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Abstract We generalize the notion of the firm commutative rings to weakly firm ones. A
ring is said to be (weakly) firm if it contains a (weakly) essential prime ideal and the zero-
component of each (weakly) essential prime ideal is (weakly) essential. An (weakly) essential
ideal is one with nonzero intersection with every nonzero (prime) ideal. For a prime ideal P
of a commutative ring A with identity, we denote (as usual) by OP its zero-component; that is,
the set of members of P that are annihilated by non-members of P . We study rings in which
OP is a weakly essential ideal whenever P is a weakly essential prime ideal. We prove that
the classical ring of quotients of any ring of this kind is itself of this kind. We show that direct
products of rings of this kind are themselves of this kind. We show that a ring is not weakly
firm (consequently, not firm) if its zero divisor set is an ideal and by an example show that the
class of firm rings is properly contained in the class of weakly firm rings. We also observe some
connections between these type of rings and their total and zero-divisor graphs via the set of their
zero divisors.

1 Introduction

The main goal of this paper is to extend the work of Dube [13], on firm commutative rings, to
weakly firm Commutative rings (Definitions 1.1 and 3.3, respectively). We introduce the notion
of a weakly firm ring, which is a generalization of a firm ring, and easily show (Theorem 3.6)
that any ring R is not weakly firm (consequently, not firm) provided that Z(R), its set of zero
divisors, is an ideal of R. Thus, it is a natural approach to relate the zero-divisor type graphs
of commutative rings to (weakly) firm rings via Theorem 3.6 and we will apply, in the last two
sections (Sections 4 and 5), many results (related to the zero-divisor and total graphs) from
[5, 20, 3] in this context.

In the next section, we will provide some facts about commutative rings and (undirected)
graphs that are relevant to our discussion. We will define the zero-divisor and total graphs of a
commutative ring with some of their properties in Sections 4 and 5, respectively, for the sake
of completeness. We will also be consistent with the notations and literature of the above four
mentioned papers as much as possible.

Throughout the paper all rings are commutative with identity 1 6= 0, unless the contrary
is explicitly stated, and Nil(R) is the ideal of nilpotent elements of the ring R. Recall that an
essential ideal is one with nonzero intersection with every nonzero ideal. One of the interesting
things about these ideals is that the socle of a ring, which is “built from below" by taking the
union of all minimal prime ideals and then generating an ideal, can also be “built from above"
by intersecting all essential ideals. In [16], the authors study the ideal obtained by intersecting
all essential maximal ideals of a semi-primitive ring. They then characterize those Tychonoff
spaces X for which the socle of C(X) is the intersection of the essential maximal ideals. The
work of [13] is in part motivated by reading [16].
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•We now recall the definitions of firm and strongly firm rings, which are taken from Sections
3 and 4 of [13], respectively, for the sake of completeness and comparison. For the definitions
of the zero-component and pure part of an ideal, see Subsection 2.1 below.

Definition 1.1. A ring A is firm [resp. strongly firm] if it has an essential prime ideal [resp.
essential ideal] and OP , the zero-component of P , [resp. the pure part of every essential prime
ideal] is essential whenever P is an essential prime ideal in A. On the other hand, we say A
is anti-firm if it has an essential prime ideal P for which OP is not essential. A ring can of
course fail to have an essential prime ideal (for instance any field), so whenever we assert that a
particular ring is firm we will need to demonstrate that it actually does have an essential prime
ideal. We should emphasize that strong firmness is formally stronger than firmness because it
implies firmness since mP , the pure part of P , is contained in OP for every prime ideal P .

• The work of Dube in [13] was in part motivated by reading [16] which part of it is a char-
acterization of those Tychonoff spaces X for which the socle of C(X) is the intersection of
the essential maximal ideals. In his work [13], besides many interesting examples, he defines
(strongly) firm rings and characterizes them in terms of the lattices of their radical ideals pro-
vided that the rings have no nonzero nilpotent elements. It is shown that any proper ideal of
a firm reduced ring, when viewed as a ring in its own right, is firm [resp. the classical ring of
quotients of any ring (not necessarily reduced) of this kind is itself of this kind, direct products of
(finitely many) rings of this kind are themselves of this kind, the ring of real-valued continuous
functions on a Tychonoff space is of this kind precisely when the underlying set of the space
is infinite]. It is also shown that for some (different) classes of rings, firm and strongly firm
coincide.

• The organization of this paper is as follows: In Section 2, we collect some facts about
commutative rings and (undirected) graphs that are relevant to our discussion in this paper. In
Section 3, we introduce the notion of the weakly firm rings and study some of their algebraic
properties. The key result in this section (paper) is Theorem 3.6 that excludes a class of rings
R of being (weakly) firm when Z(R) is an ideal of R. Finally, the last two sections are devoted
on (non)(weakly) firmness of a ring R that are related (mainly via Theorem 3.6) to some graph-
theoretic properties of the zero-divisor and total graphs of R, respectively.

2 Preliminaries: Rings and Graphs

This section consists of two parts that will be relevant for our discussion, where the first and
second part, respectively, provide some facts about commutative rings and (undirected) graphs.

