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Abstract. An r-dynamic proper k-coloring of a graph G is a proper k-coloring of G such
that every vertex in V (G) has neighbors in atleast min {r, d(v)} different color classes. The
r-dynamic chromatic number of a graph G is the minimum k such that G has an r-dynamic
coloring with k colors. In this paper we investigate the r-dynamic chromatic number for the
Central graph, Middle graph, Total graph and Line graph of Double star graph.

1 Introduction

In this paper, all graphs are assumed to be simple and finite. The r-dynamic chromatic number,
introduced by Montgomery [10] and written as χr(G), is the minimum k such that G has an
r-dynamic proper k-coloring. An r-dynamic coloring of a graph G is a map c from V (G) to
the set of colors such that (i)if uv ∈ E(G), then c(u) 6= c(v), and (ii) for each vertex v ∈
V (G), |c(N(v))| ≥ min {r, d(v)}, where N(v) denotes the set of vertices adjacent to v and d(v)
its degree.The first condition characterizes proper colorings, the adjacency condition and second
condition is double-adjacency condition [13]. The 1-dynamic chromatic number of a graph G is
equal to its chromatic number. The 2-dynamic chromatic number of a graph has been studied
under the name dynamic chromatic number in [1, 2, 3, 4, 7].

There are many upper bounds and lower bounds for χd(G) in terms of graph parameters.
For example, For a graph G with ∆(G) ≥ 3, Lai et al. [7] proved that χd(G) ≤ ∆(G) + 1.
An upper bound for the dynamic chromatic number of a d-regular graph G in terms of χ(G)
and the independence number of G, α(G), was introduced in [5]. In fact, it was proved that
χd(G) ≤ χ(G) + 2log2α(G) + 3.

Li et al. proved in [9] that the computational complexity of χd(G) for a 3-regular graphs
is an NP-complete problem. Furthermore, Li and Zhou [8] showed that whether there exists a
3-dynamic coloring, for a claw free graph with the maximum degree 3, is NP-complete.

In this paper, we study the r-dynamic chromatic number for middle, total, central and line
graph of Double star graph. Most known papers concern r-dynamic coloring only for small
values of r. In this paper, we consider r-dynamic coloring for all r between δ and ∆ [14].

2 Preliminaries

The middle graph [11] of G, is defined with the vertex set V (G) ∪ E(G) where two vertices are
adjacent iff they are either adjacent edges of G or one is the vertex and other is an edge incident
with it and it is denoted by M(G).

The total graph [11] of G, has vertex set V (G)∪E(G), and edges joining all elements of this
vertex set which are adjacent or incident in G

The central graph [12] C(G) of a graph G is obtained from G by adding an extra vertex on
each edge ofG, and then joining each pair of vertices of the original graph which were previously
non-adjacent.

The line graph [6] of G denoted by L(G) is the graph whose vertex set is the edge set of G.
Two vertices of L(G) are adjacent whenever the corresponding edges of G are adjacent.

Theorem 2.1. For any Double star graph K1,n,n, the r-dynamic chromatic number
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χr(C(K1,n,n)) =


n+ 1, r = 1
2n+ 1, 2 ≤ r ≤ ∆− 1
3n+ 1, r ≥ ∆

Proof. First we apply the definition of Central graph on K1,n,n.
Let the edge vvi, viwi be subdivided by the vertices ei(1 ≤ i ≤ n) , e′i(1 ≤ i ≤ n) in K1,n,n.
Clearly V (C(K1,n,n)) = {v} ∪ {vi : 1 ≤ i ≤ n} ∪ {wi : 1 ≤ i ≤ n} ∪ {ei : 1 ≤ i ≤ n}

∪ {e′i : 1 ≤ i ≤ n} . The vertices vi(1 ≤ i ≤ n) induce a clique of order n (say Kn) and the
vertices v, ui(1 ≤ i ≤ n) induce a clique of order n + 1 (say Kn+1) in C(K1,n,n) respectively.
Thus we have χr(C(K1,n,n)) ≥ n+ 1.

Case 1: For r = 1
Consider the color class C1 = {c1, c2, c3, .., c(n+1)}
Assign the r-dynamic coloring to C(K1,n,n) by algorithm 2.1.1
Thus, an easy check shows that the r− adjacency condition is fulfilled.
Hence χr(C(K1,n,n)) = n+ 1.

Case 2: For r = 2 ≤ r ≤ ∆− 1
Consider the color class C2 = {c1, c2, c3, .., c(2n+1)}
Assign the r-dynamic coloring to C(K1,n,n) by algorithm 2.1.2
Thus, an easy check shows that the r− adjacency condition is fulfilled.
Hence χr(C(K1,n,n)) = 2n+ 1.

