3-divisor cordiality of some product related graphs

S.Sathish Narayanan
Communicated by Ayman Badawi

MSC 2010 Classifications: 05C78
Keywords and phrases: star, path, ladder, complete graph, prism.

Abstract

Let G be a (p, q) graph and $2 \leq k \leq p$. Let $f: V(G) \rightarrow\{1,2, \ldots, k\}$ be a map. For each edge $u v$, assign the label 1 if either $f(u)$ or $f(v)$ divides the other and 0 otherwise. f is called a k-divisor cordial labeling if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1 i, j \in\{1,2, \ldots, k\}$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq$ 1 where $v_{f}(x)$ denotes the number of vertices labeled with x, where $x \in\{1,2, \ldots, k\}, e_{f}(i)$ denote the number of edges labeled with $i, i \in\{0,1\}$. A graph with a k-divisor cordial labeling is called a k-divisor cordial graph. In this paper, we discuss 3-divisor cordial labeling behavior of ladder, prism and book graphs.

1 Introduction

Graphs considered here are finite, undirected and simple. In 1980, Cahit [1] introduced the cordial labeling of graphs. In [4], Varatharajan, Navanaeethakrishnan, and Nagarajan introduced a notion, called divisor cordial labeling and proved the standard graphs such as paths, cycles, wheels, stars and some complete bipartite graphs are divisor cordial. Sathish Narayanan introduced the notion of k-divisor cordial labeling in [5]. In [6], 3 -divisor cordiality of wheel and $\overline{K_{n}}+2 K_{2}$ have been studied. In this paper we studied the 3-divisor cordial labeling behavior of ladder, prism and book graphs. Terms and definitions not defined here are used in the sense of Harary [3] and Gallian [2].

2 3-divisor cordial labeling

Definition 2.1. Let G be a (p, q) graph and $2 \leq k \leq p$. Let $f: V(G) \rightarrow\{1,2, \ldots, k\}$ be a map. For each edge $x y$, assign the label 1 if either $f(x)$ or $f(y)$ divides the other and 0 otherwise. f is called a k-divisor cordial labeling if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1 i, j \in\{1,2, \ldots, k\}$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ where $v_{f}(x)$ denotes the number of vertices labeled with x, where $x \in\{1,2, \ldots, k\}, e_{f}(i)$ denote the number of edges labeled with $i, i \in\{0,1\}$. A graph with a k-divisor cordial labeling is called a k-divisor cordial graph.

Definition 2.2. The Cartesian product of two graphs G_{1} and G_{2} is the graph $G_{1} \square G_{2}$ with the vertex set $V_{1} \square V_{2}$ and two vertices $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ are adjacent whenever $\left[u_{1}=v_{1}\right.$ and $\left.u_{2} \operatorname{adj} v_{2}\right]$ or $\left[u_{2}=v_{2}\right.$ and $\left.u_{1} \operatorname{adj} v_{1}\right]$.

First we consider the graph ladder $L_{n}=P_{n} \square P_{2}$. Let $V\left(L_{n}\right)=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(L_{n}\right)=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i}: 1 \leq i \leq n\right\}$. Note that L_{n} consists of $2 n$ vertices and $3 n-2$ edges.

Theorem 2.3. The ladder $L_{n}=P_{n} \square P_{2}$ is 3-divisor cordial.

Proof. The proof is divided into twelve cases.
Case 1. $n \equiv 0(\bmod 12)$.

Let $n=12 t$ where $t \geq 1$. Here we define a map $f: V\left(L_{n}\right) \rightarrow\{1,2,3\}$ as follows:

$$
\begin{aligned}
& f\left(u_{2 i-1}\right)=f\left(v_{2 i}\right)=2, \quad 1 \leq i \leq 3 t \\
& f\left(u_{2 i}\right)=f\left(v_{2 i-1}\right)=3, \quad 1 \leq i \leq 3 t \\
& f\left(u_{6 t+i}\right)=f\left(v_{6 t+i}\right)=2, \quad 1 \leq i \leq t \\
& f\left(u_{7 t+i}\right)=f\left(v_{7 i+i}\right)=1, \quad 1 \leq i \leq 4 t \\
& f\left(u_{11 t+i}\right)=f\left(v_{11 t+i}\right)=3, \quad 1 \leq i \leq t
\end{aligned}
$$

