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Abstract In this paper, we characterize all finite Rickart ∗-rings whose zero-divisor graphs
are planar.

1 Introduction

An involution ∗ on an associative ring A is a mapping such that (a+ b)∗ = a∗+ b∗, (ab)∗ = b∗a∗

and (a∗)∗ = a, for all a, b ∈ A. A ring with involution ∗ is called a ∗-ring. Clearly, identity
mapping is an involution if and only if the ring is commutative. An element e of a ∗-ring A
is a projection if e = e2 and e = e∗. For a nonempty subset B of A, we write r(B) = {x ∈
A : bx = 0,∀b ∈ B}, and call a right annihilator of B in A. A Rickart (resp. Baer) ∗-ring
is a ∗-ring in which right annihilator of every element (resp. every subset) is generated, as a
right ideal, by a projection in A. Every Baer ∗-ring is Rckart ∗-ring and every Rickart ∗-ring
contains unity. For each element a in a Rickart ∗-ring, there is unique projection e such that
ae = a and ax = 0 if and only if ex = 0, called a right projection of a denoted by RP (a).
In fact, r({a}) = (1 − RP (a))A. Similarly, the left annihilator l({a}) and the left projection
LP (a) are defined for each element a in a Rickart ∗-ring A. The set of projections P (A) in a
Rickart ∗-ring A forms a lattice, denoted by L(P (A)), under the partial order ‘e ≤ f if and only
if e = fe = ef ’. In fact, e∨ f = f +RP (e(1− f)) and e∧ f = e−LP (e(1− f)). More details
about Rickart ∗-ring can be found in Berberian [4].

Beck [3] introduced the concept of zero-divisor graph Γ(R) of a commutative ring R with
unity as follows. Let G be a simple graph whose vertices are the elements of R and two ver-
tices x and y are adjacent if xy = 0. The graph G is known as the zero-divisor graph of R.
He was mainly interested in the coloring of this graph. An interesting question was proposed
by Anderson, Frazier, Lauve, and Livingston: For which finite commutative rings R, Γ(R) is
planar? Cf. [2, Question 5.3]. In [1], Akbari et al. answered this question affirmatively and gave
classification of commutative rings with zero-divisor graph planar.

In [6], Patil and Waphare extended the concept of zero divisor graph to ∗-rings as follows:
Let A be a ∗-ring. A simple undirected graph Γ∗(A) is associated to A whose vertex set is
V (Γ∗(A)) = {a(6= 0) ∈ A | ab = 0, for some nonzero b ∈ A} (i.e. nonzero left zero-divisors)
and two distinct vertices x and y are adjacent if and only if xy∗ = 0. Patil and Waphare [7]
studied the zero-divisor graphs of Rickart ∗-rings in detail.

In this paper, we characterize all finite Rickart ∗-rings whose zero-divisor graphs are planar.

2 Main Results

In this section we considerA as a finite Rickart ∗-ring such that Γ∗(A) is non-empty. We need the
following results proved by Thakare and Waphare ([8, Theorem 3]), which completely classifies
∗-rings with finitely many elements into Baer ∗-rings and non-Baer ∗-rings.

Theorem 2.1. A ∗-ring A with finitely many elements is a Baer ∗-ring if and only if A = A1 ⊕
A2 ⊕ · · · ⊕ Ar where Ai is a field or Ai is a 2 × 2-matrix ring over a finite field F (pα) with α
odd positive integer and p is a prime number of the form 4k + 3.
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The complete bipartite graph (2-partite graph) with part sizes m and n is denoted by Km,n.
A graph in which each pair of distinct vertices is joined by an edge is called a complete graph.
We use Kn for the complete graph with n vertices. A planar graph is a graph that can be drawn
in the plane so that its edges intersect only at their ends. A subdivision of a graph is a graph
obtained from it by replacing edges with pairwise internally-disjoint paths. A remarkably simple
characterization of planar graphs was given by Kuratowski in 1930.

