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Abstract In this paper we will give a classification of idempotent elements of complex Clif-
ford algebras Cl(p, q) via the trace operation. Using isomorphisms between Clifford algebras
Cl(p, q) and appropriate matrix algebras, a geometric and algebraic description of each class is
studied.

1 Introduction

In mathematics, a Clifford algebra is an algebra generated by a vector space with a quadratic
form, and is a unital associative algebra. As K-algebras, they generalize the real numbers, com-
plex numbers, quaternions and several other hypercomplex number systems [4]. The theory
of Clifford algebras is intimately connected with the theory of quadratic forms and orthogonal
transformations. It is well known that Clifford algebras are defined by symmetric bilinear forms
[10, 3]: Given a symmetric bilinear form B on a vector space E, one defines the Clifford alge-
bra Cl(E,B) to be the associative algebra with unity e generated by the elements of E , with
relations vu+ uv = 2B(u, v)e, u, v ∈ E [7]. The Clifford algebra Cl(E,B) can be regarded as
the factor algebra ⊗E/J , where ⊗E denotes the tensor algebra of E and J is the ideal of ⊗E
generated by the elements u⊗v+v⊗u−2B(u, v)e, u, v ∈ E [3]. Clifford algebras and spinors
have been used to describe electromagnetic fields, supersymmetry, and quantum mechanics. A
problem that is frequently arises is how to project onto a specific invariant irreducible subspace
of the spinor space. This problem is related to constructing and classifying idempotents of the
corresponding Clifford algebras. Discrete families of primitive idempotents have been described
by Chevalley [3] and are traditionally used to generate spinor representations of Clifford alge-
bras [14]. Our goal here is to classify idempotents for arbitrary Clifford algebras Cl(p, q), we
can use its matrix representations and operation trace. The present paper is organized as follows.
After introduction, section 2 is concerned with recalling some facts about the Clifford algebras
Cl(p, q). In section 3, we will give a classification of idempotents of Cl(p, q) via the operation
trace, some examples are given. A geometric description of idempotent classes is given in sec-
tion 4. Finally in section 5, using a Hermitian product on the Clifford algebras Cl(p, q), we will
give an application of idempotents to make a matrix representations of Cl(p, q).

2 Basic results of the Clifford algebra Cl(p, q)

Given p, q and n a non-negative integers such that n = p + q. We denote Cl(p, q) the Clifford
algebra of the quadratic space Rp,q and Cl(p, q) := C ⊗ Cl(p, q) the complexifed algebra of
Cl(p, q). If ei, 1 ≤ i ≤ n is an orthonormal basis of Rp,q, then Cl(p, q) is generated by ei with
relations

eiej + ejei = 2gije, 1 ≤ i, j ≤ n,

where e is the unitary element of Cl(p, q), gii = 1 if 1 ≤ i ≤ p, gii = −1 if p+ 1 ≤ i ≤ n and
gij = 0 if i 6= j. It has basis

e, ei, ei1ei2 , ..., e1...en, 1 ≤ i1 < i2 < ... ≤ n, (2.1)
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with i, i1, ... are indexes from 1 to n. Thus Cl(p, q) is 2n-dimensional complex vector space
[7]. Throughout this paper eI will denote the product element ei1 . . . eik of Cl(p, q) for any
I = {i1, . . . , ik} with 1 ≤ i1 < ik . . . < ik ≤ n, and e∅ := e. So, any Clifford algebra element
X ∈ Cl(p, q) can be written in the following form

X = xe+
∑
I 6=∅

λIeI , (2.2)

where x, λI are complex constants.
Complex Clifford algebras Cl(p, q) of dimension n and different signatures (p, q), p+ q = n

are isomorphic. Clifford algebras Cl(p, q) are isomorphic to the matrix algebras of complex
matrices. In the case of even n, these matrices are of order 2

n
2 . In the case of odd n, these

matrices are block diagonal of order 2
n+1

2 with 2 blocks of order 2
n−1

2 [14, 7]. Precisely, we
have the following well-known matrix-representations of complex Clifford algebras (of minimal
dimension)

Cl(Cn) ∼= Cl(p, q) ∼=

{
Mat(2

n
2 ,C) if n is even,

Mat(2
n−1

2 ,C)⊕Mat(2
n−1

2 ,C) if n is odd.

Consequently, these Clifford algebras Cl(p, q) are a simple algebras (if n is even) or a semi-
simple algebras (if n is odd).

For any element t ∈ Cl(p, q), the set S(t) := {Xt/X ∈ Cl(p, q)} is a left ideal of Cl(p, q)
(generated by t). A left ideal that does not contain other left ideals except itself and the trivial
ideal {0}, is called a minimal left ideal of Cl(p, q).