2.1 Rings

Recall that a ring is called reduced if it has no nilpotent elements apart from 0. We adhere to
the convention that prime ideals are assumed to be proper ideals. In general, by “ideal" we do
not necessarily mean a proper ideal. We shall thus always say “proper ideal" when we mean a
proper ideal. The symbols Min(A) and Max(A) have their usual meanings; namely, the sets of
minimal prime and maximal ideals of A, respectively. We shall frequently write the zero ideal
simply as 0, unless it becomes necessary to write it as {0}. The annihilator of a set I will be
written as Ann(I), and Ann(a) abbreviates Ann({a}).

• Let P be a prime ideal of a ring A. The zero-component of P , denoted OP , is defined by

OP = {a ∈ P | ab = 0for someb ∈ A \ P}.

Observe that OP is an ideal consisting entirely of zero-divisors. If A is a reduced ring, then

OP =
⋂
{Q ∈ Min(A) | Q ⊆ P}.

• The pure part of an ideal I of A, denoted mI , is the ideal
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mI = {a ∈ I | a = ab for someb ∈ I} =
⋃
{Ann(1− x) | x ∈ I}.

Observe that the containment mP ⊆ OP holds for every prime ideal P , and for any maximal
ideal M we have mM = OM . Indeed, let a ∈ OM , and take b /∈ M such that ab = 0. Since M
is a maximal ideal, there exist c ∈M and d ∈ A such that 1 = c+ db. Then a = a(c+ db) = ac,
which shows that a ∈ mM .

Whenever convenient, we shall use the language and notation of contraction and extension
of ideals. To recall, let φ : A → B be a ring homomorphism, I be an ideal of A, and J an ideal
of B. The ideal Jc = φ−1[J ] of A is called the contraction of J , and the (possibly improper)
ideal Ie of B generated by φ[I] is called the extension of I . Ideals of B of the form Ie are called
extended ideals. Recall that if A is a ring and S a multiplicatively closed subset, then the ideals
of the ring of fractions A[S−1] are exactly the ideals Ie = {us | u ∈ I, s ∈ S}. Prime ideals of
A[S−1] are precisely the extensions of the prime ideals of A that miss S.

As usual, Z,Q, Zn, and Fq will denote the integers, rational numbers, integers modulo n, and
the finite field with q elements, respectively. The group of units of a commutative ring R will
be denoted by U(R), the nonzero elements of A ⊆ R will be denoted by A∗, and ⊂ will denote
proper inclusion. We say that R is reduced if Nil(R) = {0}. General references for ring theory
are [17] and [18].

• Recall that for an R-module M , the idealization of M over R is the commutative ring
formed from R×M by defining addition and multiplication as (r,m) + (s, n) = (r+ s,m+ n)
and (r,m)(s, n) = (rs, rn + sm), respectively. A standard notation for this "idealized ring" is
R(+)M ; see [17] for basic properties of rings resulting from the idealization construction. The
zero-divisor graph Γ(R(+)M) has been studied in [6] and [8].

2.2 Graphs

Let G be a graph. We say that G is connected if there is a path between any two distinct ver-
tices of G. At the other extreme, we say that G is totally disconnected if no two vertices of G
are adjacent. For vertices x and y of G, we define d(x, y) to be the length of a shortest path
from x to y (d(x, x) = 0 and d(x, y) = ∞ if there is no such path). The diameter of G is
diam(G) = sup{d(x, y) | x and y are vertices of G}. The diameter is 0 if the graph consists of a
single vertex and a connected graph with more than one vertex has diameter 1 if and only if it is
complete; i.e., each pair of distinct vertices forms an edge. The girth of G, denoted by gr(G), is
the length of a shortest cycle in G (gr(G) = 0 if G contains no cycles). We denote the complete
graph on n vertices by Kn and the complete bipartite graph on m and n vertices by Km,n (we
allow m and n to be infinite cardinals). We will sometimes call a K1,n a star graph. We say that
two (induced) subgraphs G1 and G2 of G are disjoint if G1 and G2 have no common vertices and
no vertex of G1 [respectively, G2] is adjacent (in G) to any vertex not in G1 [respectively, G2].

A general reference for graph theory is [12]. Also, the reader can refer to [5, 20, 3] for all
necessary definitions that are related to graphs in this paper.

3 Weakly Firm Rings and some of their Properties

We need a name for the rings which will be the subject of this discussion. Recall that an ideal of
a ring A is said to be essential if it has nonzero intersection with every nonzero ideal of A. If I
is an ideal of A and Ann(I) = 0, then I is essential. For reduced rings, an ideal is essential if
and only if its annihilator is 0.

Definition 3.1. An ideal I of a commutative ring R is weakly essential if it has nonzero intersec-
tion with every nonzero prime ideal of R.

Example 3.2. Clearly, if I and Nil(R) having nonzero intersection, then I is weakly essential
since Nil(R) is the intersection of all prime ideals of R. Further, if Nil(R) is not zero (i.e. R is
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not reduced), then every prime ideal of R is a weakly essential ideal. Also, Nil(R) is a weakly
essential ideal of R for any nonreduced ring R.

Definition 3.3. A ring R is weakly firm if it has a weakly essential prime ideal and the zero-
component of every weakly essential prime is weakly essential. On the other hand, we say R is
weakly anti-firm if it has a weakly essential prime ideal P for which OP is not weakly essential.

Clearly, each firm ring is weakly firm by definition. In the following two examples we show
that the class of firm rings is properly contained in the class of weakly firm rings.