Case 2. $n \equiv 1(\bmod 12)$.
Let $n=12 t+1$ where $t \geq 1$. We define a map $f: V\left(L_{n}\right) \rightarrow\{1,2,3\}$ as follows:

$$
\begin{array}{lll}
f\left(u_{2 i-1}\right) & =2, & \\
f\left(u_{2 i}\right) & =3, & 1 \leq i \leq 3 t+1 \\
f\left(v_{2 i-1}\right) & =3, & 1 \leq i \leq 3 t \\
f\left(v_{2 i}\right) & =2, & 1 \leq i \leq 3 t \\
f\left(u_{6 t+2+i}\right) & =f\left(v_{6 t+2+i}\right)=2, & 1 \leq i \leq t \\
f\left(u_{7 t+3+i}\right) & =f\left(v_{7 t+3+i}\right)=3, & 1 \leq i \leq t \\
f\left(u_{8 t+3+i}\right) & =f\left(v_{8 t+3+i}\right)=1, & 1 \leq i \leq 4 t-2
\end{array}
$$

and $f\left(u_{6 t+2}\right)=f\left(v_{6 t+2}\right)=f\left(u_{7 t+3}\right)=f\left(v_{7 t+3}\right)=1$.
Case 3. $n \equiv 2(\bmod 12)$.
For $n=2$, Figure 1 shows that L_{2} is a 3-divisor cordial graph.

Figure 1.
Let $n=12 t+2$ where $t \geq 1$. We define a map $f: V\left(L_{n}\right) \rightarrow\{1,2,3\}$ as follows: assign the labels to the vertices $u_{i}, v_{i}(1 \leq i \leq 6 t+1)$ as in case 2 .

$$
\begin{aligned}
& f\left(u_{6 t+1+i}\right)=f\left(v_{6 t+1+i}\right)=2, \quad 1 \leq i \leq t \\
& f\left(u_{7 t+1+i}\right)=f\left(v_{7 t+1+i}\right)=1, \quad 1 \leq i \leq 4 t+1 \\
& f\left(u_{11 t+2+i}\right)=f\left(v_{11 t+2+i}\right)=3, \quad 1 \leq i \leq t
\end{aligned}
$$

Case 4. $n \equiv 3(\bmod 12)$.
The vertex labelings given in Figure 2 establish that L_{3} and L_{15} are 3-divisor cordial graphs.

Figure 2.

Let $n=12 t+3$ where $t \geq 2$. We define a map $f: V\left(L_{n}\right) \rightarrow\{1,2,3\}$ as follows: assign the
labels to the vertices $u_{i}, v_{i}(1 \leq i \leq 6 t+1)$ as in case 2 .

$$
\begin{array}{lll}
f\left(u_{6 t+1+i}\right) & =2, & \\
f\left(v_{6 t+1+i}\right) & =3, & \\
f\left(u_{6 t+5+i}\right) & =f\left(v_{6 t+5+i}\right)=2, & 1 \leq i \leq 3 \\
f\left(u_{7 t+5+i}\right) & =f\left(v_{7 t+5+i}\right)=3, & 1 \leq i \leq t-1 \\
f\left(u_{8 t+4+i}\right) & =f\left(v_{8 t+4+i}\right)=1, & 1 \leq i \leq 4 t-1
\end{array}
$$

and $f\left(u_{6 t+5}\right)=f\left(v_{6 t+5}\right)=f\left(u_{7 t+5}\right)=f\left(v_{7 t+5}\right)=1$.
Case 5. $n \equiv 4(\bmod 12)$.
Figure 3 shows that L_{4} is a 3-divisor cordial graph.

Figure 3.
Let $n=12 t+4$ where $t \geq 1$. We define a map $f: V\left(L_{n}\right) \rightarrow\{1,2,3\}$ as follows: assign the labels to the vertices $u_{i}, v_{i}(1 \leq i \leq 6 t+1)$ as in case 2 . Then put the number 3 to the vertex $u_{6 t+2}$ and 2 to $v_{6 t+2}$. Then

$$
\begin{aligned}
& f\left(u_{6 t+2+i}\right)=f\left(v_{6 t+2+i}\right)=2, \quad 1 \leq i \leq t \\
& f\left(u_{7 t+3+i}\right)=f\left(v_{7 t+3+i}\right)=1, \quad 1 \leq i \leq 4 t \\
& f\left(u_{11 t+4+i}\right)=f\left(v_{11 t+4+i}\right)=3, \quad 1 \leq i \leq t
\end{aligned}
$$

$f\left(v_{7 t+3}\right)=f\left(v_{11 t+4}\right)=1, f\left(u_{7 t+3}\right)=2$ and $f\left(u_{11 t+4}\right)=3$.
Case 6. $n \equiv 5(\bmod 12)$.
From Figure 4, we observe that L_{5} is 3-divisor cordial.