3 Classification of idempotent elements of Cl(p, q)

Let us recall some facts about idempotent elements of Cl(p, q).

(i) An element t of Cl(p, q) is said to be idempotent if t2 = t.

(ii) Two idempotents t, t′ ∈ Cl(p, q) are said to be conjugate if there exists an invertible element
x ∈ Cl(p, q) such that t′ = xtx−1.

(iii) Two idempotents t, t′ ∈ Cl(p, q) are said to be orthogonal if tt′ = t′t = 0.

(iv) An idempotent t ∈ Cl(p, q) is said to be primitive if it is not a sum of two nonzero orthog-
onal idempotents.

(v) An idempotent is said to be minimal if it is minimal element in the set of all nonzero
idempotents with order relation t ≤ t′ if and only if tt′ = t = t′t.

These last two properties of an idempotent t are equivalent. More precisely, we have the follow-
ing proposition.

Proposition 3.1. Let t be a nonzero idempotent of Cl(p, q). Then the following properties are
equivalent.

(i) t is primitive.

(ii) t is minimal.

(iii) t is the only nonzero idempotent in the subalgebra tCl(p, q)t, where

tCl(p, q)t := {txt/ x ∈ Cl(p, q)}.

Proof. Assume that t is primitive. And given a nonzero idempotent t′ of Cl(p, q) such that t′ ≤ t
then t = t′+(e− t′)t with (e− t′)t is an idempotent orthogonal with t. Since t is primitive then
(e− t′)t = 0 and so t is minimal. Thus (1) implies (2).
Assume that t is minimal. Set f ∈ tCl(p, q)t be a nonzero idempotent element, then f = tf = ft
and so f ≤ t. By minimality of t we deduce that t = f . So, t is the only nonzero idempotent
element of tCl(p, q)t. Thus, (2) implies (3).
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Assume that t is the only nonzero idempotent element of tCl(p, q)t. Set f and h two orthogonal
idempotents such that t = f + h, then f, h are two idempotents of tCl(p, q)t and so f or h is
zero. So, (3) implies (1). 2

To classify idempotents of Cl(p, q), we introduce the operation of trace of Clifford algebra
element X ∈ Cl(p, q) as the following operation of projection onto subspace C.e: for arbitrary
element X ∈ Cl(p, q) in the form (2.2) we have tr(X = xe+

∑
λIeI) = x.

It is easy to see that the trace map tr : Cl(p, q) −→ C.e has the following properties:

tr(λX + Y ) = λtr(X) + tr(Y ) and tr(XY ) = tr(Y X),

∀X,Y ∈ Cl(p, q), ∀λ ∈ C.

There is a relationship between operation trace tr of Clifford algebra element X ∈ Cl(p, q) and
operation trace Tr of quadratic matrix. The following lemma gives this relation.

Lemma 3.2. tr(X) = 1

2[
n+1

2 ]
Tr(ρ(X)), for all X ∈ Cl(p, q), where ρ is any arbitrary matrix-

representation of Cl(p, q) (of minimal dimension).

Proof. By Pauli’s Theorem (see [15]). The trace Tr(ρ(X)) is doesn’t depend on the choice of
matrix representation. So, let us consider the recurrent matrix representation ρ : eI 7−→ βI given
by (Theorem 4.1 [16]). We have

tr(eI) = Tr(βI) = 0, where I- any multi-index except empty.

The only exception is identity element e, which corresponds to the identity matrix. In this case,
we have Tr(ρ(e)) = 2[

n+1
2 ]. Further, we use linearity of trace and obtain

Tr(ρ(X)) = Tr(xρ(e)) = Tr(ρ(e))x = 2[n+1
2 ]x = 2[

n+1
2 ]tr(X).

Hence, we get the result. 2

Remark 3.3. For even n, we can show the previous lemma using the following formula g :
ρ(Cl(p, q)) −→ C, A 7−→ tr(ρ−1(A)) which is a linear map satisfies g(AB) = g(BA), then
there exists λ ∈ C such that g = λTr. By a simple calculation, we find λ = 2[n+1

2 ].

The set that we denote D, of nonzero idempotent elements of Cl(p, q) can be provided with
the equivalence relation R given by tRt′ if and only if tr(t) = tr(t′). For any element t of D
let us denote r(t) = Tr(ρ(t)) = 2[

n+1
2 ]tr(t) andDr(t) the equivalence class of twith respect toR.

When n = 2d is even we have the following theorem.

Theorem 3.4. Let t and t′ tow elements in D, when n = 2d is even, we have

(i) tRt′ if and only if t and t′ are conjugated.