Example 3.4. Let R = Z2 × Z2 × Z2. Then R is a weakly firm ring which is not firm. Let
M1 = Z2 × Z2 × {0}, M2 = Z2 × {0} × Z2, M3 = {0} × Z2 × Z2, I1 = {0} × {0} × Z2,
I2 = {0} × Z2 × {0}, and I3 = Z2 × {0} × {0}. Clearly, Mi’s are the only maximal (weakly
essential prime) ideals of R and neither of Ii’s is prime or essential. Note that Z(R) is not an
ideal of R.

Example 3.5. Recall that when R is a finite reduced ring, then it is a direct product of finitely
many finite fields. Suppose R = R1×R2× · · ·×Rn, where each Ri is a field (1 ≤ i ≤ n). Then

(1) R is not firm for any finite n ≥ 1.

(2) R is not (weakly) firm if n = 1 or 2.

(3) R is a nonfirm weakly firm ring if n ≥ 3 (see also Example 3.14(c)).

We next provide an example of a class of nonweakly firm rings, which obviously is a class of
nonfirm rings. Namely, those rings whose each set of zero divisors is an ideal. Recall that Z(R)
is an ideal of R when it is closed under addition). Note that since Z(R) is a union of prime ideals
of R [by [18, p. 3], we always have xy ∈ Z(R) for x, y ∈ R implies x ∈ Z(R) or y ∈ Z(R).
So if Z(R) is an ideal of R, then Z(R) is actually a prime ideal of R, and hence R/Z(R) is an
integral domain. Moreover, if R is a finite commutative ring and Z(R) is an ideal of R, then R
is local with Z(R) = Nil(R) its unique maximal ideal and hence not weakly firm (see Example
3.14(d)). By a local ring, we mean a ring with a unique maximal ideal.

Theorem 3.6. Let R be a commutative ring such that P = Z(R) is an ideal of R. Then R is not
weakly firm and consequently, not firm. Further, if Z(R) 6= 0, then R is weakly anti-firm.

Proof. Clearly, if R is an integral domain, then the result is immediate since OP = 0 for any
prime ideal of R. Now, the proof follows directly since Z(R) is prime by hypothesis and has
a nonzero intersection with any nonzero prime ideal and hence is weakly essential prime by
definition and OP = 0, which is obviously not (weakly) essential. For the further part, see
Definition 3.3.

Remark 3.7. Note that the converse of the above theorem need not be true in general. That is,
there are some examples of (nonweakly firm) nonfirm rings whose set of zero divisors is not an
ideal (see for example, Examples 3.4 and 3.5). Also, in order to check that Z(R) is not an ideal
of R, it suffices to show That x+ y /∈ Z(R) for some distinct elements x, y ∈ Z(R) (i.e., x+ y
is a regular element of R) since Z(R) is always closed under multiplication by elements of R.
For example, the set of the zero divisors of the direct product of unital rings with more than one
factor is not an ideal.

The following corollary could be easily obtained from the above theorem since Nil(R) is an
ideal in a commutative ring.

Corollary 3.8. Any commutative ring R with Nil(R) = Z(R) is excluded of being weakly firm
(or firm). In particular, an integral domain is never weakly firm and consequently not firm.

Proposition 3.9. Let R be a commutative ring such that P = Z(R) is an ideal of R. Then the
classical ring of quotients of R (or in this case, localization of R at P ) is not weakly firm and
hence not a firm ring.

Proof. The result follows directly since RP is a local ring (see Example 3.14(d)).
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Remark 3.10. Corollary 3.1 of Dube’s paper [13] states that The classical ring of quotients of a
firm ring is firm. Now from the above result and Theorem 3.6, we see an example of a nonfirm
ring whose ring of quotients is not firm.

It is possible for a ring not to have an (weakly) essential prime ideal (see Examples 3.4 and
3.5). If we assume the Axiom of Choice (as we shall do whenever we need it), then a ring has an
(weakly) essential prime ideal if and only if it has an (weakly) essential maximal ideal. A ring
with no (weakly) essential prime ideal is neither (weakly) firm nor (weakly) anti-firm.

• A ring R is said to be McCoy [resp, countably McCoy] if each finitely [resp, countably]
generated ideal I ⊆ Z(R) has a nonzero annihilator.

Proposition 3.11. Let R be a reduced McCoy [resp, countably McCoy] ring. If R contains an
essential prime ideal P such that OP is finitely [resp, countably] generated ideal, then R is not
firm (it is actually anti-firm).

Proof. The result follows since OP ⊆ Z(R) has a nonzero annihilator by the assumption and
hence is not essential since R is reduced.

In contrast to [13, Proposition 3.1] that states every ideal in a reduced firm ring is firm (when
viewed as a ring in its own right), we show in the following example that this is not true for
reduced weakly firm rings in general.

Example 3.12. (cf. [13, Proposition 3.1]) Let R = R1 × R2 × R3 be a finite reduced ring as
defined in Example 3.5, where each Ri is a field (1 ≤ i ≤ 3) and let I = R1×R2×{0}. Clearly,
by Example 3.5, R is weakly firm but I is not.

The following easy criterion shows that in order to check whether a ring is (weakly) firm
we need only limit to maximal ideals. It will be particularly useful when we deal with direct
products.

Proposition 3.13. (cf. [13, Proposition 3.2]) The following two conditions are equivalent for a
ring A which has an (weakly) essential ideal.

(a) A is (weakly) firm.

(b) OM is (weakly) essential for every (weakly) essential maximal ideal M of A.

