
((tn−4+(tn−2)+(tn−3+tn−1))+tn = t0+(t2+t1+t3+t4)+(t6+t5+t7+t8)+· · ·+(tn−2+tn−3+
tn−1+tn) = (1+s0)+(s1+s2+s3+s4)+(s5+s6+s7+s8)+· · ·+(sn−3+sn−2+sn−1+sn) =
1 + r, yielding a contradiction.
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Case 4: n− 3mod4. In this case since t1 = s1, we can write r = s0 + s1 + s2 + · · ·+ sn =
· · · = t0 + t1 + (t2 + t3 + t4 + t5) + (t6 + t7 + t8 + t9) + · · ·

= (1+s0 + s1) + s2 + s3 + s4 + s5 + · · ·+ sn = 1 + r, yielding a contradiction.
Note that for any n ≥ 4, sn−1 = tn−1 and sn = tn and for any case, partitioning into four-

element groups, leaves out at most two elements, namely tn−1 and tn, which can be replaced by
sn−1 and sn, respectively.

We end this section by recalling some more definitions from [5] and write them here for the
sake of completeness as follows.

• A semiring with no nonzero zero divisors is called an entire (= semidomain). A semifield
is a semiring in which every nonzero element has a multiplicative inverse. A semiring R is
zerosumfree if and only if r+ r′ = 0 implies that r = r′ = 0. A semiring R is said to be simple if
1+r = 1 for each r ∈ R. Let R be a semiring and G(R) = {r ∈ R | 1+r ∈ U(R)}. A semiring
R is called a Gelfand semiring when G(R) = R. Clearly, every simple semiring is Gelfand. Of
course, bounded distributive lattices are among Gelfand semirings. But the class of the Gelfand
semirings is quite wider as Example 1.4 in [8] shows (cf. [5, Example 3.38]).

3 Some Results on B-type Semirings

In this section, we merely focus on B-type semirings [i.e., (strongly) B-, (strongly) BJ -semirings
(Definitions 3.1 and 3.2), S-relative B-, and S-relative Bj-semirings (Definition 3.9)] and study
those properties of them (Theorems 3.6, 3.13, and 3.12) that are required for the proof of our
main results in the next section on some nonstability conditions of R[x]. We also in Remark 3.5,
recall some results related to B- and BJ -semirings from [8].

Definition 3.1. A semiring R is said to be a B- [resp BJ -semiring] whenever for any unimod-
ular sequence (a1, a2, . . . , an, an+1), n ≥ 2, of elements in R [resp. with (a1, a2, . . . , an−1) 6⊆
Jk(R)], there exists an element b in R such that (a1, a2, . . . , an + ban+1) = R.

Definition 3.2. A semiringR is said to be a stronglyB-semiring (or SB-semiring for short) [resp.
strongly BJ -semiring (or SBJ -semiring for short)] if d ∈ (a1, . . . , an, an+1), n ≥ 2, [resp. with
(a1, a2, . . . , an−1) 6⊆ Jk(R)] implies that there exists b in R such that d ∈ (a1, a2, . . . , an−1, an+
ban+1).

Remark 3.3. From the above definitions, it is clear that the definition of a BJ -semiring [resp. an
SBJ -semiring] is exactly a natural extension of the definition of a B-ring [resp. an SB-ring] to
semirings whenever R is assumed to be a ring as defined in [6] and B-semirings can be regarded
as a generalization of a subclass (special case) of 2-stable rings (see Remark 1.4). Obviously, any
B-semiring [resp. SB-semiring] is a BJ -semiring [resp. SBJ -semiring]. Also, it is clear that
any SB-semiring [resp. SBJ -semiring] is a B-semiring [resp. BJ -semiring]. See the following
diagram.

SB-semiring→ B-semiring→ BJ -semiring

SB-semiring→ SBJ -semiring→ BJ -semiring

The following example provides a trivial instance of a class of B-semirings.

Example 3.4. A semifield is aB-semiring (consequently, aBJ -semiring). That is, 1 ∈ (a1, a2, . . . , an, an+1) =
(a1, a2, . . . , an + ban+1), where b = 0 when an 6= 0; or b = 1 when an = 0. Moreover, besides
some trivial examples of semifields such as semifields of nonnegative reals and nonnegative ra-
tionals, see [5, Proposition 7.8] that states: If I is a subtractive maximal ideal of a commutative
semiring R, then R/I is a semifield.

