RICKART *-RINGS WITH PLANAR ZERO-DIVISOR GRAPHS

Avinash Patil

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 05C25, Secondary 05C75.

Keywords and phrases: Zero-divisor graph, planar graph, Rickart *-ring.

Abstract In this paper, we characterize all finite Rickart *-rings whose zero-divisor graphs are planar.

1 Introduction

An *involution* * on an associative ring A is a mapping such that $(a+b)^* = a^* + b^*$, $(ab)^* = b^*a^*$ and $(a^*)^* = a$, for all $a, b \in A$. A ring with involution * is called a *-ring. Clearly, identity mapping is an involution if and only if the ring is commutative. An element e of a *-ring A is a projection if $e = e^2$ and $e = e^*$. For a nonempty subset B of A, we write $r(B) = \{x \in A: bx = 0, \forall b \in B\}$, and call a right annihilator of B in A. A Rickart (resp. Baer) *-ring is a *-ring in which right annihilator of every element (resp. every subset) is generated, as a right ideal, by a projection in A. Every Baer *-ring is Rckart *-ring and every Rickart *-ring contains unity. For each element a in a Rickart *-ring, there is unique projection e such that e = e and e of if and only if e of e of a denoted by e of e denoted by e of e of a denoted by e of e of e of projection e of e of e of projections e of e

Beck [3] introduced the concept of zero-divisor graph $\Gamma(R)$ of a commutative ring R with unity as follows. Let G be a simple graph whose vertices are the elements of R and two vertices x and y are adjacent if xy=0. The graph G is known as the zero-divisor graph of R. He was mainly interested in the coloring of this graph. An interesting question was proposed by Anderson, Frazier, Lauve, and Livingston: For which finite commutative rings R, $\Gamma(R)$ is planar? Cf. [2, Question 5.3]. In [1], Akbari et al. answered this question affirmatively and gave classification of commutative rings with zero-divisor graph planar.

In [6], Patil and Waphare extended the concept of zero divisor graph to *-rings as follows: Let A be a *-ring. A simple undirected graph $\Gamma^*(A)$ is associated to A whose vertex set is $V(\Gamma^*(A)) = \{a \neq 0\} \in A \mid ab = 0$, for some nonzero $b \in A\}$ (i.e. nonzero left zero-divisors) and two distinct vertices x and y are adjacent if and only if $xy^* = 0$. Patil and Waphare [7] studied the zero-divisor graphs of Rickart *-rings in detail.

In this paper, we characterize all finite Rickart *-rings whose zero-divisor graphs are planar.

2 Main Results

In this section we consider A as a finite Rickart *-ring such that $\Gamma^*(A)$ is non-empty. We need the following results proved by Thakare and Waphare ([8, Theorem 3]), which completely classifies *-rings with finitely many elements into Baer *-rings and non-Baer *-rings.

Theorem 2.1. A *-ring A with finitely many elements is a Baer *-ring if and only if $A = A_1 \oplus A_2 \oplus \cdots \oplus A_r$ where A_i is a field or A_i is a 2×2 -matrix ring over a finite field $F(p^{\alpha})$ with α odd positive integer and p is a prime number of the form 4k + 3.

The complete bipartite graph (2-partite graph) with part sizes m and n is denoted by $K_{m,n}$. A graph in which each pair of distinct vertices is joined by an edge is called a *complete graph*. We use K_n for the complete graph with n vertices. A planar graph is a graph that can be drawn in the plane so that its edges intersect only at their ends. A subdivision of a graph is a graph obtained from it by replacing edges with pairwise internally-disjoint paths. A remarkably simple characterization of planar graphs was given by Kuratowski in 1930.

Theorem 2.2 (Kuratowski, [9, Theorem 6.2.2, p. 246]). A graph is planar if and only if it does not contain a subdivision of K_5 or $K_{3,3}$.

Proposition 2.3. If A is a finite Rickart *-ring such that either $\Gamma^*(A)$ or $\Gamma^*(A)^c$ is planar then A is a commutative ring.

Proof. Let A be a finite Rickart *-ring. By Berberian [4, §4, Proposition 1], A is a Baer *-ring. Consequently, by Theorem 2.1, $A = A_1 \oplus A_2 \oplus \cdots \oplus A_r$ where A_i is a field or A_i is a 2×2 -matrix ring over a finite field $F(p^{\alpha})$ with α odd positive integer and p is a prime number of the form 4k + 3. If A is non-commutative, then it has at least one component of the type $M_2(F_{p^{\alpha}})$ in its

direct sum representation. In that case,
$$e = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
, $I - e = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $a = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$,

$$b = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$
 are elements of A such that $e(I - e)^* = eb^* = e(2b)^* = 0$. Then $U = \{e, a, 2a\}$

and $V = \{I - e, b, 2b\}$ are independent sets of $\Gamma^*(A)$ such that each element of U is adjacent to every element of V, hence $\Gamma^*(A)$ contains $K_{3,3}$ as a subgraph, hence it can not be planar.