Proof. The proof is similar to the proof of [13, Proposition 3.2]. (a) ⇔ (b): The left-to-right
implication is trivial because our blanket assumption is that all rings have the identity, so that
maximal ideals are prime. Conversely, suppose OM is (weakly) essential for every (weakly)
essential maximal ideal M . Let P be an (weakly) essential prime ideal of A (it exists by the
assumption and the fact that any ideal is contained in a maximal (prime) ideal) and clearly, if
I ⊆ J is (weakly) essential, then J is (weakly) essential by definition. Pick a maximal ideal M
with M ⊇ P . Then M is (weakly) essential, and hence OM is (weakly) essential by the present
hypothesis. But OM ⊆ OP , so OP is (weakly) essential. Therefore A is (weakly) firm.

Let us now give some examples of (weakly) firm and anti-firm rings. More examples will
present themselves as we proceed.

Example 3.14. (cf. [13, Examples 3.1])

(a) Every von Neumann regular ring with at least one (weakly) essential ideal is (weakly)
firm because OP = P for any prime ideal P in a Von Neumann regular ring.

(b) An integral domain is never (weakly) firm; and it is anti-firm if and only if it is not a
field. Recall that an integral domain is reduced.

(c) A reduced Noetherian ring is never firm. The reason is that, in any ring, OP consists
entirely of zero-divisors, and in a reduced Noetherian ring any ideal consisting entirely of
zero-divisors is non-essential (see [18, Theorem 82]). But a finite reduced ring is a direct
product of finitely many finite fields which is weakly firm when number of factors of the
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direct product of the fields are more than 2. Thus, this is an example of a weakly firm ring
which is not firm since each finite ring is Noetherian (see also Examples 3.4 and 3.5) above.

(d) A local ring is never (weakly) firm (OM = 0 for the unique maximal ideal M ); and it is
anti-firm if and only if it has at least one nonzero nonunit. Thus, a subring of an anti-firm
ring need not be anti-firm. For instance, the field of real numbers R is not anti-firm, but the
ring R[[X]] of power series is anti-firm.

Example 3.15. Note that the ring of integers modulo pn (power of a prime p) is an example of a
finite local ring, which of course, is not (weakly) firm by Part (d) of the above example.

We conclude this section with a few results related to the extensions and product of firm rings
(that are taken from [13, Section 3]) to show that certain extensions and product of (weakly) firm
rings are (weakly) firm. To start, we record the following lemma. The proof is routine, so we
omit it.

Lemma 3.16. (cf. [13, Lemma 3.1]) Let A be a ring and suppose B is a subring of A such that
A = B[S−1] for some S ⊆ B consisting entirely of units of A.

(a) If I is an (weakly) essential proper ideal in B with I ∩ S = ∅, then Ie is an (weakly)
essential proper ideal in A.

(b) The contraction of any (weakly) essential proper ideal of A is an (weakly) essential proper
ideal in B.

Proposition 3.17. (cf. [13, Proposition 3.3]) Let A be a ring and suppose B is a subring of A
such that A = B[S−1] for some S ⊆ B consisting entirely of units of A. If B is (weakly) firm,
then A is (weakly) firm.

Proof. The proof is similar to the proof of Proposition 3.3 in [13] by using the above lemma.

We write q(A) for the classical ring of quotients of A. This of course is the ring obtained
from A by inverting all non-divisors of zero.

Corollary 3.18. (cf. [13, Corollary 3.1]) The classical ring of quotients of a (weakly) firm ring
is (weakly) firm.

Proof. The proof is similar to the proof of [13, Corollary 3.1].

We now turn to products. Instead of presenting a proof for the upcoming result, we shall
indicate how it can be put together from various ingredients. Recall that for any collection
{Aλ | λ ∈ Λ} of rings (with identity), an ideal of the direct product

∏
Aλ is maximal if and only

if it is of the form π−1
` [M ], for some index ` and M ∈ Max(A`); where π` denotes the projection

map π` :
∏
Aλ → A`. It is not difficult to show that for any λ ∈ Λ and M ∈ Max(Aλ),

Oπ−1
` [M ] = π−1

` [OM ].

With this observation in hand, one can prove the following proposition. Recall that the inverse
function of any map between two sets preserves the intersection operation and inclusion relation.

Proposition 3.19. (cf. [13, Proposition 3.4]) A direct product of reduced (weakly) firm rings is
(weakly) firm.

Proof. The result follows by Proposition 3.13 and the fact that for any epimorphism f : R → S
of rings with kernel K, the image of every prime ideal of R that contains the kernel is a prime
ideal in S; the inverse image of any prime ideal of S is a prime ideal of R that contains k; and
There is a one-to-one correspondence between the set of all prime ideals in R that contain K and
the set of all prime ideals in S, given by P 7→ f(P ).
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4 Zero-divisor Graphs and (Weakly) Firmness

