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Abstract In this paper, we deal with α−cosymplectic manifolds. Firstly, we give a charac-
terization for α−cosymplectic manifold admitting a Ricci soliton given as to be η−Einstein and
nearly quasi-Einstein. Also, we study yamabe solitons in α−cosymplectic manifold and obtain
some important classifications about scalar curvature of this manifold. Finally, we find that if an
α−cosymplectic manifold is conharmonically flat, it is an η−Einstein.

1 Introduction

The notion of Ricci soliton is a natural generalization of an Einstein manifold (the Ricci tensor
S is a constant multiple of the Riemannian metric g). This notion was introduced by Hamilton
in 1988 [9]. A Riemannian manifold (M, g) is called a Ricci soliton if

(£V g)(X,Y ) + 2S(X,Y ) + 2µg(X,Y ) = 0 (1.1)

is satisfied. Here, £V g denotes the Lie-derivative of the metric tensor g, S is the Ricci tensor of
M , µ is a constant andX,Y are the vector fields onM . If £V g = 0 and £V g = ρg, then potential
vector field V is said to be Killing and conformal Killing, respectively, where ρ is a function.
Also, when V is zero or Killing in (1.1), then Ricci soliton reduces to Einstein manifold. In
addition, a Ricci soliton is called gradient if the potential vector field V is the gradient of a
potential function −f (i.e., V = −∇f ) and is called shrinking, steady or expanding depending
on µ < 0, µ = 0 or µ > 0, respectively. There are many studies about Ricci solitons in literature
[10], [14], [15], [18], [20] and many others.

A Yamabe soliton is a Riemannian manifold (M, g) if it admits a vector field V such that

(£V g)(X,Y ) = (λ− r)g(X,Y ), (1.2)

where λ is a real number and r is the scalar curvature of M [9]. A yamabe soliton which satisfies
(1.2) is denoted by (M, g, V, λ). Yamabe solitons correspond to the self-similar solutions of
the yamabe flow. A Yamabe soliton is called a gradient if the potential vector field V is the
gradient of a potential function β on M and is called shrinking, steady or expanding depending
on λ < 0, λ = 0 or λ > 0, respectively.

The first study of almost cosymplectic structures were introduced by Goldberg and Yano in
[8]. The products of almost Kaehler manifolds and the realR line or the circle S1 are the simplest
examples of almost cosymplectic manifolds. Almost cosymplectic manifolds have been studied
by many mathematicians in literature ([1], [7], [13], [16] and [17]).

The notion of conharmonic curvature tensor was firstly defined by Ishii in 1957 [12]. Since
then, this notion has been studied in some different classes of contact geometry. For example,
Çalışkan studied this tensor in Sasakian finsler manifolds [3]. Also, Dwivedi and Kim obtained
some necessary and sufficient conditions for K−contact manifold to be quasi conharmonically
flat, ξ−conharmonically flat [6]. Ghosh et al. characterized N(k)−contact metric manifolds
satisfying certain curvature conditions on the conharmonic curvature tensor [11]. Taleshian et
al. proved that φ−conharmonically flat LP−Sasakian manifold is an η−Einstein manifold in
[19].
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The present paper is organized as follows. In section 2, we give some fundamental definitions
and formulas about almost contact metric manifolds. In section 3, we study α−cosymplectic
manifolds admitting Ricci solitons. In section 4, we analyze α−cosymplectic manifolds ad-
mitting yamabe solitons and investigate Riemannian manifolds admitting yamabe solitons en-
dowed with concircular vector field. In last section, we give some characterizations for an
α−cosymplectic manifold with conharmonic curvature tensor.

2 Preliminaries

In this section, we shall recall some basic definitions and formulas of almost contact metric
manifolds from [1], [2] and [8].

A (2n+ 1)−dimensional differentiable manifold M is called an almost contact metric mani-
fold if there exists an almost contact metric structure (ϕ, ξ, η, g) onM and the Riemannian metric
g satisfies the following relations:

ϕ2X = −X + η(X)ξ, η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0, η(X) = g(X, ξ) (2.1)

and

g(ϕX, φY ) = g(X,Y )− η(X)η(Y ), g(ϕX, Y ) = −g(X,ϕY ) (2.2)

for any X,Y ∈ Γ(TM), where ξ is a vector field of type (0, 1), (which is so-called the charac-
teristic vector field), 1− form η is the g−dual of ξ of type (1, 0) and ϕ is a tensor field of type
(1, 1) on M .

On the other hand, in [2], D.E. Blair defined the fundamental 2−form Φ of M as follows:

Φ(X,Y ) = g(X,ϕY )

for any X,Y ∈ Γ(TM). Furthermore, if the relation

Φ(X,Y ) = dη(X,Y )

holds for all X,Y ∈ Γ(TM), an almost contact metric manifold (M,ϕ, ξ, η, g) is said to be
contact metric manifold such that

dη(X,Y ) =
1
2

{
Xη(Y )− Y η(X)− η([X,Y ])

}
.