(ii) r(t) is an integer between 1 and 2[
n+1

2 ].

(iii) t is minimal if and only if r(t) = 1.

(iv) dim(S(t)) = 2[n2 ]r(t).

(v) S(t) is minimal if and only if t is minimal.

The proof of this Theorem requires the following lemma.

Lemma 3.5. LetX,Y two idempotent matrices ofM(N,C), whereN is a nonzero integer. Then,
the following statements are equivalent.

(i) Tr(X) = Tr(Y ).

(ii) X and Y are similar. That is, there exists Z ∈ GL(N,C) such that Y = ZXZ−1.
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Proof. Since X is an idempotent matrix. By means of a similarity transformation, it can be
transformed into its Jordan form. Consequently, the idempotency implies that the Jordan form
of X must be (up to basis vector transposition) of the form Jr = diag(1, · · · , 1︸ ︷︷ ︸

r

, 0, · · · , 0︸ ︷︷ ︸
N−r

), where

r = 0, · · · , N denotes the rank of X . Therefore, X has the form

X = SJrS
−1, where S ∈ GL(N,C).

To finish the proof, just pick up that Tr(X) is equal to the rank of X . 2

Proof. Of the above theorem.

(i) This follows easily from the previous Lemma.

(ii) Again by the previous Lemma, we have r(t) = Tr(ρ(t)) = rank(ρ(t)), so we get the
result.

(iii) If t = f + h where f and h are two nonzero orthogonal idempotent elements, then r(t) =
r(f) + r(h) ≥ 2. It follows that, r(t) = 1 implies that t is minimal.
Conversely: By the previous Lemma, one can assume that ρ(t) = Jr(t) = J1 + (Jr(t) −
J1), then t = ρ−1(J1) + ρ−1

(
Jr(t) − J1

)
. Therefore ρ−1(J1) and ρ−1

(
Jr(t) − J1

)
are two

orthogonal idempotent elements. It follows that, if t is minimal then r(t) = 1.

(iv) Notice that dim(S(t)) = dim(M(2d,C)Jr(t)), where M(2d,C)Jr(t) denotes the left ideal
of M(2d,C) generated by Jr(t). So just determine dim(M(2d,C)Jr(t)). Let denote Eij the

canonical basis elements of M(2d,C). We have EijJr(t) =

{
Eij if j ≤ r(t)
0 if j > r(t)

. So

dim(M(2d,C)Jr(t)) = 2dr(t).

(v) Since any nonzero minimal left ideal of a complex simple algebra is generated by a nonzero
minimal idempotent element (see [2]), if S(t) is minimal, then there is a nonzero minimal
idempotent element t′ such that S(t) = S(t′). According to the fourth point of this theorem,
we have r(t) = r(t′) = 1. Hence, t is minimal.
If S(t) is not minimal then, it contains strictly a nonzero minimal left ideal S(t′) where t′
is a nonzero minimal idempotent element. Hence, dim(S(t)) > dim(S(t′)) and so r(t) >
r(t′) = 1. Consequently, t is not minimal, by the third point above. 2

Remark 3.6. (i) Except for the first one, the properties of the previous theorem remain true
when n is odd.

(ii) If t = f + h where f and h are tow orthogonal idempotents, then S(t) = S(f)⊕ S(h).
(iii) When t is a minimal idempotent element, then any non-zero idempotent of S(t) is also

minimal.

(iv) If t0, · · · , tm are a commuting idempotent elements of Cl(p, q), then their product
∏
tk is

also idempotent.

(v) There are 2[
n+1

2 ] classes (types) of idempotent in the Clifford algebra Cl(p, q).

Example 3.7. Set t0 := 1
2(e − e1) and tk := 1

2(e − i
bke2ke2k+1) for 1 ≤ k ≤ m, where bk = 0

for 2k = p, bk = 1 for 2k 6= p and m = [n−1
2 ].

They are commuting idempotent elements of Cl(p, q) with r(tk) = 2[n−1
2 ] for all 0 ≤ k ≤ m.

Furthermore their product:

t :=
m∏
k=0

tk (3.1)

is a minimal idempotent element of Cl(p, q).
Indeed: Firstly all terms in the previous product commute. Thus, t is idempotent.
On the other hand, we can write the idempotent t in the form

t = 2−(m+1)e+
n∑

r=1

∑
i1<i2<···<ir

λi1...irei1 . . . eir , (3.2)
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where λi1...ir ∈ C and every term ei1 . . . eir contains, at least, one generator ei with odd index
(for even n the idempotent t doesn’t contain the generator en). Hence, tr(t) = 2−(m+1) and
so r(t) = 2[

n+1
2 ]−(m+1) = 1. Consequently, by the above theorem, t is a minimal idempotent

element, and so the left ideal S(t) is minimal with 2[
n
2 ]-dimensional.