In this section, we study the firmness and weakly firmness of a (finite) commutative ring by
applying some known results related to the zero-divisor graphs of commutative rings that are
taken from [5] and [20], respectively. In [5], Anderson and Livingston introduced the zero-
divisor graph of a commutative ring R, denoted by Γ(R), as the (undirected) graph with vertices
Z(R)∗ = Z(R) \ {0}, the set of nonzero zero-divisors of R, and for distinct x, y ∈ Z(R)∗, the
vertices x and y are adjacent if and only if xy = 0. This concept is due to Beck [11], who let all
the elements of R be vertices and was mainly interested in colorings. Among other things, they
proved that Γ(R) is always connected and its diameter, diam(Γ(R)), is always less than or equal
to 3 [5, Theorem 2.3]. They also proved that Γ(R) is a complete graph if and only if either R is
isomorphic to Z2×Z2 or xy = 0 for all x, y ∈ Z(R) [5, Theorem 2.8]. For some other works on
graphs associated to algebraic structures, see [1, 2, 4, 6, 7, 8, 14, 9, 10, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28]. In the first part of this section, we apply a few results from [5] to show that a ring R
is not weakly firm when its zero-divisor graph Γ(R) has a vertex adjacent to every other vertex
(i.e., when Γ(R) has a spanning tree which is a star graph). Special cases of this are when either
Γ(R) is a complete graph or a star graph. Then we continue the section by applying some results
from [20] to characterize (mainly) the diameter of the zero-divisor graphs of R, R[x], and R[[x]]
in connection to the (weakly) firmness of R (see (∗) below).

Theorem 4.1. (cf. [5, Theorem 2.5]) Let R be a reduced commutative ring such that Γ(R) has a
vertex adjacent to every other vertex. Then R is either anti-firm or not weakly firm.

Proof. If Γ(R) has a vertex adjacent to every other vertex, then, by [5, Theorem 2.5], R must
have the form Z2 × A for A an integral domain or Z(R) is an annihilator ideal. Clearly, Z(R)
is not an annihilator ideal Since R is reduced (i.e., Z(R) 6= Ann(a), a adjacent to every other
vertex) and henceR is of the form Z2×A. ThusR is either anti-firm (by Remark 3.4 [13] and the
fact that a nonfield integral domain is anti-firm [13, Examples 3.1(b)] [or see Example 3.14(b)
above]) or not weakly firm (by Example 3.5(b)) which depends on whether A is a nonfield
integral domain or a field, respectively.

• Note that Remark 3.4 of [13] states that if A is a reduced anti-firm ring, then A × B is
anti-firm for any ring B.

Since Z(R) is always a union of prime ideals [18, p. 3], Z(R) is a prime ideal if (and only
if) it is an ideal. If R is also Noetherian, then Z(R) is an annihilator ideal if and only if it is an
(prime) ideal [18, Theorems 6 and 82].

The following provides some examples of nonweakly firm rings for some special cases (see
also Corollary 3.8).

Example 4.2. Recall that {0} is a primary ideal of R if and only if Z(R) = Nil(R). If dim
R = 0, then Z(R) = Nil(R) if and only if Z(R) is a (prime) ideal of R; if R is finite, this is
equivalent to R being local. Thus R is not weakly firm in each case.

We next specialize to the case when R is finite.

Proposition 4.3. (cf. [5, Corollary 2.7]) Let R be a finite commutative ring such that Γ(R) has
a vertex adjacent to every other vertex. Then R is not weakly firm.

Proof. If Γ(R) has a vertex adjacent to every other vertex, then, by [5, Corollary 2.7], either
R = Z2×F , where F is a finite field, or R is local. Now the result follows from Example 3.5 or
Example 3.14(d).

We next discuss when Γ(R) is a complete graph (i.e., any two vertices are adjacent). By
definition, Γ(R) is complete if and only if xy = 0 for all distinct x, y ∈ Z(R). Except for
the case when R = Z2 × Z2, our next theorem shows that we must also have x2 = 0 for all
x ∈ Z(R) when Γ(R) is complete. So, except for that one case, nilpotent elements are detected
by complete graphs.
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Theorem 4.4. (cf. [5, Theorem 2.8]) Let R be a commutative ring such that Γ(R) is a complete
graph. Then R is not weakly firm.

Proof. If Γ(R) is complete, then by [5, Theorem 2.8], either R = Z2 × Z2 or xy = 0 for all
x, y ∈ Z(R). Now the result follows from Example 3.5(b) or Theorem 3.6, respectively, since
Z(R), in this case, is an ideal of R. That is, x(x+ y) = x2 + xy = 0 implies x+ y ∈ Z(R) for
any two distinct x and y ∈ Z(R). Actually, x ∈ Z(R) and x2 = 0 implies Z(R) ⊆ Nil(R) and
hence Z(R) = Nil(R) which is an ideal in a commutative ring (see also Corollary 3.8).

Theorem 4.5. (cf. [5, Theorem 2.10]) Let R be a finite commutative ring. If Γ(R) is complete,
then R is not weakly firm.

Proof. If Γ(R) is complete, then by [5, Theorem 2.10], either R = Z2 × Z2 or R is local. Now
the result follows from Example 3.5(b) or Example 3.14(d).

We next consider when Γ(R) has exactly one vertex which is adjacent to every other vertex.

Proposition 4.6. (cf. [5, Lemma 2.12]) Let R be a finite commutative ring. If Γ(R) has exactly
one vertex adjacent to every other vertex and no other adjacent vertices, then R is not (weakly)
firm.

Proof. By [5, Lemma 2.12], either R = Z2 × F , where F is a finite field with |F | ≥ 3, or R is
local. Now the result follows from Example 3.5 or Example 3.14(d).

Theorem 4.7. (cf. [5, Theorem 2.13]) Let R be a finite commutative ring with |Γ(R)| ≥ 4. If
Γ(R) is a star graph, then R is not weakly firm.