Case 3: For r ≥ ∆

Consider the color class C3 = {c1, c2, c3, .., c(3n+1)}
Assign the r-dynamic coloring to C(K1,n,n) by algorithm 2.1.3
Thus, an easy check shows that the r− adjacency condition is fulfilled.
Hence χr(C(K1,n,n)) = 3n+ 1.

Algorithm 2.1.1
Input: The number ”n” of K1,n,n.
Output: Assigning r-dynamic coloring for the vertices in C(K1,n,n).
begin
for i = 1 to n
{
V1 = {ei};
C(ei) = i;
}
V2 = {v};
C(v) = n+ 1;
for i = 1 to n− 1
{
V3 = {vi};
C(vi) = i+ 1;
}
C(vn) = 1;
for i = 1 to n
{
V4 = {e′i};
C(e′i) = n+ 1;
}
for i = 1 to n− 1
{
V5 = {wi};
C(wi) = i+ 1;
}
C(wn) = 1;
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V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5;
end
Algorithm 2.1.2
Input: The number ”n” of K1,n,n.
Output: Assigning r-dynamic coloring for the vertices in C(K1,n,n).
begin
for i = 1 to n
{
V1 = {ei};
C(ei) = i;
}
V2 = {v};
C(v) = n+ 1;
for i = 1 to n− 1
{
V3 = {vi};
C(vi) = i+ 1;
}
C(vn) = 1;
for i = 1 to n
{
V4 = {e′i};
C(e′i) = n+ 1;
}
for i = 1 to n
{
V5 = {wi};
C(wi) = n+ i+ 1;
}
V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5;
end
Algorithm 2.1.3
Input: The number ”n” of K1,n,n.
Output: Assigning r-dynamic coloring for the vertices in C(K1,n,n).
begin
for i = 1 to n
{
V1 = {ei};
C(ei) = i;
}
V2 = {v};
C(v) = n+ 1;
for i = 1 to n− 1
{
V3 = {vi};
C(vi) = i+ 1;
}
C(vn) = 1;
for i = 1 to n
{
V4 = {e′i};
C(e′i) = 2n+ i+ 1;
}
for i = 1 to n
{
V5 = {wi};
C(wi) = n+ i+ 1;
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}
V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5;
end

Theorem 2.2. For any Double star graph K1,n,n, the r-dynamic chromatic number

χr(M(K1,n,n)) =


n+ 1, 1 ≤ r ≤ n
n+ 2, r = n+ 1
n+ 3, r ≥ ∆

Proof. By definition of middle graph, each edge vvi, viwi be subdivided by the vertices ei(1 ≤ i ≤ n)
, e′i(1 ≤ i ≤ n) in K1,n,n and the vertices v, ei induce a clique of order n + 1(say Kn+1) in
M(K1,n,n).
i.e.,V (M(K1,n,n)) = {v} ∪ {vi : 1 ≤ i ≤ n} ∪ {wi : 1 ≤ i ≤ n} ∪ {ei : 1 ≤ i ≤ n} ∪
{e′i : 1 ≤ i ≤ n} .

Thus we have, χr(M(K1,n,n)) ≥ n+ 1.

Case 1: For 1 ≤ r ≤ n
Consider the color class C1 = {c1, c2, c3, .., c(n+1)}
Assign the r-dynamic coloring to M(K1,n,n) by algorithm 2.2.1
Thus, an easy check shows that the r− adjacency condition is fulfilled.
Thus we have , χr(M(K1,n,n)) = n+ 1 if 1 ≤ r ≤ n.

Case 2: For r = n+ 1
Consider the color class C2 = {c1, c2, c3, .., c(n+1), c(n+2)}
Assign the r-dynamic coloring to M(K1,n,n) by algorithm 2.2.2
Thus, an easy check shows that the r− adjacency condition is fulfilled. Hence , χr(M(K1,n,n)) =

n+ 2 if r = n+ 1.

Case 3: For r = ∆

Consider the color class C3 = {c1, c2, c3, .., cn, c(n+1), c(n+2), c(n+3)}
Assign the r-dynamic coloring to M(K1,n,n) by algorithm 2.2.3
Thus, an easy check shows that the r− adjacency condition is fulfilled. Hence χr(M(K1,n,n)) =

n+ 3 if r ≥ ∆.

