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Abstract In this paper we compute the skew-Randi¢ energy of the star graph, the (S,, A P;)
graph and the Peterson graph.

1 Introduction

In 2010, Burcu Bozkurt, Dilek Giingor, Gutman and Sinan Cevik [2], have introduced the
Randi¢ energy of a graph as follows. Let G be a simple graph and let vy, vy,...,v, be its
vertices. Fori = 1,2, ..., n, let d; denote the degree of the vertex v;. Then the Randi¢ matrix of
G is defined as R = (R;;), where

0, ifi =7,
Ri; = \/ﬁ, if the vertices v; and v; are adjacent,
0, if the vertices v; and v; are not adjacent.

The Randi¢ energy of G is defined as the sum of absolute values of the eigenvalues of the Randi¢
matrix.

In the same year Adiga, Balakrishnan and Wasin So [1] have introduced the skew energy of
a digraph as follows. Let D be a digraph of order n with vertex set V(D) = {vi,v2,...,05}
and arc set I'(D) C V(D) x V(D) where (v;,v;) ¢ I'(D) for all ¢ and (v;,v;) € I'(D) implies
(vj,v;) ¢ I'(D). The skew-adjacency matrix of D is the n x n matrix S(D) = (s;;) where
s;; = 1 whenever (v;,v;) € I'(D), s;; = —1 whenever (v;,v;) € I'(D) and s;; = 0 otherwise.
Hence S(D) is a skew symmetric matrix of order n and all its eigenvalues are of the form i\
where i = /—1 and ) is a real number. The skew energy of G is the sum of the absolute values
of eigenvalues of S(D).

Motivated by these works, in 2013, D. D. Somashekara and C. R. Veena [6],[7] have in-
troduced the concept of skew-Randi¢ energy of a digraph as follows. Let D be a digraph of
order n with vertex set V(D) = {vj,vs,...,v,} and arc set I'(D) C V(D) x V(D) where
(vi,v;) & T(D) for all ¢ and (v;,v;) € T'(D) implies (vj,v;) ¢ I'(D). Then the skew-Randi¢
matrix of D is the n x n matrix Agr = (r;;) where

! if(’Ui,’Uj) S F(D),

Vdid;’
ri; = — d]idj , if (’Uj, 'Ui) S F(D),
0, otherwise.

Then the skew-Randi¢ energy of D was defined as the sum of the absolute values of eigenval-
ues of Agp. Further, they [6] found the skew-Randi¢ energy of complete bipartite graph, crown
graph and K, + K,,_, graph. Recently, Ran Gu, Fie Huang, Xueliang Li [3] have studied the
properties of digraphs and in particular the bounds for skew-Randi¢ energy of certain connected
graphs.

In this paper we find skew-Randic¢ energy of the star graph, (S,, A P,) graph and the Peterson
graph.
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We begin with some basic definitions and notations.

Definition 1.1. [4] A graph G is said to be complete if every pair of its distinct vertices are
adjacent. A complete graph on n vertices is denoted by K,.

Definition 1.2. [4] A bigraph or bipartite graph G is a graph whose vertex set V(G) can be
partitioned into two subsets V; and V; such that every line of G joins V; with V5. (V1,13) is a
bipartition of G. If G contains every line joining V; and V5, then G is a complete bigraph. If V)
and V, have m and n points, we write G = K, ,,. A star is a complete bigraph K| ,,.

Definition 1.3. [5] The conjunction (S,, A P») of S,, = K,, + K; and P, is the graph hav-
ing the vertex set V(S,,) x V(P,) and edge set {(v;,v;)(vg, v)|vivy € E(Sp) and vju, €
EP)andl <i,k<m+1,1<j1<2}.