Proof. By [5, Theorem 2.13], R is a star graph if and only R = Z2 × F , where F is a finite field
and hence the result follows by Example 3.5.

Remark 4.8. Example 2.14 of [5], which is an example of a finite local ring, shows that the
converse of the above result need not be true in general. That is, the zero-divisor graph of a
nonweakly firm ring need not be a star graph. On the other hand, [5, Theorem 2.13] can be
regarded as an example of a nonweakly firm ring whose zero-divisor graph is a star graph.

(∗) The rest of this section is devoted on a characterization of (mainly) the diameter of the
zero-divisor graphs of R, R[x], and R[[x]] (by applying some results from [20]) in connection to
the (weakly) firmness of R.

In our first result we provide a sufficient condition for Γ(R) to have diameter 3 when R is a
reduced ring. A similar equivalence holds for nonreduced rings, but in this case the number of
minimal primes is irrelevant.

Theorem 4.9. (cf. [20, Theorem 2.1]) Let R be a reduced (weakly) firm ring. If R has more than
two minimal primes, then diam(Γ(R)) = 3.

Proof. The result follows from [20, Theorem 2.1] since Z(R) is not an ideal of R by Theorem
3.6.

Theorem 4.10. (cf. [20, Theorem 2.2]) LetR be a reduced (weakly) firm ring. Then the diameter
of Γ(R) is less than or equal to 2 if and only if R has exactly two minimal primes.

Proof. The result follows from [20, Theorem 2.2] since Z(R) is not an ideal of R by Theorem
3.6.

Theorem 4.11. (cf. [20, Theorem 2.4 and Corollary 2.5]) If R is a nonreduced (weakly) firm
ring, then diam(Γ(R)) = 3.

Proof. By Theorem 3.6, Z(R) is not an ideal since R is (weakly) firm. Thus, there exist a, b ∈
Z(R) such that (0 : (a, b)) = (0) and hence the result follows by [20, Theorem 2.4] (see also
[20, Corollary 2.5]).
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Finally, we conclude this section with a few results related to the (weakly) firmness of the
polynomial rings and power series rings. Section 5 of [20] provides many (interesting) examples
of commutative rings whose each set of zero divisors forms an ideal, and hence examples of
nonweakly firm rings.

Theorem 4.12. (cf. [20, Theorem 3.3]) Let R be a McCoy ring such that Z(R) is an ideal. Then
R[x] is not weakly firm.

Proof. The proof follows from sufficient part of [20, Theorem 3.3] which states that Z(R[x]) is
an ideal of R[x], and hence Theorem 3.6 implies the result.

Remark 4.13. Since Z(R) in the hypothesis of the above theorem is an ideal of R, then R is not
weakly firm by Theorem 3.6. Thus, this can be regarded as an example of a nonweakly firm ring
whose polynomial ring is likewise not weakly firm.

Theorem 4.14. (cf. [20, Theorem 4.4]) If R is a reduced (weakly) firm ring with more than two
minimal primes, then diam(Γ(R[[x]])) = 3.

Proof. The proof follows directly from [20, Theorem 4.4] since Z(R) is not an ideal of R by the
(weakly) firmness of R (Theorem 3.6).

The ring R in [20, Example 5.4] is a reduced ring such that Z(R) is an (nonzero prime) ideal,
which consequently (by Theorem 3.6) is not weakly firm, and diam(Γ(R[[x]])) = 2.

Our last result provides a condition which is sufficient to give diam(Γ(R[x])) = 2 when R is
nonreduced with nonnilpotent zero divisors.

Theorem 4.15. (cf. [20, Theorem 5.10]) Let R be a nonreduced ring such that Z(R) is not the
nilradical of R. If Z(R) has a nonzero annihilator, then R is not weakly firm, R is a McCoy ring,
diam(Γ(R)) = diam(Γ(R[x])) = 2 and Z(R)[[x]] ⊆ Z(R[[x]]). Moreover, if Z(R)Nil(R) =
(0), then diam(Γ(R[[x]])) = 2.

Proof. The proof is immediate since Z(R) is an ideal of R by [20, Theorem 5.10], and hence R
is not weakly firm by Theorem 3.6.

5 Total Graphs and (Weakly) Firmness

In this section, we study some graph-theoretic properties of a (finite, weakly) firm ring by ap-
plying some known results related to the total graphs of commutative rings that are taken mainly
from Section 3 of [3]. That is, we relate (apply) the results of Section 3 of [3] to (weakly) firm
rings when Z(R) is not an ideal of R which is a consequence of the (weakly) firmness of R by
Theorem 3.6 above. The work of Anderson and Badawi in [3] for the study of the total graph
of a commutative ring R, denoted by T (Γ(R)), is (mainly) divided into two cases depending on
whether or not Z(R) is an ideal of R ([3, Sections 2 and 3]), respectively.

In this section, we adopt all notations and definitions (exactly) from [3]. Let R be a commu-
tative ring with T (R) its total quotient ring, Nil(R) its ideal of nilpotent elements, Z(R) its set
of zero-divisors, and Reg(R) its set of regular elements. In their paper, Anderson and Badawi
introduce and investigate the total graph of R, denoted by T (Γ(R)). It is the (undirected) graph
with all elements of R as vertices, and for distinct x, y ∈ R, the vertices x and y are adjacent if
and only if x+ y ∈ Z(R). They also study the three (induced) subgraphs Nil(Γ(R)), Z(Γ(R)),
and Reg(Γ(R)) of T (Γ(R)), with vertices Nil(R), Z(R),and Reg(R), respectively.