The Nijenhuis tensor field of ϕ is defined by

Nϕ(X,Y ) = [ϕX,ϕY ] + ϕ2[X,Y ]− ϕ[X,ϕY ]− ϕ[ϕX, Y ]

for all X,Y ∈ Γ(TM). If M is an almost contact metric manifold and the Nijenhuis tensor of ϕ
satisfies

Nϕ + 2dη ⊗ ξ = 0

then,M is called a normal contact metric manifold. A normal contact metric manifold (M,ϕ, ξ, η, g)
is said to be cosymplectic if the following relations hold:

dη = 0, dΦ = 0.

Equivalently,

(∇Xϕ)Y = 0, ∇Xξ = 0 (2.3)

for any X,Y ∈ Γ(TM), where ∇ is the Levi-Civita connection on M . Also, if

dη = 0, dΦ = 2αη ∧Φ
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are satisfied, then M is called an α−cosypmlectic manifold, where α is a real number. Equiva-
lently,

(∇Xϕ)Y = α(g(ϕX, Y )ξ − η(Y )ϕX), (2.4)

∇Xξ = −αϕ2X. (2.5)

If α is equal to zero, then it is easy to see that M is a cosypmlectic manifold. For α ∈ R, when
α 6= 0, M is called α−Kenmotsu manifold. For an α−cosymplectic manifold, we also have

R(X,Y )ξ = α2(η(X)Y − η(Y )X), (2.6)

R(X, ξ)Y = α2(g(X,Y )ξ − η(Y )X), (2.7)

R(X, ξ)ξ = α2(η(X)ξ −X), (2.8)

S(X, ξ) = −2nα2η(X), (2.9)

where S,R denotes the Ricci tensor and Riemann curvature tensor, respectively.
Now, we recal some definitions from [4], [5], [6] and [12] as follows:
The conharmonic curvature tensor of a (2n + 1)−dimensional (n ≥ 1) manifold (M, g) is

defined by

K(X,Y )Z = R(X,Y )Z − 1
2n− 1

{
S(Y,Z)X − S(X,Z)Y

+g(Y,Z)QX − g(X,Z)QY
}

(2.10)

for any X,Y, Z ∈ Γ(TM), where Q is the Ricci operator defined by S(X,Y ) = g(QX,Y ).
If K vanishes identically in (2.10), the manifold M is called conharmonically flat. Also, an

almost contact metric manifold (M,ϕ, ξ, η, g) is called ξ−conharmonic flat and quasi conhar-
monically flat, respectively if the followings are satisfied:

K(X,Y )ξ = 0,

and

g(K(X,Y )Z,ϕW ) = 0, (2.11)

for any X,Y, Z,W ∈ Γ(TM).
A Riemannian manifold (M, g) is called nearly quasi-Einstein manifold if its Ricci tensor

field S satisfies

S = ag + bE

where a, b are functions and E is a non-vanishing symmetric (0, 2)−tensor on M . In addition,
(M, g) is called an η−Einstein if there exists two real constants c and d such that the Ricci tensor
field S satisfies

S = cg + dη ⊗ η.

If the constant d is equal to zero, then M becomes Einstein.
On the other hand, a vector field v on a Riemannian manifold (M, g) is called concircular if

it satisfies

∇Xv = fX (2.12)

for any X ∈ Γ(TM), where ∇ is the Levi-Civita connection on M and f is a smooth function
on M . If f is equal to one in (2.12), then v is called a concurrent vector field.
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3 α−Cosymplectic Manifolds Admitting Ricci Solitons

In this section, we deal with α−cosymplectic manifolds admitting Ricci solitons.
Now, we begin to this section with the following:

Theorem 3.1. Let M be an α−cosymplectic manifold admitting a Ricci soliton. If the potential
vector field V is a pointwise collinear with ξ, then M is a nearly quasi-Einstein manifold.

Proof. Since (M, g, V, µ) is a Ricci soliton whose potential vector field V is a pointwise collinear
with ξ, that is, V = bξ, from (2.1) and (2.5), we have

(£V g)(X,Y ) = g(∇XV, Y ) + g(∇Y V,X)

= g(X(b)ξ + b∇Xξ, Y ) + g(Y (b)ξ + b∇Y ξ,X)

= X(b)η(Y ) + Y (b)η(X) + 2bα(g(X,Y )− η(X)η(Y ))

= g(∇b,X)η(Y ) + g(∇b, Y )η(X)

+2bα(g(X,Y )− η(X)η(Y )) (3.1)

for any X,Y ∈ Γ(TM), where ∇b is the gradient of a smooth fuction b on M .
By combining (1.1) and (3.1), we have