Theorem 2.2 (Kuratowski, [9, Theorem 6.2.2, p. 246]). A graph is planar if and only if it does
not contain a subdivision of K5 or K3,3.

Proposition 2.3. If A is a finite Rickart ∗-ring such that either Γ∗(A) or Γ∗(A)c is planar then
A is a commutative ring.

Proof. Let A be a finite Rickart ∗-ring. By Berberian [4, §4, Proposition 1], A is a Baer ∗-ring.
Consequently, by Theorem 2.1, A = A1⊕A2⊕· · ·⊕Ar whereAi is a field orAi is a 2×2-matrix
ring over a finite field F (pα) with α odd positive integer and p is a prime number of the form
4k + 3. If A is non-commutative, then it has at least one component of the type M2(Fpα) in its

direct sum representation. In that case, e =

[
0 0
0 1

]
, I − e =

[
1 0
0 0

]
, a =

[
0 1
0 0

]
,

b =

[
1 0
1 0

]
are elements of A such that e(I − e)∗ = eb∗ = e(2b)∗ = 0. Then U = {e, a, 2a}

and V = {I − e, b, 2b} are independent sets of Γ∗(A) such that each element of U is adjacent
to every element of V, hence Γ∗(A) contains K3,3 as a subgraph, hence it can not be planar.

On the other hand, the set S =

{[
0 2
0 0

]
,

[
0 0
0 1

]
,

[
0 0
0 2

]
,

[
0 1
0 1

]
,

[
0 1
0 2

]}
is

an independent set in Γ∗(A), i.e., it forms K5 in Γ∗(A)c, hence Γ∗(A)c can not be planar, a
contradiction. Therefore A does not contain a component of the type M2(Fpα) in its direct sum
representation, hence A is a commutative ring.

Corollary 2.4. If A is a finite Rickart ∗-ring such that Γ∗(A) is disconnected then Γ∗(A) can not
be planar.

Proof. In [5] it proved that if Γ∗(A) is connected, then A =M2(F ) where F is a finite field with
pα elements, α is odd positive integer and p is prime of the form 4k+ 3. The result follows from
Proposition 2.3.

Now we prove the main result of this section.

Theorem 2.5. Let A be a finite Rickart ∗-ring. Then Γ∗(A) is planar if and only if A is one of
the type: Z2 ⊕ Z2 ⊕ Z2, Z2 ⊕ Z2 ⊕ Z3, F1 ⊕ F2, where F1 and F2 are finite fields with |F1| ≤ 3
or |F2| ≤ 3.

Proof. If A is one of the given rings then Γ∗(A) is one of the graphs given in Figure 1 Hence
Γ∗(A) is planar graph. Now, let A be a finite Rickart ∗-ring such that Γ∗(A) is planar. Then
by Proposition 2.3, A is commutative Baer ∗-ring. Hence A is direct sum of finite fields, say
A = F1 ⊕ F2 ⊕ · · · ⊕ Fn. If n ≥ 4 then (1, 0, 0, 0), (0, 1, 0, 0), (1, 1, 0, 0) are all adjacent to
(0, 0, 1, 0), (0, 0, 0, 1), (0, 0, 1, 1), hence Γ∗(A) contains a subdivision of K3,3, a contradiction.
Therefore A = F1 ⊕ F2 ⊕ F3. If |F2| ≥ 3 and |F3| ≥ 3 then Γ∗(A) contains a subdivision of K5.
Let A = F1 ⊕ F2. If |F1| and |F2| both exceed 3, then Γ∗(A) will contain K3,3, , a contradiction.
Hence either A = Z2 ⊕ Z2 ⊕ Z2 or A = Z2 ⊕ Z2 ⊕ Z3 or A = F1 ⊕ F2, where F1 and F2 are
finite fields with |F1| ≤ 3 or |F2| ≤ 3.
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