Note that ifA is a subring of a commutative ringB, then T (Γ(A)) need not be an induced sub-
graph of T (Γ(B)). Although x, y ∈ A are adjacent in T (Γ(B)) if they are adjacent in T (Γ(A))
since Z(A) ⊆ Z(B), they may be adjacent in T (Γ(B)), but not adjacent in T (Γ(A)). In fact,
T (Γ(A)) is an induced subgraph of T (Γ(B)) if and only if Z(B) ∩A = Z(A).

We now begin with some examples of nonweakly firm rings.
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Example 5.1. Parts (a), (b), and (c) of [3, Example 2.7] provide three examples of commutative
rings R when Z(R) is an ideal with some graph-theoretic properties of Reg(Γ(R)). Thus, (a),
(b), and (c) are three examples of nonweakly firm rings by Theorem 3.6 since Z(R) is an ideal
of R.

Example 5.2. LetR be a commutative ring such that Z(Γ(R)) is complete. ThenR is not weakly
firm.

Proof. The result follows from Theorem 3.6 since Z(R), as an implication of the hypothesis, is
an ideal of R.

• The rest of this section is devoted on the case when Z(R) is not an ideal of R which is
a consequence of weakly firmness of R. Since Z(R) is always closed under multiplication by
elements of R, this just means that there are distinct x, y ∈ Z(R)∗ such that x + y ∈ Reg(R).
In this case, Z(Γ(R)) is always connected (but never complete), Z(Γ(R)) and Reg(Γ(R)) are
never disjoint subgraphs of T (Γ(R)), and |Z(R)| ≥ 3.

The following result shows that, for a (weakly) firm ring, T (Γ(R)) is connected whenReg(Γ(R))
is connected. However, we give an example to show that the converse fails.

Theorem 5.3. (cf. [3, Theorem 3.1]) Let R be a (weakly) firm commutative ring.

(1) Z(Γ(R)) is connected with diam(Z(Γ(R))) = 2.

(2) Some vertex of Z(Γ(R)) is adjacent to a vertex of Reg(Γ(R)). In particular, the subgraphs
Z(Γ(R)) and Reg(Γ(R)) of T (Γ(R)) are not disjoint.

(3) If Reg(Γ(R)) is connected, then T (Γ(R)) is connected.

Proof. The result follows from [3, Theorem 3.1] since Z(R) is not an ideal of R by Theorem
3.6.

We next, for a (weakly) firm ring, determine when T (Γ(R)) is connected and compute
diam(T (Γ(R))). In particular, T (Γ(R)) is connected if and only if diam(T (Γ(R))) <∞.

Theorem 5.4. (cf. [3, Theorem 3.3]) Let R be a (weakly) firm commutative ring. Then T (Γ(R))
is connected if and only if (Z(R)) = R (i.e., R = (z1, . . . , zn) for some z1, . . . , zn ∈Z(R)). In
particular, if R is a finite (weakly) firm commutative ring, then T (Γ(R)) is connected.

Proof. The result follows from [3, Theorem 3.3] since Z(R) is not an ideal of R by Theorem
3.6.

Theorem 5.5. (cf. [3, Theorem 3.4]) Let R be a (weakly) firm commutative ring such that
(Z(R)) = R (i.e., T (Γ(R)) is connected). Let n ≥ 2 be the least integer such that R =
(z1, . . . , zn) for some z1, . . . , zn ∈ Z(R). Then diam(T (Γ(R))) = n. In particular, if R is a
finite (weakly) firm commutative ring, then diam(T (Γ(R))) = 2.

Proof. The result follows from [3, Theorem 3.4] since Z(R) is not an ideal of R by Theorem
3.6.

Corollary 5.6. (cf. [3, Corollary 3.5]) Let R be a (weakly) firm commutative ring and suppose
that T (Γ(R)) is connected.

(1) diam(T (Γ(R))) = d(0, 1).

(2) If diam(T (Γ(R))) = n, then diam(Reg(Γ(R))) ≥ n− 2.

Proof. The result follows from [3, Corollary 3.5] since Z(R) is not an ideal of R by Theorem
3.6.

Remark 5.7. Let R be a firm or a weakly firm commutative ring. Then diam(Z(Γ(R))) = 2
since by Theorem 3.6 Z(R) is not an ideal of R and hence (x, 0, y) is a path in Z(Γ(R)) for
some distinct nonadjacent vertices x and y. Moreover, we have 2 ≤ diam(T (Γ(R))) <∞ when
T (Γ(R)) is connected.
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The next example shows that we may also have either diam(T (Γ(R))) = diam(Reg(Γ(R)))
or diam(T (Γ(R))) > diam(Reg(Γ(R))) when R is not a (weakly) firm ring (by Example 3.5(b))
and also Z(R) is not an ideal of R.

Example 5.8. (cf. [3, Example 3.9])

(a) LetR = Z5×Z5. Then diam(T (Γ(R))) = 2 by [3, Theorem 3.4] (or [3, Corollary 3.7]), and
it is easy to check that diam(Reg(Γ(R))) = 2. Thus diam(T (Γ(R))) = diam(Reg(Γ(R))).