In the following remark, we recall some results (related to B- and BJ -semirings) from [8]
for the sake of comparison and completeness.

Remark 3.5. The following facts are true in a commutative semiring.
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(a) Let R be a BJ -semiring in which every maximal ideal is subtractive. Then R is 2-stable
(see [8, Corollary 2.9]).

(b) LetR be a Gelfand semiring and let (a1, a2, . . . , an, an+1), n ≥ 1, be a unimodular sequence
of R. Then 1 ∈ (a1, a2, . . . , an + ban+1) for some b ∈ R (i.e., one is in the stable range of
R). In other words, we may simply say R is a B-semiring when n ≥ 2 (see [8, Theorem
2.10]).

(c) A simple semiring is a B-semiring (consequently, a BJ -semiring), see [8, Corollary 2.11].

(d) A semiring R is a B-semiring (consequently, a BJ -semiring) provided that R is a semiring
in which every maximal ideal is strong (see [8, Corollary 2.11 and Proposition 2.15]).

We now provide a criterion for the study of (strongly) B- and (strongly) BJ -semirings.

Theorem 3.6. (cf. [8, Theorem 2.7] and [9, Theorem 2]) The following hold:

(a) A semiring R is a B-semiring [resp. BJ -semiring] if and only if for any unimodular se-
quence (a1, a2, a3) of R [resp. with a1 /∈ Jk(R)], there exists an element b ∈ R such that
(a1, a2 + ba3) = R.

(b) A semiring R is an SB-semiring [resp. SBJ -semiring] if and only if for every s, c1, c2, c3 ∈
R with s ∈ (c1, c2, c3) [resp. c1 /∈ Jk(R)], it follows that s ∈ (c1, c2 + bc3) for some b ∈ R.

Proof. (a) The proof of Part (a) is exactly the same as the proof of [8, Theorem 2.7] and we
write it here since the proof of Theorem 3.12 (below) is refered to this theorem. We just write
a proof for the BJ -case. The necessary part is quite clear. To prove the sufficient part, let
(a1, a2, . . . , an, an+1), n ≥ 2, be a unimodular sequence in R with (a1, a2, . . . , an− 1) 6⊆ Jk(R).
Without loss of generality, assume that a1 /∈ Jk(R). Now, 1 ∈ (a1, a2, . . . , an, an+1) im-
plies 1 =

∑n+1
i=1 aixi for some x1, x2, . . . , xn, xn+1 ∈ R. Thus, 1 ∈ (a1, an, l), where l =

a2x2 + a3x3 + · · ·+ an−1xn−1 + an+1xn+1. Now by the hypothesis, there exists b ∈ R such that
1 ∈ (a1, an + bl) ⊆ (a1, a2, . . . , an−1, an + bxn+1an+1).

(b) The proof is essentially similar to the proof of Lemma 3.1 of [6]. The necessity clearly
follows from the definition of an SB-semiring [resp. SBJ -semiring]. We just give a proof
for the SBJ -semiring case and leave the other part to the reader. To prove the sufficient part,
assume that a1, a2, . . . , an, an+1, n ≥ 2, is a sequence in R with (a1, a2, . . . , an−1) 6⊆ Jk(R) and
let r ∈ (a1, a2, . . . , an, an+1). Without loss of generality, we may assume that an−1 /∈ Jk(R).
Suppose r =

∑n+1
i=1 aixi and let s = an−1xn−1 + anxn + an+1xn+1 for some xi ∈ R. Then

r ∈ (a1, a2, . . . , an−2, s) and s ∈ (an−1, an, an+1). Since an−1 /∈ Jk(R), s ∈ (an−1, an + ban+1)
for some b ∈ R. Therefore r ∈ (a1, a2, . . . , an−2, s) ⊆ (a1, a2, . . . , an−1, an + ban+1), and the
proof is complete.

Remark 3.7. We can also prove Part (b) of the above theorem by using the same argument as in
Part (a), which is taken from [8, Theorem 2.7].

bullet In view of the above theorem, we need only consider the unimodular [resp. arbitrary]
triples instead of arbitrary unimodular [resp. arbitrary] (n + 1)-tuples, n > 2, in our study of
B- and BJ -semirings [resp. SB- and SBJ -semirings].