2 Main Results

Theorem 2.1. Let the vertex set V(D) and arc set (D) of Sy, star digraph be respectively given
by

V(D) ={vi,v2,...,0n} and T(D) = {(v1,v;) |2 < j < n}.
Then the skew-Randic energy of D is 2.
Proof. The skew-Randi¢ matrix of the star digraph D is given by

1 1 1 1
0 Vil -1 = Vn-1 Vn-l
— nl_l 0 0 0 0
— nlil 0 0 0 0
Asr = . .
— ”1_1 0 0 0 0
— nl_l 0 0 0 0

1 1 1
A _\/nfl _\/nfl _\/nfl
L A 0 0
N —Asp|=| 7z O A 0
o 0 0 A
w o —1 -1 -1 -1
1 0 0 0
1 nl L0 0 0
_( n—1> P : ’
1 0 0 w 0
1 0 0 0 pu

where 1 = A\/n — 1. Then |\ — Agg| = %(M)(\/lﬁ)"

n—I1

po—1 -1 - -1 -1
1 o 0 -~ 0 0
1 0 u - 0 0

where ¢, (p)=
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Using the properties of the determinants, after some simplifications we obtain

(bn(ﬂ) = (/‘niz + 1Pn—1 (/L))

Iterating this, we obtain
$n(p) = p" 2 (1* +n—1).

Therefore

Al — Asg| = (\/nlfl)n{((n—l))@%—(n—l)) (A (n—1))n—2}.

Thus the characteristic equation is given by

A2 (N4 1) =0.

0 i =1
Spec(D)z(n_z . )

Hence the skew-Randi¢ energy of D is

Hence

Esp(D) = 2.
O

Theorem 2.2. Let the vertex set V(D) and arc set T'(D) of (S, A\ P») digraph be respectively
given by

V(D) = {UlaUL e 7U2m+2} and
(D) = {(v1, ), (vms2, ) [2 < j <m4+1,m+3 <k <2m+2}.

Then the skew-Randi¢ energy of D is 4.
Proof. The skew-Randi¢ matrix of (S,, A P,) digraph is given by

0 0 0 0 nl_l nl_l
0 0 0 — 73_1 0 0
0 0 0 - 0 0
Ase=1 - o 0 0 ’
n—I1 n—1
— 5—1 0 0 0 0 0
__1 1 0 0 0 0
— 2nXx2n

A 0 0 0 — nl_l — n‘_l

0 A 0 7371 0 0

0 0 A 1 0 0

N — Asr| = 1 1 et

0 RV T n—1 A 0 0

n'71 0 0 0 A 0

1 1 0 0 0 0 A

n— 2nx2n
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Hence the characteristic equation is given by

A O 0 0 -1 ~1
0 A 0 1 0 0
( 1 )2"0 0 A1 0 0 o
Vin —1 0 —1 -1 A O 0 -
1 0 0 0 A 0
1 0 0 0 0 A2n><2n
where A = vVn — 1.
Let
A 0 0 0 0 -1 -1 —1
0 A 0 0 0 0 0
0 0 A 0 1 0 0
d(A)=]0 0 0 A1 0 0 0
0 -1 -1 -1 A 0 0 0
1 0 0 0 0 A 0 0
1 0 0 0 0 0 0 Al
A 0 0 0 0 —-1 -1 —1
0 A 0 0 1 0 0 0
0 0 A 0 1 0 0 0
=(-1)"""Al0 0 0 -~ A 1 0 0 -~ 0
0 -1 —1 -1 A 0 0 0
1 0 0 0 0 A 0 0
1 0 0 0 0 0 0 A oy
0 0 0 0 0 -1 -1 -1
A 0 0 0 -1 0 0 0
0 A 0 0 -1 0 0 0
+(-D**' 0 o 0 -~ A -1 0 -~ 0 0
-1 -1 -1 -1 A O 0 0
0 0 0 0 0 A 0 0
0 0 0 0 0 0 A0 e
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Let
0 0 0 0 0 -1 -1 -1
A 0 0 0 -1 0 0 0
0 A O 0 -1 0 0 0
Y i A)=(-D"""0 o 0 - A -1 0 -~ 0 0
-1 -1 -1 -1 A 0 0 0
0 0 0 0 0 A 0 0
00 0 -+ 0 0 0 - A 0|, o

Using the properties of the determinants, we obtain, after some simplifications

¥y, 1(A) = A" 20, (A),

A 0 O 1
0O A O 1
where ©,,(A)=| 0 0 A 1
1 -1 -1 - A
nxn

Then
ban(A) = A"720,,(A) + Adan_1(A).