Figure 4.
Let $n=12 t+5$ where $t \geq 1$. We define a map $f: V\left(L_{n}\right) \rightarrow\{1,2,3\}$ as follows:

$$
\begin{array}{lll}
f\left(u_{2 i-1}\right) & =2, & 1 \leq i \leq 3 t+2 \\
f\left(u_{2 i}\right) & =3, & 1 \leq i \leq 3 t+1 \\
f\left(v_{2 i-1}\right) & =3, & 1 \leq i \leq 3 t+2 \\
f\left(v_{2 i}\right) & =2, & 1 \leq i \leq 3 t+1 \\
f\left(u_{6 t+4+i}\right)=f\left(v_{6 t+4+i}\right)=2, & 1 \leq i \leq t \\
f\left(u_{7 t+5+i}\right) & =f\left(v_{7 t+5+i}\right)=3, & 1 \leq i \leq t \\
f\left(u_{8 t+5+i}\right) & =f\left(v_{8 t+5+i}\right)=1, & 1 \leq i \leq 4 t
\end{array}
$$

and $f\left(u_{6 t+4}\right)=f\left(v_{6 t+4}\right)=f\left(u_{7 t+5}\right)=f\left(v_{7 t+5}\right)=1$.
Case 7. $n \equiv 6(\bmod 12)$.
For L_{6}, Figure 5 establish that L_{6} is 3-divisor cordial.
Let $n=12 t+6$ where $t \geq 1$. Consider $f: V\left(L_{n}\right) \rightarrow\{1,2,3\}$ as follows: assign the labels to the vertices $u_{i}, v_{i}(1 \leq i \leq 6 t+3)$ as in case 6 . Then

$$
\begin{aligned}
& f\left(u_{6 t+3+i}\right)=f\left(v_{6 t+3+i}\right)=2, \quad 1 \leq i \leq t \\
& f\left(u_{7 t+4+i}\right)=f\left(v_{7 t+4+i}\right)=1, \quad 1 \leq i \leq 4 t+1 \\
& f\left(u_{11 t+6+i}\right)=f\left(v_{11 t+6+i}\right)=3, \quad 1 \leq i \leq t
\end{aligned}
$$

Figure 5.
$f\left(v_{7 t+4}\right)=f\left(v_{11 t+6}\right)=1, f\left(u_{7 t+4}\right)=2$ and $f\left(u_{11 t+6}\right)=3$.
Case 8. $n \equiv 7(\bmod 12)$.
Figure 6 shows that L_{7} is a 3-divisor cordial graph.

Figure 6.
Let $n=12 t+7$ where $t \geq 1$. We define a map $f: V\left(L_{n}\right) \rightarrow\{1,2,3\}$ as follows:

$$
\begin{aligned}
& f\left(u_{2 i-1}\right)=f\left(v_{2 i}\right)=2, \quad 1 \leq i \leq 3 t+2 \\
& f\left(u_{2 i}\right)=f\left(v_{2 i-1}\right)=3,1 \leq i \leq 3 t+2 \\
& f\left(u_{6 t+5+i}\right)=f\left(v_{6 t+5+i}\right)=2, \quad 1 \leq i \leq t \\
& f\left(u_{7 t+7+i}\right)=f\left(v_{7 t+7+i}\right)=3, \quad 1 \leq i \leq t \\
& f\left(u_{8 t+8+i}\right)=f\left(v_{8 t+8+i}\right)=1, \quad 1 \leq i \leq 4 t-1
\end{aligned}
$$

$f\left(v_{7 t+6}\right)=f\left(u_{7 t+7}\right)=f\left(v_{7 t+7}\right)=f\left(v_{8 t+8}\right)=1, f\left(u_{7 t+6}\right)=2$ and $f\left(u_{8 t+8}\right)=3$.
Case 9. $n \equiv 8(\bmod 12)$.
Let $n=12 t+8$ where $t \geq 0$. We define a map $f: V\left(L_{n}\right) \rightarrow\{1,2,3\}$ as follows:

$$
\begin{array}{ll}
f\left(u_{2 i-1}\right) & =f\left(v_{2 i}\right) \\
f\left(u_{2 i}\right) & =f\left(v_{2 i-1}\right) \\
f\left(u_{6 t+4+i}\right) & =f\left(v_{6 t+4+i}\right)=1 \leq i \leq 3 t+2 \\
f\left(u_{7 t+5+i}\right) & =f\left(v_{7 t+5+i}\right)=1 \leq i \leq 3 t+2 \\
f\left(u_{11 t+8+i}\right) & =f\left(v_{11 t+8+i}\right)=1 \leq i \leq t \\
& =1 \leq i \leq 4 t+2 \\
& 1 \leq i \leq t
\end{array}
$$