The following proposition gives a standard form for a minimal idempotent of Cl(p, q) for
even n.

Proposition 3.8. Any minimal idempotent element of Cl(p, q) for even n is necessarily of the
form given by Formula (3.1), for some generators γi of Cl(p, q) (instead of the ei) satisfying the
relation

γiγj + γjγi = 2gije, 1 ≤ i, j ≤ n (∗).

Proof. We denote by t the minimal idempotent element of Cl(p, q) given by Formula 3.1 in the
example above. Let t′ be a minimal idempotent element of Cl(p, q). By Theorem 3.4, there is
an invertible element T of Cl(p, q) such that t′ = T−1tT . The family γi := T−1eiT , 1 ≤ i ≤ n
satisfies the relationship (∗). Hence, by Pauli’s Theorem (see [15]), γi are a generator elements
of Cl(p, q) and T is the unique (up to nonzero constant) invertible element of Cl(p, q) satisfying
γi = T−1eiT , 1 ≤ i ≤ n. Replacing the generators ei by the γi, Formula (3.1) gives t′. 2

4 Geometric study of idempotent equivalence classes

Using isomorphisms between Clifford algebras Cl(p, q) and appropriate matrix algebras, and the
conjugation action of the Clifford group Cl×(p, q) on the set D of nonzero idempotent elements
of Cl(p, q), it possible to give a geometrical description for the orbits of this action. These are
smooth manifolds in the natural topology.

The case n = 2d even. Set t an idempotent element of ID, and r = r(t). By Theorem 3.4
the t-orbit of the Cl×(p, q)-action is none other than Dr = {h ∈ D/tRh}. i.e. the equivalence
R-class of t. Let denote Gr the isotropy group at t; that is, the set of all x ∈ Cl×(p, q) such that
xtx−1 = t. Gr is a closed subgroup of the Lie group Cl×(p, q). The coset space Cl×(p, q)/Gr

has a manifold structure [8]. Moreover the mapping

Cl×(p, q)/Gr −→ Dr, x 7−→ x.t := xtx−1 (4.1)

is bijective (see[8]). Consequently, Dr has a manifold structure. More precisely, we give the
following result.

Theorem 4.1. Dr has a real manifold structure of dimension
4r(2d − r). Precisely, Dr is homeomorphic to the coset space

GL(2d,C)
GL(r,C)×GL(2d − r,C) .

Proof. let us start with Cl(p, q) ≈M(2d,C) and so,
Dr ≈ {SJrS−1/S ∈ GL(2d,C)} - i.e. Jr-orbit of the GL(2d,C)-action- and Gr ≈ {S ∈
GL(2d,C)/SJrS−1 = Jr}; the stability group of Jr. Since any matrix S of Gr is of the form

S =

(
S1 0
0 S2

)
, where S1 ∈ GL(r,C) and S2 ∈ GL(2d − r,C), hence Gr ≈ GL(r,C) ×

GL(2d − r,C). Formula (4.1) completes the proof of the Theorem. 2

The case n = 2d+1 odd. In this case Cl(p, q) ≈M(2d,C)⊕M(2d,C). Taking into account
Lemma 3.5, we can diagonalize an idempotent t ∈ D in this case to the form Jr,s = diag(Jr, Js),
r, s = 0, . . . , 2d. By the same argument as the previous Theorem, we have the following result.

Theorem 4.2. The orbit of t (under the Cl×(p, q) group action) is homeomorphic to the coset
space

GL(2d,C)
GL(r,C)×GL(2d − r,C) ×

GL(2d,C)
GL(s,C)×GL(2d − s,C) .
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5 Hermitian product on Cl(p, q)

Consider the following operation of conjugation on Cl(p, q):

x =
∑

λIeI ∈ Cl(p, q) 7−→ x∗ :=
∑

λI(eI)
−1,

where λI is the complex conjugation of λ. For example, e∗k = (ek)−1 = gkkek. The conjugation
operation has the following properties:

(x∗)∗ = x, (λx+ y)∗ = λx∗ + y∗ and (xy)∗ = y∗x∗, ∀x, y ∈ Cl(p, q), ∀λ ∈ C.

Proposition 5.1. The operation x, y ∈ Cl(p, q) −→ 〈x, y〉 := tr(x∗y) defines an hermitian
product on Cl(p, q).