Now, proceeding as above, we obtain

¢2n_1 (A) _ (—1)(2n_1)+1T2n_2(A) + (_1)(2n—l)+(2n—1)A¢2n_2(A)
= A"30,(A) + Adan_2(A).

Proceeding like this, we obtain at the (n — 1) step

don(A) = —(n — 1)A" 20, (A) + A" Vg, 1 (A),

A 0 O 0
0O A O 1
where &, (A)=| 0 0 A 1
0 -1 -1 - A (n+1)x (n+1)
o (A) = (n—1DA"20,(A) + A" 'AO, (A)

)
= (n—1)A"20,(A) +A"0,(A)
= (n—1DA" 2+ A0, (A).
Using the properties of the determinants, we obtain
0,(A) = (n— 1)A" 2 4 A",

Therefore
ban(A) = ((n — A2 4 A™)%

Hence characteristic equation becomes

1
vn—1

( )>"p2n(A) =0,
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which is same as

1
vn—1

( )" ((n— A2 + A")? = 0.

This reduces to

A1 4+ A1) =0.

Therefore

Spec ((Sm A P2)) = <2no_ A ; —21> :

Hence the skew-Randi¢ energy of (.S, A P;) digraph is

Esr((Sm A P2)) = 4.

Theorem 2.3. The skew-Randic¢ energy of the below Peterson digraph is 5.1654.

v7

Proof. The skew-Randi¢ matrix of the Peterson of digraph is given by

o o + + 0o 4 0 0 0 O
o o o + I 0o I o0 o0 0
-+ 0 0o 0o Y 0 0o 1 0 O
-+ -0 0o o o0 o o0 1 0
Aoy — 0l -+ -1 0 0 o0 (1) 0 0 %
-0 o o o o i o0 o0 %
o - 0 0 0o -3 0o 1 o0 0
o o -+ o o o -1 o 1 o0
o 0 0 -3 0 0 0 -3 0 %
o o 0o o0 -3 -+ 0o o0 -1o0
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Its characteristic polynomial is given by

A0 ¥ 2 0 4 0 0 0 O
o x 0 ¥ 4 0 1 0 0 O
-+ 0 x 0o + 0 0o 1 0 O
-+ -0 Xx 0 0 0 O 1 O
0 -3 -3 0 x 0 0 0 0 3%
M — Asg| = | ’ ’ | ;
-+ 0 0 0 0 X I 0 o0 4%
o -+ 0o 0o o0 -+ Xx 1 0 0
0o 0 - 0o o o0 -4+ X 1 0
o 0o o - o o o -1 X 1
0 0 0 0 -4 -2 0o o0 -1 A
Hence the characteristic equation is given by
A0 4 2 0 4+ 0 0 o0 0
o x o + 1+ o 4 o0 0 o0
—% 01 A0 4 0 o i ? 0
;=3 0 x 0 0 0 0 % 0
0 -3 -3 0 X 0 0 0 0 3/|_,
10 0o o o0 x + o0 o0 %
0o - 0 0 o0 -3 x 1 o0 0
o 0o -+ 0 0 0 -4+ Xx 1 o0
0o 0 0 - o o0 o0 -1 X i
0o 0o 0 o0 -+ -1 0 0 -1

This is same as

MO+ 1.6667A% + 0.92597° + 0.1989A* + 0.0152A% + 0.003 = 0,
on using Matlab software. Again, using the software we found that the eigenvalues of Agr as
0.8676i, —0.86763,0.7328i, —0.7328i,0.49067, —0.49064, 0.15834, —0.1583¢,0.33334, —0.3333;
of multiplicities one. Hence the skew-Randi¢ energy of D is
Esr(D) = 5.1654.

O

Remark. The skew-Randi¢ energy of a digraph depends on the arc set. In particular, if
the arc set of the above Peterson graph is I'(D)={(v;,v;), (v3,v1), (va,v1) |1 < 4,5 < 10,i <
jandif j =1,i# 3,4}, then its skew-Randi¢ energy is 5.1654.

Conjecture. We conjecture that the skew-Randi¢ energy of the Peterson digraph with any arc
set lies between 3 and 6.
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