We now provide a sharper result than Theorem 3.6(b) for the study of SB- and SBJ -semirings
when the underlying semiring is subtractive.

Theorem 3.8. LetR be a subtractive semiring. ThenR is an SB-semiring [resp. SBJ -semiring]
if and only if for every sequence (c1, c2, c3) of R [resp. with c1 /∈ Jk(R)], there exists b ∈ R such
that c3 ∈ (c1, c2 + bc3). Further, if A = (a1, a2, . . . , an, an+1), then A = (a1, a2, . . . , an−1, an +
ban+1) for some b ∈ R.

Proof. The necessity clearly follows from the definition of an SB-semiring [resp. SBJ -semiring].
We just give a proof for the SBJ -semiring case and leave the other part to the reader. To
prove the sufficient part, assume that a1, a2, . . . , an, an+1, n ≥ 2, is a sequence in R with
(a1, a2, . . . , an−1) 6⊆ Jk(R) and let r ∈ (a1, a2, . . . , an, an+1). Without loss of generality, we
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may assume that an−1 /∈ Jk(R). Since an+1 ∈ (an−1, an, an+1), there exist b ∈ R such
that an+1 ∈ (an−1, an + ban+1) by hypothesis. Hence r ∈ (a1, a2, . . . , an−1, an, an+1) =
(a1, a2, . . . , an−1, an + ban+1), where the equality holds by the subtractive assumption and the
proof is complete.

• In view of the above theorem, we see that a subtractive semiringR is an SB-semiring [resp.
SBJ -semiring] if for any sequence (a1, a2, a3) of R [resp. with a1 /∈ Jk(R)], there exists b ∈ R
such that a3 ∈ (a1, a2 + ba3). Clearly, the above theorem is a good criterion to check whether a
ring is an SB-ring or not since every ideal in a ring is subtractive.

We now introduce a class of B-type semirings that are defined with respect to a nonempty
subset S of a semiring R.

Definition 3.9. Let S be a nonempty subset of a semiring R. R is said to be a B-semiring
[resp. BJ -semiring] with respect to S or R is an S-relative B-semiring [resp. an S-relative
BJ -semiring] if for any ideal (a1, a2, . . . , an, an+1), n ≥ 2, of R and a ∈ S [resp. with
(a1, a2, . . . , an−1) 6⊆ Jk(R)] such that 1 + a ∈ (a1, a2, . . . , an, an+1), then there exists b ∈ R
such that 1 + a ∈ (a1, a2, . . . , an−1, an + ban+1).

Remark 3.10. From the above definition, a B-semiring [resp. BJ -semiring] is a {0}-relative (or
simply, 0-relative) B-semiring [resp. 0-relative) BJ -semiring]. Clearly, every B-semiring [resp.
BJ -semiring] with respect to a nonempty subset S of R is a B-semiring [resp. BJ -semiring]
provided 0 ∈ S. Moreover, every SB-semiring [resp. SBJ -semiring] (Definition 3.2) is an S-
relative B-semiring [resp. S-relative BJ -semiring] for each nonempty subset S of R. Also, let
S ⊆ T be two nonempty subsets of a semiring R. Then R is an S-relative B-semiring [resp.
S-relative BJ -semiring] if R is a T -relative B-semiring [resp. T -relative BJ -semiring]. Clearly,
R is a B-semiring [resp. BJ -semiring] if and only if R is a G(R)-relative B-semiring [resp.
G(R)-relative BJ -semiring], where G(R) = {a ∈ R | 1 + a ∈ U(R)}.

• From the above remark, it is clear that the class of SB- and SBJ -semirings are contained
in the class of S-relative B- and S-relative BJ -semirings, respectively. Further, the class of
S-relative B- and S-relative BJ -semirings are contained in the class of B- and BJ -semirings,
respectively, provided that 0 ∈ S.

Example 3.11. In [8, Theorem 2.10 and Corollary 2.11] (see Remark 3.5(b and c)), it is shown
that a Gelfand semiring R [in particular, a simple semiring] is a B-semiring. Thus from the
above remark, R is an R-relative B-semiring or equivalently an S-relative B-semiring for any
nonempty subset S of R.