Algorithm 2.2.1
Input: The number ”n” of K1,n,n.
Output: Assigning r-dynamic coloring for the vertices in M(K1,n,n).
begin
for i = 1 to n
{
V1 = {ei};
C(ei) = i;
}
V2 = {v};
C(v) = n+ 1;
for i = 1 to n
{
V3 = {vi};
C(vi) = n+ 1;
}
for i = 1 to n− 1
{
V4 = {e′i};
C(e′i) = i+ 1;
}
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C(e′n) = 1;
for i = 1 to n− 2
{
V5 = {wi};
C(wi) = i+ 2;
}
C(wn−1) = 1;
C(wn) = 2;
}
V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5;
end
Algorithm 2.2.2
Input: The number ”n” of K1,n,n.
Output: Assigning r-dynamic coloring for the vertices in M(K1,n,n).
begin
for i = 1 to n
{
V1 = {ei};
C(ei) = i;
}
V2 = {v};
C(v) = n+ 1;
for i = 1 to n
{
V3 = {vi};
C(vi) = n+ 2;
}
for i = 1 to n
{
V4 = {e′i};
C(e′i) = n+ 1;
}
for i = 1 to n− 1
{
V5 = {wi};
C(wi) = i+ 1;
}
C(wn) = 1;
V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5;
end
Algorithm 2.2.3
Input: The number ”n” of K1,n,n.
Output: Assigning r-dynamic coloring for the vertices in M(K1,n,n).
begin
for i = 1 to n
{
V1 = {ei};
C(ei) = i;
}
V2 = {v};
C(v) = n+ 1;
for i = 1 to n
{
V3 = {vi};
C(vi) = n+ 2;
}
for i = 1 to n
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{
V4 = {e′i};
C(e′i) = n+ 3;
}
for i = 1 to n
{
V5 = {wi};
C(wi) = n+ 1;
}
V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5;
end

Theorem 2.3. For any Double star graph K1,n,n, the r-dynamic chromatic number,

χr(T (K1,n,n)) =


n+ 1, 1 ≤ r ≤ n
r + 1, n+ 1 ≤ r ≤ ∆− 2
2n, r = ∆− 1
2n+ 1, r ≥ ∆

Proof. By definition of Total graph, each edge vvi, viwi be subdivided by the vertices ei(1 ≤ i ≤ n)
, e′i(1 ≤ i ≤ n) in K1,n,n and the vertices v, ei induce a clique of order n + 1(say Kn+1) in
T (K1,n,n).
i.e.,V (T (K1,n,n)) = {v} ∪ {vi : 1 ≤ i ≤ n} ∪ {wi : 1 ≤ i ≤ n} ∪ {ei : 1 ≤ i ≤ n} ∪
{e′i : 1 ≤ i ≤ n} .

Thus we have χr(T (K1,n,n)) ≥ n+ 1.

Case 1: For 1 ≤ r ≤ n
Consider the color class C1 = {c1, c2, c3, .., c(n+1)}
Assign the r-dynamic coloring to T (K1,n,n) by algorithm 2.3.1
Thus, an easy check shows that the r− adjacency condition is fulfilled.
Thus we have χr(T (K1,n,n)) = n+ 1 if 1 ≤ r ≤ n.

Case 2: For n+ 1 ≤ r ≤ ∆− 2
Consider the color class C2 = {c1, c2, c3, .., c(2n−1)}
Assign the r-dynamic coloring to T (K1,n,n) by algorithm 2.3.2
Thus, an easy check shows that the r− adjacency condition is fulfilled.
Hence χr(T (K1,n,n)) = r + 1 if n+ 1 ≤ r ≤ ∆− 2 .

Case 3: For r = ∆− 1
Consider the color class C3 = {c1, c2, c3, .., c2n}
Assign the r-dynamic coloring to T (K1,n,n) by algorithm 2.3.3
Thus, an easy check shows that the r− adjacency condition is fulfilled.
Hence χr(T (K1,n,n)) = 2n if r = ∆− 1.

Case 4: For r = ∆

Consider the color class C4 = {c1, c2, c3, .., c2n+1}
Assign the r-dynamic coloring to T (K1,n,n) if r = ∆ by algorithm 2.3.4
Thus, an easy check shows that the r− adjacency condition is fulfilled.
Hence χr(T (K1,n,n)) = 2n+ 1 if r ≥ ∆.