(b) LetR = Z2×Z3. Then diam(T (Γ(R))) = 2 by [3, Theorem 3.4] (or [3, Corollary 3.7]), and
it is easy to check that diam(Reg(Γ(R))) = 1. Thus diam(T (Γ(R))) > diam(Reg(Γ(R))).

We next briefly discuss the diameter of Reg(Γ(R×S)) for commutative rings R and S. Note
that Reg(R × S) = Reg(R) × Reg(S). So for distinct (a, b), (c, d) ∈ Reg(R × S), (a, b)—
(−a,−d)—(c, d) is a path of length at most two in Reg(Γ(R × S)). Thus Reg(Γ(R × S)) is
connected with diam(Reg(Γ(R × S))) ≤ 2. In particular, if Z(Zm) is not an ideal of Zm, then
Reg(Γ(Zm)) is always connected (cf. [3, Example 2.7(a)]). For example, Reg(Γ(Z2 × Z2)),
Reg(Γ(Z2 × Z3)), and Reg(Γ(Z5 × Z5)) have diameters 0, 1, and2, respectively.

Theorem 5.9. (cf. [3, Theorem 3.10]) LetR be a (weakly) firm commutative ring. Then T (Γ(T (R)))
is connected with diam(T (Γ(T (R)))) = 2. In particular, if R is a finite (weakly) firm commuta-
tive ring, then T (Γ(R)) is connected with diam(T (Γ(R))) = 2.

Proof. The result follows from [3, Theorem 3.10] since Z(R) is not an ideal of R by Theorem
3.6.

We next investigate the girth of Z(Γ(R)), Reg(Γ(R)), and T (Γ(R)) when R is (weakly) firm
and hence Z(R) is not an ideal of R. Recall that |Z(R)| ≥ 3 if Z(R) is not an ideal of R. We
start with a lemma.

Lemma 5.10. (cf. [3, Lemma 3.13]) Let R be a (weakly) firm commutative ring. Then char
R = 2 if and only if 2Z(R) = {0}.

Proof. If char R = 2, then clearly 2Z(R) = {0}. Conversely, suppose that 2z = 0 for all
z ∈ Z(R). Since (by (weakly) firmness of R), Z(R) is not an ideal of R (Theorem 3.6), there
are distinct x, y ∈ Z(R) such that z = x+ y ∈ Reg(R). Then 2z = 2x+ 2y = 0; so 2 = 0 since
z ∈ Reg(R), i.e., char R = 2.

Theorem 5.11. Theorem 3.14. Let R be a (weakly) firm commutative ring.

(1) Either gr(Z(Γ(R))) = 3 or gr(Z(Γ(R))) = ∞. Moreover, if gr(Z(Γ(R))) = ∞, then
R = Z2 × Z2; so Z(Γ(R)) is a K1,2 star graph with center 0.

(2) gr(T (Γ(R))) = 3 if and only if gr(Z(Γ(R))) = 3 (if and only if R � Z2 × Z2).

(3) gr(T (Γ(R))) = 4 if and only if gr(Z(Γ(R))) = 0 (if and only if R = Z2 × Z2).

(4) If char R = 2, then gr(Reg(Γ(R))) = 3 or∞. In particular, gr(Reg(Γ(R))) = 3 if char
R = 2 and Reg(Γ(R)) contains a cycle.

(5) gr(Reg(Γ(R))) = 3, 4, or∞. In particular, gr(Reg(Γ(R))) ≤ 4 if Reg(Γ(R)) contains a
cycle.

Proof. The result follows from [3, Theorem 3.14] since Z(R) is not an ideal of R by Theorem
3.6.

Example 3.15 of [3] provides 3 possibilities for the girth of Reg(Γ(R)) when Z(R) is not an
ideal of R and R is not weakly firm. Note that R = Z3 × Z4 in Part (b) of this example is not
weakly firm since I = Z3 × {0, 2} is a weakly essential prime ideal of R, but OI = Z3 × {0} is
not a weakly essential ideal of R.

Let M be an R-module. We conclude this paper with some results about the graphs of the
idealization R(+)M of a module over a (weakly) firm ring R. In this theorem, we assume
that Z(R)(+)M = Z(R(+)M). Note that Z(R)(+)M ⊆ Z(R(+)M) always holds, but the
inclusion may be proper since Z(Z(+)Z2) = 2Z(+)Z2. However, equality holds if either M is
an ideal of R or R is an integral domain and M is torsionfree.
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Theorem 5.12. (cf. [3, Theorem 3.16]) Let R be a (weakly) firm commutative ring, and let M
be an R-module such that Z(R(+)M) = Z(R)(+)M .

(1) T (Γ(R(+)M)) is connected if and only if T (Γ(R)) is connected.

(2) diam(T (Γ(R(+)M))) = diam(T (Γ(R))).

Proof. The result follows from [3, Theorem 3.16] since Z(R) is not an ideal of R by Theorem
3.6.

In view of the above theorem, we have the following corollary.

Corollary 5.13. (cf. [3, Corollary 3.17]) Let R be a (weakly) firm commutative ring, and let M
be an R-module. If T (
)isconnected, thenT(Γ(R(+)M)) is connected with diam(T (Γ(R(+)M))) ≤ diam(T (Γ(R))).

Proof. The result follows from [3, Corollary 3.17] since Z(R) is not an ideal of R by Theorem
3.6.
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