We now provide a criterion (similar to Theorem 3.6(a)) for the study of S-relative B- and
S-relative BJ -semirings.

Theorem 3.12. Let S be a nonempty subset of a semiring R. A semiring R is an S-relative B-
semiring [resp. an S-relative BJ -semiring] if and only if for every a ∈ S and c1, c2, c3 ∈ R with
1 + a ∈ (c1, c2, c3) [resp. c1 /∈ Jk(R)], it follows that 1 + a ∈ (c1, c2 + bc3) for some b ∈ R.

Proof. The proof is similar to the proof of Theorem 3.6(a) by replacing 1 with 1 + a.

• In view of the above theorem, we need only consider the sequences of size three that satisfy
B-stability condition with respect to a nonempty subset S of R in our study of S-relative B- and
S-relative BJ -semirings.

We now consider the homomorphic image of (strongly)B- and (strongly)BJ -semirings. Also,
Abdolyousefi and Chen in [1, Lemma 2.9] show the similar result for J-stable rings and they
refer to the work of the author [9, Theorem 3] that shows the homomorphic image of a B-ring is
a B-ring. Further, they show how the classes of J-stable rings and B-rings coincide with each
other (see the paragraph preceding Theorem 2.5 and Remark 2.6 in [1]).

Theorem 3.13. (cf. [9, Theorem 3]) Let f : R→ S be a surjective morphism of semirings.

(a) If R is a B-semiring, then so is S.
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(b) If R is a BJ -semiring, then so is S provided that f(Jk(R)) ⊆ Jk(S).

(c) If R is an SB-semiring, then so is S.

(d) If R is an SBJ -semiring, then so is S provided that f(Jk(R)) ⊆ Jk(S).

Proof. We write a proof for Parts (b) and (d) and leave the other parts to the reader.
(b): By virtue of Theorem 3.6(a), it suffices to argue only for unimodular sequences of size three.
Suppose R is a BJ -semiring and let 1S ∈ (x1, x2, x3) with x1 /∈ Jk(S), where x1, x2, x3 ∈ S.
Thus f(1R) = 1S =

∑
sixi for some si ∈ S, where i = 1, 2, 3. Therefore, f(1R) =∑

f(ri)f(ai) =
∑
f(riai) = f(

∑
riai) for some ri and ai in R, where f(ri) = si and

f(ai) = xi and i = 1, 2, 3. Clearly 1R ∈ (a1, a2, a3) and a1 /∈ Jk(R) by hypothesis (see
also Proposition 2.4). Thus 1R ∈ (a1, a2 + ba3) for some b ∈ R since R is a BJ -semiring.
Consequently f(1R) = 1S ∈ (f(a1), f(a2) + f(b)f(a3)) = (x1, x2 + sx3), where s = f(b).

(d): Let R be the image of R under the homomorphism f , and let d ∈ (a1, a2, a3 with a1 /∈
Jk(R), where a1, a2, a3, d ∈ R. suppose that d =

∑3
i=1 aixi for some xi ∈ R and let f(ai) = ai,

fxi = xi for i = 1, 2, 3. Let d =
∑3

i=1 aixi. Since by hypothesis f(Jk(R)) ⊆ Jk(R), we have
a1 /∈ Jk(R) and so d ∈ (a1, a2+ba3) for some b ∈ R. Since f(d) = d, we have d ∈ (a1, a2+ba3),
where f(b) = b. Hence by Theorem 3.6(b), S = R is an SBJ -semiring.

Corollary 3.14. Let I be a proper ideal of a semiring R. Then R/I is a B-semiring [resp. an
SB-semiring] when R is a B-semiring [resp. an SB-semiring].

Proof. Clearly r 7→ r/I defines a surjective morphism from R to R/I , where r ∈ R. Now the
proof follows directly from Part (a) [resp. (c)] of the above theorem. See also Example 9.1 and
Proposition 9.10 in [5].

We end this section by extending the above corollary to an S-relative B-semiring.

Theorem 3.15. Let I be a proper ideal of a semiring R and S a nonempty subset of R. Then R/I
is an S/I-relative B-semiring when R is an S + I-relative B-semiring. Further, if S ∩ I 6= ∅ [in
particular, if 0 ∈ S], then R/I is also a B-semiring.