Algorithm 2.3.1
Input: The number ”n” of K1,n,n.
Output: Assigning r-dynamic coloring for the vertices in T (K1,n,n).
begin
for i = 1 to n
{
V1 = {ei};
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C(ei) = i;
}
V2 = {v};
C(v) = n+ 1;
for i = 1 to n− 1
{
V3 = {vi};
C(vi) = i+ 1;
}
C(vn) = 1;
for i = 1 to n− 2
{
V4 = {e′i};
C(e′i) = i+ 2;
}
C(e′n−1) = 1;
C(e′n) = 2;
for i = 1 to n− 3
{
V5 = {wi};
C(wi) = i+ 3;
}
C(wn−2) = 1;
C(wn−1) = 2;
C(wn) = 3;
V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5;
end
Algorithm 2.3.2
Input: The number ”n” of K1,n,n.
Output: Assigning r-dynamic coloring for the vertices in T (K1,n,n).
begin
for i = 1 to n
{
V1 = {ei};
C(ei) = i;
}
V2 = {v};
C(v) = n+ 1;
for i = 1 to n− 3
{
V3 = {vi};
C(vi) = r + 1;
}
C(vn−2) = n+ 2;
C(vn−1) = n+ 3;
C(vn) = n+ 4;
for i = 1 to n− 2
{
V4 = {e′i};
C(e′i) = n+ i+ 2;
}
C(e′n−1) = n+ 2;
C(e′n) = n+ 3;
for i = 1 to n− 1
{
V5 = {wi};
C(wi) = i+ 1;
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}
C(wn) = 1;
V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5;
end
Algorithm 2.3.3
Input: The number ”n” of K1,n,n.
Output: Assigning r-dynamic coloring for the vertices in T (K1,n,n).
begin
for i = 1 to n
{
V1 = {ei};
C(ei) = i;
}
V2 = {v};
C(v) = n+ 1;
for i = 1 to n− 1
{
V3 = {vi};
C(vi) = n+ i+ 1;
}
C(vn) = n+ 2;
for i = 1 to n− 2
{
V4 = {e′i};
C(e′i) = n+ i+ 2;
}
C(e′n−1) = n+ 2;
C(e′n) = n+ 3;
for i = 1 to n− 1
{
V5 = {wi};
C(wi) = i+ 1;
}
C(wn) = 1;
V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5;
end
Algorithm 2.3.4
Input: The number ”n” of K1,n,n.
Output: Assigning r-dynamic coloring for the vertices in T (K1,n,n).
begin
for i = 1 to n
{
V1 = {ei};
C(ei) = i;
}
V2 = {v};
C(v) = n+ 1;
for i = 1 to n
{
V3 = {vi};
C(vi) = n+ i+ 1;
}
for i = 1 to n− 1
{
V4 = {e′i};
C(e′i) = n+ i+ 2;
}
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C(e′n) = n+ 3;
for i = 1 to n− 1
{
V5 = {wi};
C(wi) = i+ 1;
}
C(wn) = 1;
V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5;
end

Theorem 2.4. For any Double star graph K1,n,n, the r-dynamic chromatic number

χr(L(K1,n,n)) =

{
n, 1 ≤ r ≤ n− 1
n+ 1, r ≥ ∆

Proof. First we apply the definition of Line graph on K1,n,n

By the definition of line graph, each edge of K1,n,n taken to be as vertex in L(K1,n,n).The
vertices e1, e2, ..., en induce a clique of order n in L(K1,n,n).
i.e., V (L(K1,n,n)) = E(K1,n,n) = {ei : 1 ≤ i ≤ n} ∪ {wi : 1 ≤ i ≤ n}.

Thus we have χr(L(K1,n,n)) ≥ n.

Case 1: For (1 ≤ i ≤ ∆− 1)
Consider the vertex set V (L(K1,n,n)) and color class C1 = {c1, c2, ...., cn}
Assign r dynamic coloring to L(K1,n,n) by algorithm 2.4.1
Thus, an easy check shows that the r− adjacency condition is fulfilled.
Hence χr(L(K1,n,n)) = n.

Case 2: For (r ≥ ∆)
Consider the vertex set V (L(K1,n,n)) and color class C2 = {c1, c2, ...., cn, c(n+1)}
Assign r dynamic coloring to L(K1,n,n) by algorithm 2.4.2
Thus, an easy check shows that the r− adjacency condition is fulfilled.
Hence χr(L(K1,n,n)) = n+ 1.

Algorithm 2.4.1
Input: The number ”n” of K1,n,n.
Output: Assigning r-dynamic coloring for the vertices in L(K1,n,n).
begin
for i = 1 to n
{
V1 = {ei};
C(ei) = i;
}
for i = 1 to n− 1
{
V2 = {wi};
C(wi) = i+ 1;
}
C(wn) = 1;
V = V1 ∪ V2;
end
Algorithm 2.4.2
Input: The number ”n” of K1,n,n.
Output: Assigning r-dynamic coloring for the vertices in L(K1,n,n).
begin
for i = 1 to n
{
V1 = {ei};
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C(ei) = i;
}
for i = 1 to n
{
V2 = {wi};
C(wi) = n+ 1;
}
V = V1 ∪ V2;
end
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