Proof. Let x, y, z ∈ Cl(p, q) and λ ∈ C. It easy to see that

〈λx, y〉 = λ〈x, y〉, 〈y, x〉 = 〈x, y〉 and 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉.

Furthermore, by Formula (2.2), we can write x =
∑
λIeI then

〈x, x〉 =
∑
|λI |2 ≥ 0 with 〈x, x〉 = 0 if and only if x = 0. So we get the result. 2

Remark 5.2. (i) The basis (2.1) of Cl(p, q) is orthonormal with respect to this hermitian prod-
uct 〈., .〉; That is,

〈eI , eJ〉 = δIJ :=

{
1 if I = J

0 if I 6= J

(ii) 〈xz, y〉 = 〈z, x∗y〉 for all x, y, z ∈ Cl(p, q).

Let S be a left ideal of Cl(p, q). S is a vector space. The Hermitian scalar product x, y ∈
S −→ 〈x, y〉, gives us the structure of unitary space on S. Let us take an orthonormal basis
σ1, . . . , σN of S, where N = dim(S). By definition of left ideal, we have for any x ∈ Cl(p, q)
and any k = 1, . . . , N , xσk ∈ S, hence we can write xσk =

∑N
l=1 xlkσl, where xlk = 〈σl, xσk〉.

Let us define the map

π : Cl(p, q) −→M(N,C), x 7−→ π(x) := (xlk). (5.1)

Theorem 5.3. π is a matrix representation of Cl(p, q) satisfy

π(x∗) = (π(x))∗,

where (π(x))∗ denotes the Hermitian conjugated matrix. This representation is faithful when n
is even.

Proof. It is easy to see that π is a linear map. Furthermore, for any x, y ∈ Cl(p, q), we have
(xy)lk = 〈σl, xyσk〉 = 〈σl, x

∑
j yjkσj〉 =

∑
j yjk〈σl, xσj〉 =

∑
j yjkxlj . Hence π(xy) =

π(x)π(y). Therefore, we have
x∗lk = 〈σl, x∗σk〉 = 〈xσl, σk〉 = 〈σk, xσl〉. Thus π(x∗) = (π(x))∗.
On the other hand, if n is even then Cl(p, q) is a simple algebra, and so ker(π) = {0}, since
ker(π) is a bi-ideal of Cl(p, q), which completes the proof of the Theorem. 2

Corollary 5.4. If n = 2d is even and N = 2d then π is an isomorphism. In particular π is an
irreducible matrix representation.

Proof. By the previous Theorem, π is injective and because of dimension it is bijective, thus it
is an irreducible representation. 2

Consider the set of Clifford algebra elements
UCl(p, q) := {x ∈ Cl(p, q)/x∗x = e}. This set is a Lie group (closed subgroup of Cl×(p, q)),
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which is called the unitary group of Clifford algebra.
The properties x∗x = e and π(x∗) = (π(x))∗ lead to the property (π(x))∗(π(x)) = 1, where
1, is the identity matrix of M(N,C). That means π(x) is a unitary matrix. Consequently,
π(UCl(p, q)) ⊂ U(N), where U(N) is the group of unitary matrices of dimension N .
For even n, the previous Corollary establishes the isomorphism

UCl(p, q) ∼= U(2
n
2 ).

For odd n, we can establish the isomorphism UCl(p, q) ∼= U(2
n−1

2 )⊕U(2n−1
2 ), where U(2

n−1
2 )⊕

U(2
n−1

2 ) is the set of block-diagonal matrices diag(X,Y ) with X,Y ∈ U(2n−1
2 ).

Example 5.5. Let us consider S(t) the minimal left ideal generated by the minimal idempotent
t given by Formula (3.1). For even n = 2d, set σI =

√
2
d
e2It, I ⊂ {1, . . . , d}, 2d-elements of

S(t), where 2I := {2k/k ∈ I}. Using Formula (3.2), we have 〈σI , σJ〉 = δIJ . We deduce that
σI is an orthonormal family and hence an orthonormal basis of S(t), since dim(S(t)) = 2d (see
Example 3.7).
By Corollary 5.4, the resulting representation is an isomorphism of algebras. It is hence an
irreducible matrix representation of Cl(p, q).
In the special case (p, q) = (1, 3), we obtain
σ∅ = 2t = 1

2(e − e1 − ie2e3 + ie1e2e3), σ1 = 2e2t = 1
2(e2 + e1e2 + ie3 + ie1e3), σ2 =

1
2(e4+e1e4−i2e3e4−ie1e2e3e4) and σ12 := σ{1,2} = 2e2e4t =

1
2(e2e4+ie3e4−e1e2e4−ie2e3e4).
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