RICKART ∗-RINGS WITH PLANAR ZERO-DIVISOR GRAPHS

Avinash Patil

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 05C25, Secondary 05C75.

Keywords and phrases: Zero-divisor graph, planar graph, Rickart ∗-ring.

Abstract In this paper, we characterize all finite Rickart ∗-rings whose zero-divisor graphs are planar.

1 Introduction

An involution ∗ on an associative ring A is a mapping such that $(a + b)^* = a^* + b^*$, $(ab)^* = b^*a^*$ and $(a^*)^* = a$, for all $a, b \in A$. A ring with involution ∗ is called a ∗-ring. Clearly, identity mapping is an involution if and only if the ring is commutative. An element e of a ∗-ring A is a projection if $e = e^2$ and $e = e^*$. For a nonempty subset B of A, we write $r(B) = \{x \in A : bx = 0, \forall b \in B\}$, and call a right annihilator of B in A. A Rickart (resp. Baer) ∗-ring is a ∗-ring in which right annihilator of every element (resp. every subset) is generated, as a right ideal, by a projection in A. Every Baer ∗-ring is Rickart ∗-ring and every Rickart ∗-ring contains unity. For each element a in a Rickart ∗-ring, there is unique projection e such that $ae = a$ and $ax = 0$ if and only if $ex = 0$, called a right projection of a denoted by $RP(a)$.

In fact, $r(\{a\}) = (1 - RP(a))A$. Similarly, the left annihilator $l(\{a\})$ and the left projection $LP(a)$ are defined for each element a in a Rickart ∗-ring A. The set of projections $P(A)$ in a Rickart ∗-ring A forms a lattice, denoted by $L(P(A))$, under the partial order ‘$e \leq f$ if and only if $e = ef = fe^*$’. In fact, $e \vee f = f + RP(e(1 - f))$ and $e \wedge f = e - LP(e(1 - f))$. More details about Rickart ∗-ring can be found in Berberian [4].

Beck [3] introduced the concept of zero-divisor graph $\Gamma(R)$ of a commutative ring R with unity as follows. Let G be a simple graph whose vertices are the elements of R and two vertices x and y are adjacent if $xy = 0$. The graph G is known as the zero-divisor graph of R. He was mainly interested in the coloring of this graph. An interesting question was proposed by Anderson, Frazier, Laue, and Livingston: For which finite commutative rings R, $\Gamma(R)$ is planar? Cf. [2, Question 5.3]. In [1], Akbari et al. answered this question affirmatively and gave classification of commutative rings with zero-divisor graph planar.

In [6], Patil and Waphare extended the concept of zero divisor graph to ∗-rings as follows: Let A be a ∗-ring. A simple undirected graph $\Gamma^*(A)$ is associated to A whose vertex set is $V(\Gamma^*(A)) = \{a(\neq 0) \in A | ab = 0, \text{for some nonzero } b \in A\}$ (i.e. nonzero left zero-divisors) and two distinct vertices x and y are adjacent if and only if $xy^* = 0$. Patil and Waphare [7] studied the zero-divisor graphs of Rickart ∗-rings in detail.

In this paper, we characterize all finite Rickart ∗-rings whose zero-divisor graphs are planar.

2 Main Results

In this section we consider A as a finite Rickart ∗-ring such that $\Gamma^*(A)$ is non-empty. We need the following results proved by Thakare and Waphare ([8, Theorem 3]), which completely classifies ∗-rings with finitely many elements into Baer ∗-rings and non-Baer ∗-rings.

Theorem 2.1. A ∗-ring A with finitely many elements is a Baer ∗-ring if and only if $A = A_1 \oplus A_2 \oplus \cdots \oplus A_r$, where A_i is a field or A_i is a 2×2-matrix ring over a finite field $F(p^\alpha)$ with α odd positive integer and p is a prime number of the form $4k + 3$.
The complete bipartite graph (2-partite graph) with part sizes m and n is denoted by $K_{m,n}$. A graph in which each pair of distinct vertices is joined by an edge is called a complete graph. We use K_n for the complete graph with n vertices. A planar graph is a graph that can be drawn in the plane so that its edges intersect only at their ends. A subdivision of a graph is a graph obtained from it by replacing edges with pairwise internally-disjoint paths. A remarkably simple characterization of planar graphs was given by Kuratowski in 1930.