Proof. By virtue of Theorem 3.12, it suffices to argue only for sequences of size three. Suppose
1/I+s/I ∈ (a1/I, a2/I, a3/I), where s ∈ S. Thus (1+s)/I =

∑
(ri/I)(ai/I) =

∑
(riai)/I for

some ri ∈ R, where i = 1, 2, 3. Therefore, 1+s+a = r1a1+r2a2+r3a3+a′ for some a, a′ ∈ I
by definition. Thus 1+s+a ∈ (a1, a2, r3a3+a′). Now by hypothesis, there exists b ∈ R such that
1+s+a ∈ (a1, a2+b(r3a3+a′)). Consequently, (1/I)+(s/I) ∈ (a1/I, (a2/I)+(br3)/I(a3/I))
and the proof of the first part is complete. The “further" part is clear since a/I = 0/I when a ∈ I
(see also Remarks 2.5 and 3.10).

4 Non-B-type Stability of R[x]

In this section, besides some examples, we apply the results from previous sections to provide a
sufficient condition for which R[x] is not a B-type semiring (Theorems 4.1, 4.4; and Corollary
4.6). See also Examples 4.5, 4.7, 4.8, and 4.9.

In the following theorem, we partially characterize the B-stability condition of R[x] (the
semiring of polynomials over a semiring R), which is somewhat a counterpart to [6, Theorem
2.7] and [resp. [6, Theorem 3.4]] that states: R[x] is a B-ring [resp. an SB-ring] if and only if
R is completely primary (i.e., a ring consisting of units and nilpotents) [resp. a field].

Theorem 4.1. (cf. [6, Theorems 2.7 and 3.4]) Let R[x] be the semiring of polynomials over a
semiring R and 1 + r 6= r for all r ∈ R.

(a) Let I be a proper ideal of R. If R[x] is a BJ -semiring with respect to the ideal I[x] of R[x],
then I is not a strong ideal of R. In other words, if I is a strong proper ideal of R, then R[x]
can not be a BJ -semiring with respect to the ideal I[x] in R[x].

(b) If R[x] is a BJ -semiring, then R is not a zerosumfree semiring.
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(c) If R[x] is an SBJ -semiring, then R is not a zerosumfree semiring.

Remark 4.2. Clearly, Z (ring of integers) is not zerosumfree as a semiring since rings can not
be zerosumfree by the fact that −1 + 1 = 0. Thus, the converse of Parts (b) and (c) of the above
theorem are not true in general since by Theorem 2.7 of [6], Z[x] is not a B-ring [consequently,
not an SB-ring]. We can also directly conclude from [6, Theorem 3.4] that Z[x] is not an SB-
ring since Z is not a field.

Proof. (a): Suppose to the contrary that I is a strong proper ideal of R. Let a ∈ I and
1 + ax ∈ (x2, x, 1 + ax). Clearly by Lemma 2.7, X2 /∈ Jk(R[x]). If R[x] is a BJ -semiring
with respect to I[x], then 1 + ax ∈ (x2, x+ b(x)(1 + ax)) for some b(x) ∈ R[x] by definition.
Let 1 + ax = x2f(x) + (x + b(x)(1 + ax))g(x), where f(x), g(x) ∈ R[x]. Let fi, gi, and
bi represent the coefficient of xi in the polynomials f(x), g(x), and b(x), respectively. Now by
equating the corresponding coefficients in the above equation, we get (x+b(x)+axb(x))g(x) =
(x+ b0 + b1x+ · · ·+ ab0x+ · · · )g(x), which implies g0x+ b0g0 + b1g0x+ ab0g0x+ b0g1x and
so 1 = g0b0 and a = g0 + b1g0 + ab0g0 + b0g1. Thus if I is strong in R, then g0 ∈ I since a ∈ I
by the assumption, which implies 1 ∈ I and leads to a contradiction.

(b): The proof follows directly from Part (a) by setting I = {0} and using the fact that {0} is
a strong ideal of R if and only if R is a zerosumfree semiring.