On the other hand, the set
$$S = \left\{ \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix} \right\}$$
 is an independent set in $\Gamma^*(A)$, *i.e.*, it forms K_5 in $\Gamma^*(A)^c$, hence $\Gamma^*(A)^c$ can not be planar, a

an independent set in $\Gamma^*(A)$, *i.e.*, it forms K_5 in $\Gamma^*(A)^c$, hence $\Gamma^*(A)^c$ can not be planar, a contradiction. Therefore A does not contain a component of the type $M_2(F_{p^{\alpha}})$ in its direct sum representation, hence A is a commutative ring.

Corollary 2.4. If A is a finite Rickart *-ring such that $\Gamma^*(A)$ is disconnected then $\Gamma^*(A)$ can not be planar.

Proof. In [5] it proved that if $\Gamma^*(A)$ is connected, then $A = M_2(F)$ where F is a finite field with p^{α} elements, α is odd positive integer and p is prime of the form 4k + 3. The result follows from Proposition 2.3.

Now we prove the main result of this section.

Theorem 2.5. Let A be a finite Rickart *-ring. Then $\Gamma^*(A)$ is planar if and only if A is one of the type: $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3$, $F_1 \oplus F_2$, where F_1 and F_2 are finite fields with $|F_1| \leq 3$ or $|F_2| \leq 3$.

Proof. If A is one of the given rings then $\Gamma^*(A)$ is one of the graphs given in Figure 1 Hence $\Gamma^*(A)$ is planar graph. Now, let A be a finite Rickart *-ring such that $\Gamma^*(A)$ is planar. Then by Proposition 2.3, A is commutative Baer *-ring. Hence A is direct sum of finite fields, say $A = F_1 \oplus F_2 \oplus \cdots \oplus F_n$. If $n \geq 4$ then (1,0,0,0), (0,1,0,0), (1,1,0,0) are all adjacent to (0,0,1,0), (0,0,0,1), (0,0,1,1), hence $\Gamma^*(A)$ contains a subdivision of $K_{3,3}$, a contradiction. Therefore $A = F_1 \oplus F_2 \oplus F_3$. If $|F_2| \geq 3$ and $|F_3| \geq 3$ then $\Gamma^*(A)$ contains a subdivision of K_5 . Let $A = F_1 \oplus F_2$. If $|F_1|$ and $|F_2|$ both exceed 3, then $\Gamma^*(A)$ will contain $K_{3,3}$, a contradiction. Hence either $A = \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$ or $A = \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3$ or $A = F_1 \oplus F_2$, where F_1 and F_2 are finite fields with $|F_1| \leq 3$ or $|F_2| \leq 3$.

Acknowlegement: The author is grateful to the anounimus referee for careful reading of the paper, valuable comments and fruitful suggestions.

52 Avinash Patil

Figure 1.

References

- [1] S. Akbari, H.R. Maimani, S. Yassemi, When a zero-divisor graph is planar or a complete r-partite graph, J. Algebra, **270** (2003) 169-180.
- [2] D. F. Anderson, A. Frazier, A. Lauve, P. S. Livingston, *The zero-divisor graph of a commutative ring-II*, in: Lecture Notes in Pure and Appl. Math; vol. **220** Dekker, New York, (2001) pp. 61-72.
- [3] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988) 208-226.
- [4] S. K. Berberian, Baer *-Rings, Springer-Verlag, Berlin and New York(1972).
- [5] Avinash Patil, Zero-Divisor Graphs of Rickart *-Rings, Dismantlable Lattices and Related Algebraic Structures, Ph. D. Thesis submitted to SPP University, Pune, India (2016).
- [6] Avinash Patil, B. N. Waphare, The zero-divisor graph of a ring with involution, J. Algebra Appl. 17(3) (2018) 1850050 (17 pages). doi.org/10.1142/S0219498818500500.
- [7] Avinash Patil, B. N. Waphare, *On the zero-divisor graph of Rickart *-rings*, Asian-Eur. J. Math.**10** (01) (2017) 1750015 (17 pages). doi.org/10.1142/S1793557117500152.
- [8] N. K. Thakare and B. N. Waphare, *Baer* *-rings with Finitely Many Elements, J. Combin. Math. Combin. Comput. **26** (1998) 161-164.
- [9] D. B. West, Introduction to Graph Theory, Second Edition, Prentice-Hall of India, New Delhi(2002).

Author information

Avinash Patil, JET's Z. B. Patil College, Dhule (MS)- 424 002, India. E-mail: avipmj@gmail.com

Received: February 2, 2019. Accepted: May 20, 2019