S(X,Y ) = −(µ+ bα)g(X,Y ) + bαη(X)η(Y )

−1
2

{
g(∇b,X)η(Y ) + g(∇b, Y )η(X)

}
. (3.2)

If we denote the the dual 1−form of ∇b by φ, then (3.2) reduces to

S(X,Y ) = −(µ+ bα)g(X,Y ) + bαη(X)η(Y )

−1
2

{
φ(X)η(Y ) + φ(Y )η(X)

}
. (3.3)

If we take a non-vanishing symmetric (0, 2)−tensor E in (3.3) such that

E(X,Y ) = bαη(X)η(Y )− 1
2
(φ(X)η(Y ) + φ(Y )η(X))

then, the equation (3.3) becomes

S = −(µ+ bα)g +E.

This means that M is a nearly quasi-Einstein manifold.

As an immediate consequence of Theorem 3.1, we have the following corollary:

Corollary 3.2. Let M be an α−cosymplectic manifold admitting a Ricci soliton whose the po-
tential vector field is the characteristic vector field ξ. Then, M is an η−Einstein manifold.

4 α−Cosymplectic Manifolds Admitting Yamabe Solitons

The first result of this section is the following:

Proposition 4.1. Let M be a Riemannian manifold admitting a gradient yamabe soliton as its
potential vector field V . Then, V is a concircular vector field on M .

Proof. Since M is a gradient yamabe soliton, the potential vector field v is the gradient ∇k of a
function k on M . Then, from (1.2), we have

g(∇X∇k, Y ) + g(∇Y∇k,X) = (λ− r)g(X,Y ) (4.1)

for any X,Y ∈ Γ(TM). On the other hand, for a smooth function k on M , the Hessian Hk of k
satisfies

Hk(X,Y ) = g(∇X∇k, Y ). (4.2)
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Since the Hessian Hk of k is a symmetric in X and Y , it follows from (4.1) and (4.2), we derive

2g(∇X∇k, Y ) = (λ− r)g(X,Y )

which gives

∇X∇k =
1
2
(λ− r)X.

This means that V is a concircular vector field on M .

Next, we have the following proposition.

Proposition 4.2. Let M be an α−cosymplectic manifold endowed with a concircular vector field
v. If M admits a yamabe soliton as its potential vector field v, then the scalar curvature r of M
is given by

r = λ− 2f,

where f is a function on M .

Proof. Since v is a concircular vector field on M , we have

∇Xv = fX (4.3)

for any X ∈ Γ(TM). Using the equality (4.3), one has

(£vg)(X,Y ) = 2fg(X,Y ). (4.4)

Furthermore, from (1.2) and (4.4), we write

2fg(X,Y ) = (λ− r)g(X,Y ) (4.5)

Substituting X = Y = ξ in (4.5) yields

r = λ− 2f

which proves the propositon.

As a result of the Proposition 4.2, we have the following:

Remark 4.3. Let M be an α−cosymplectic manifold endowed with a concurrent vector field v.
IfM admits a yamabe soliton as its potential vector field v, thenM has constant scalar curvature.

Proposition 4.4. Let M be an α−cosymplectic manifold. If M admits a yamabe soliton as its
potential vector field ξ, then M is of constant scalar curvature cosymplectic manifold.

Proof. For any vector fields X,Y ∈ Γ(TM), it follows from the definition of the Lie-derivative
and using (2.5), we have

(£ξg)(X,Y ) = g(∇Xξ, Y ) + g(∇Y ξ,X)

= 2α(g(X,Y )− η(X)η(Y )). (4.6)

Since M is a yamabe soliton and from (1.2) and (4.6) we get

2α(g(X,Y )− η(X)η(Y )) = (λ− r)g(X,Y ). (4.7)

If we use X = Y = ξ in equation (4.7), one has

r = λ

which implies that the manifold M has constant scalar curvature. Also, using this fact in (4.6)
we get

2αg(ϕX,ϕY ) = 0.

Since g(ϕX,ϕY ) 6= 0, we have α = 0. This means that M is a cosymplectic manifold. There-
fore, the proof is completed.
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Now, we shall give the main theorem of this section.

Theorem 4.5. Let M be an α−cosymplectic manifold admitting a yamabe soliton whose non-
zero potential vector field V is a pointwise collinear with the structure vector field ξ. Then, M
is a cosymplectic manifold if and only if the vector field V is a constant multiple of ξ.