(c): The proof is very much similar to Part (a) by replacing 1 + ax with r and we write it
here for the sake of comparison and completeness. Notice that (c) is an immediate consequence
of (b) since an SBJ -semiring is a BJ -semiring. Suppose to the contrary that R is a zerosumfree
semiring. Let r ∈ R with r 6= 0. Then r ∈ (x2, x, r) and x2 /∈ Jk(R[x]) by Lemma 2.7. If
R[x] is an SBJ -semiring, then r ∈ (x2, x + rb(x)) for some b(x) ∈ R[x]. Let r = x2f(x) +
(x + rb(x))g(x), where f(x), g(x) ∈ R[x]. Let fi, gi, and bi represent the coefficient of xi in
the polynomials f(x), g(x), and b(x), respectively. Equating coefficients in the above equation
gives r = rb0g0 and 0 = g0 + r(b0g1 + g0b1). Now if R is zerosumfree, then g0 = 0, which
implies r = 0 and leads to a contradiction.

Corollary 4.3. Let R be an additively cancellative zerosumfree semiring. Then R[x] is not a
BJ -semiring (consequently, not an SBJ -semiring).

Theorem 4.4. Let R[x] be the semiring of polynomials over a semiring R.

(a) Let I be a proper ideal of R. If R[x] is a B-semiring with respect to the ideal I[x] of R[x],
then I is not a strong ideal of R. In other words, if I is a strong proper ideal of R, then
R[x] can not be a B-semiring with respect to the ideal I[x] in R[x].

(b) If R[x] is a B-semiring, then R is not a zerosumfree semiring.

(c) If R[x] is an SB-semiring, then R is not a zerosumfree semiring.

Proof. The proof is similar to the proof of Theorem 4.1. Note that for the proof of this theorem,
we don’t need Lemma 2.7 since we don’t need to show that x2 /∈ Jk(R[x]).

Example 4.5. Let R be the semiring of nonnegative reals, or nonnegative rationals, or nonnega-
tive integers, respectively, with usual addition and multiplication. Clearly, R is a commutative,
zerosumfree semiring which is not additively idempotent and by Theorem 4.4(b), R[x] is not a
B-semiring [consequently, not an SB-semiring]. For more examples of zerosumfree semirings,
see [5].

Corollary 4.6. If R is an additively idempotent semiring [in particular, a simple semiring], then
Rx is not a B-semiring [consequently, not an SB-semiring].

Proof. The proof is immediate from Part (b) of the above theorem since every additively idem-
potent semiring [in particular, a (simple semiring], which is not a ring, is zerosumfree. Note that
a+ b = 0 implies a = a+ a+ b = a+ b+ b = b in any additively idempotent semiring and also
a simple semiring is additively idempotent since 1 + 1 = 1.
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Example 4.7. Let R be a semiring (ring) and S = ideal(R) be the semiring of ideals of R under
the addition and multiplication of the ideals of R. Then by the above Corollary, S[x] is not a
B-semiring [consequently, not an SB-semiring] since S is a simple semiring (i.e., R + A = R
for any ideal A of R).

Example 4.8. (cf. [5, Example 5.1]) If A is an infinite set, then the family fsub(A) of all finite
subsets of A is a strong ideal of the semiring (sub(A),∪,∩). Thus, by Theorem 4.4(a), R[x] is
not a B-semiring with respect to I[x] when I = fsub(A) and R = (sub(A),∪,∩).

Finally, we close this paper with an example and a discussion regarding a nonstability con-
dition of a polynomial semiring.

Example 4.9. Clearly, from Theorem 3.13(a) [resp. 3.13(c)], if R[x] (the semiring of polynomi-
als over a semiring R) is a B-semiring [resp. an SB-semiring], then so is R under the morphism
φ : R[x] → R given by a0 + a1x + · · · + anx

n 7→ a0, where ai ∈ R for each 0 ≤ i ≤ n. See
also Theorem 4.4 that shows R[x] is not a B-semiring [resp. an SB-semiring] when R is zero-
sumfree. Further, since a simple semiring R is a B-semiring ([8, Corollary 2.11]; see Remark
3.5(c)), the converse of this example need not be true in general since by Corollary 4.6, R[x] is
not a B-semiring when R is a simple semiring. We also, by a trivial example of a B-semiring,
show that the converse of this example need not be true in general. Let R be the semiring of
nonnegative reals, which is a B-semiring by Example 3.4. Now, by Theorem 4.4, R[x] is not a
B-semiring since R is zerosumfree.
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