Theorem 2.2 (Kuratowski, [9, Theorem 6.2.2, p. 246]). A graph is planar if and only if it does not contain a subdivision of K_5 or $K_{3,3}$.

Proposition 2.3. If A is a finite Rickart *-ring such that either $\Gamma^*(A)$ or $\Gamma^*(A)^c$ is planar then A is a commutative ring.

Proof. Let A be a finite Rickart *-ring. By Berberian [4, §4, Proposition 1], A is a Baer *-ring. Consequently, by Theorem 2.1, $A = A_1 \oplus A_2 \oplus \cdots \oplus A_r$ where A_i is a field or A_i is a 2 × 2-matrix ring over a finite field $F(p^\alpha)$ with α odd positive integer and p is a prime number of the form $4k + 3$. If A is non-commutative, then it has at least one component of the type $M_2(F(p^\alpha))$ in its direct sum representation. In that case, $e = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, $I - e = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $a = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $b = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ are elements of A such that $e(I - e)^* = eb^* = e(2b)^* = 0$. Then $U = \{e, a, 2a\}$ and $\overline{V} = \{I - e, b, 2b\}$ are independent sets of $\Gamma^*(A)$ such that each element of U is adjacent to every element of V, hence $\Gamma^*(A)$ contains $K_{3,3}$ as a subgraph, hence it can not be planar.

On the other hand, the set $S = \{\begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix}\}$ is an independent set in $\Gamma^*(A)$, i.e., it forms K_{5} in $\Gamma^*(A)^c$, hence $\Gamma^*(A)^c$ can not be planar, a contradiction. Therefore A does not contain a component of the type $M_2(F(p^\alpha))$ in its direct sum representation, hence A is a commutative ring.

Corollary 2.4. If A is a finite Rickart *-ring such that $\Gamma^*(A)$ is disconnected then $\Gamma^*(A)$ can not be planar.

Proof. In [5] it proved that if $\Gamma^*(A)$ is connected, then $A = M_2(F)$ where F is a finite field with p^α elements, α is odd positive integer and p is prime of the form $4k + 3$. The result follows from Proposition 2.3.

Now we prove the main result of this section.

Theorem 2.5. Let A be a finite Rickart *-ring. Then $\Gamma^*(A)$ is planar if and only if A is one of the type: $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$, $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3$, $F_1 \oplus F_2$, where F_1 and F_2 are finite fields with $|F_1| \leq 3$ or $|F_2| \leq 3$.

Proof. If A is one of the given rings then $\Gamma^*(A)$ is one of the graphs given in Figure 1. Hence $\Gamma^*(A)$ is planar. Now, let A be a finite Rickart *-ring such that $\Gamma^*(A)$ is planar. Then by Proposition 2.3, A is commutative Baer *-ring. Hence A is direct sum of finite fields, say $A = F_1 \oplus F_2 \oplus \cdots \oplus F_n$. If $n \geq 4$ then $(1,0,0,0), (0,1,0,0), (1,1,0,0)$ are all adjacent to $(0,0,1,0), (0,0,0,1), (0,0,0,1)$, hence $\Gamma^*(A)$ contains a subdivision of $K_{3,3}$, a contradiction. Therefore $A = F_1 \oplus F_2 \oplus F_3$. If $|F_2| \geq 3$ and $|F_3| \geq 3$ then $\Gamma^*(A)$ contains a subdivision of K_5. Let $A = F_1 \oplus F_2$. If $|F_1|$ and $|F_2|$ both exceed 3, then $\Gamma^*(A)$ will contain $K_{3,3}$, a contradiction. Hence either $A = \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$ or $A = \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3$ or $A = F_1 \oplus F_2$, where F_1 and F_2 are finite fields with $|F_1| \leq 3$ or $|F_2| \leq 3$.

Acknowledgement: The author is grateful to the anonymous referee for careful reading of the paper, valuable comments and fruitful suggestions.
Avinash Patil

Figure 1.

References

Author information

Avinash Patil, JET’s Z. B. Patil College, Dhule (MS)- 424 002, India.
E-mail: avipmj@gmail.com

Received: February 2, 2019.
Accepted: May 20, 2019