Proof. Let V be a pointwise collinear with the structure vector field ξ. That is, V = bξ, where b
is a smooth function on M . Then, from (1.2), we have

g(∇Xbξ, Y ) + g(∇Y bξ,X) = (λ− r)g(X,Y ) (4.8)

for any X,Y ∈ Γ(TM). Also, if we use the equation (2.5) in (4.8), we get

X(b)η(Y ) + Y (b)η(X) + 2bα(g(X,Y )− η(X)η(Y )) = (λ− r)g(X,Y ). (4.9)

On the other hand, let {e1, e2, ..., en+1 = ξ} be an orthonormal basis of the tangent space
TpM , at each point p ∈M . For 1 ≤ i ≤ 2n+ 1, if we take X = Y = ei in (4.9), one has

ξ(b) =
1
2
(λ− r)(2n+ 1)− 2nbα. (4.10)

By putting Y = ξ in equation (4.9) implies

X(b) = (λ− r − ξ(b))η(X). (4.11)

Using X = ξ in equation (4.11) gives

ξ(b) =
1
2
(λ− r). (4.12)

Therefore, from (4.10) and (4.12), we get

λ = r + 2bα. (4.13)

If we replace (4.13) in (4.11) and use the equation (4.12), one has

X(b) = bαη(X) (4.14)

which yields

db = bαη. (4.15)

Now, if M is a cosymplectic manifold, then from (4.15), we have

db = 0

which means that b is a constant. Conversely, if the potential vector field V is a constant multiple
of ξ, then from (4.14), we write

bαη(X) = 0 (4.16)

Setting X = ξ in (4.16) gives

bα = 0.

Since V is non-zero vector field, we get α = 0. Then M becomes a cosymplectic manifold
which completes the proof of the theorem.
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5 On Conharmanically Flat α−Cosymplectic Manifolds

In this section, we consider an α−cosymplectic manifold which satisfies the condition K = 0.
Now, we shall give the the following.

Theorem 5.1. Let (M,ϕ, ξ, η, g) be an α−cosymplectic manifold of dimension (2n+ 1). If M is
a conharmonically flat, then M is an η−Einstein manifold.

Proof. Let us assume that an α− cosymplectic manifold M is conharmonically flat, that is,
K = 0. If we take the inner product of (2.10) with U , we have

g(R(X,Y )Z,U) =
1

2n− 1

{
S(Y,Z)g(X,U)− S(X,Z)g(Y, U)

+g(Y,Z)S(X,U)− g(X,Z)S(Y, U)
}

(5.1)

for any X,Y, Z, U ∈ Γ(TM). Also, if we choose Y = U = ξ and use (2.1), (2.7) and (2.9) in
(5.1), we get

α2(g(X,Z)− η(Z)η(X)) =
1

2n− 1

{
− 4nα2η(Z)η(X)

+2nα2g(X,Z)− S(X,Z)
}

which yields

S(X,Z) = α2g(X,Z)− (2n+ 1)α2η(X)η(Z),

which shows that M is an η−Einstein manifold, which proves the theorem completely.

Using the above theorem, we can give the following corollary:

Corollary 5.2. Let (M,ϕ, ξ, η, g) be an α−cosymplectic manifold of dimension (2n+ 1). If M
is a ξ−conharmonic flat, then M is an η−Einstein manifold.

The last result of this section is the following.

Theorem 5.3. Let (M,ϕ, ξ, η, g) be an α−cosymplectic manifold of dimension (2n+ 1). If M is
a quasi conharmonically flat, then M is an η−Einstein manifold.

Proof. Suppose that an α− cosymplectic manifold M is quasi conharmonically flat. If we take
the inner product of (2.11) with ϕW , we get

g(R(X,Y )Z,ϕW ) =
1

2n− 1

{
S(Y,Z)g(X,ϕW )− S(X,Z)g(Y, ϕW )

+g(Y,Z)S(X,ϕW )− g(X,Z)S(Y, ϕW )
}

(5.2)

for any X,Y, Z,W ∈ Γ(TM). Moreover, if we set Y = Z = ξ and use (2.1) and (2.8) in (5.2),
one has

α2g(X,ϕW ) = − 1
2n− 1

{
− 2nα2g(X,ϕW ) + S(X,ϕW )

}
. (5.3)

By putting W = ϕW in equation (5.3) and using (2.1), (2.9) we deduce

S(X,W ) = α2g(X,W )− (2n+ 1)α2η(X)η(W ),

which implies that M is an η−Einstein manifold. Thus, we get the requested result.
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[15] Ş. E. Meriç, E. Kılıç, Riemannian Submersions Whose Total Manifolds Admitting a Ricci Soliton, Int. J.
Geom. Methods Mod. Phys., 16 (12), (2019), 1950196.

[16] Z. Olszak, On Almost Cosymplectic Manifolds, Kodai Math., 4, 239-250, (1981).

[17] H. K. Pak, T. W. Kim, Canonical Foliations of Certain Classes of Almost Contact Metric Structures, Acta
Math. Sin., (Engl. Ser.), 21, 841-846, (2005).
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