$f\left(v_{7 t+5}\right)=f\left(v_{11 t+8}\right)=1, f\left(u_{7 t+5}\right)=2$ and $f\left(u_{11 t+8}\right)=3$.
Case 10. $n \equiv 9(\bmod 12)$.
Let $n=12 t+9$ where $t \geq 0$. We define a map $f: V\left(L_{n}\right) \rightarrow\{1,2,3\}$ as follows:

$$
\begin{array}{lll}
f\left(u_{2 i-1}\right) & =2, & 1 \leq i \leq 3 t+3 \\
f\left(u_{2 i}\right) & =3, & 1 \leq i \leq 3 t+2 \\
f\left(v_{2 i-1}\right) & =3, & 1 \leq i \leq 3 t+3 \\
f\left(v_{2 i}\right) & =2, & 1 \leq i \leq 3 t+2 \\
f\left(u_{6 t+6+i}\right) & =f\left(v_{6 t+6+i}\right)=2, & 1 \leq i \leq t \\
f\left(u_{7 t+8+i}\right) & =f\left(v_{7 t+8+i}\right)=3, & 1 \leq i \leq t \\
f\left(u_{8 t+9+i}\right) & =f\left(v_{8 t+9+i}\right)=1, \quad 1 \leq i \leq 4 t
\end{array}
$$

$f\left(u_{6 t+6}\right)=f\left(v_{6 t+6}\right)=f\left(v_{7 t+7}\right)=f\left(u_{7 t+8}\right)=f\left(v_{7 t+8}\right)=f\left(v_{8 t+9}\right)=1, f\left(u_{7 t+7}\right)=2$ and $f\left(u_{8 t+9}\right)=3$.
Case 11. $n \equiv 10(\bmod 12)$.
Let $n=12 t+10$ where $t \geq 0$. We define a map $f: V\left(L_{n}\right) \rightarrow\{1,2,3\}$ as follows: assign the labels to the vertices $u_{i}, v_{i}(1 \leq i \leq 6 t+5)$ as in case 10 . Then

$$
\begin{aligned}
& f\left(u_{6 t+5+i}\right)=f\left(v_{6 t+5+i}\right)=2, \quad 1 \leq i \leq t+1 \\
& f\left(u_{7 t+6+i}\right)=f\left(v_{7 t+6+i}\right)=1, \quad 1 \leq i \leq 4 t+3 \\
& f\left(u_{11 t+9+i}\right)=f\left(v_{11 t+9+i}\right)=3, \quad 1 \leq i \leq t+1
\end{aligned}
$$

Case 12. $n \equiv 11(\bmod 12)$.
Let $n=12 t+11$ where $t \geq 0$. We define a map $f: V\left(L_{n}\right) \rightarrow\{1,2,3\}$ as follows:

$$
\begin{aligned}
& f\left(u_{2 i-1}\right)=f\left(v_{2 i}\right)=2, \quad 1 \leq i \leq 3 t+3 \\
& f\left(u_{2 i}\right)=f\left(v_{2 i-1}\right)=3,1 \leq i \leq 3 t+3 \\
& f\left(u_{6 t+7+i}\right)=f\left(v_{6 t+7+i}\right)=2, \quad 1 \leq i \leq t \\
& f\left(u_{7 t+9+i}\right)=f\left(v_{7 t+9+i}\right)=3, \quad 1 \leq i \leq t \\
& f\left(u_{8 t+10+i}\right)=f\left(v_{8 t+10+i}\right)=1, \quad 1 \leq i \leq 4 t+1
\end{aligned}
$$

$f\left(u_{6 t+7}\right)=f\left(v_{6 t+7}\right)=f\left(v_{7 t+8}\right)=f\left(u_{7 t+9}\right)=f\left(v_{7 t+9}\right)=f\left(v_{8 t+10}\right)=1, f\left(u_{7 t+8}\right)=2$ and $f\left(u_{8 t+10}\right)=3$.
The vertex and edge conditions are given in Table 1 and Table 2.

Nature of n	$v_{f}(1)$	$v_{f}(2)$	$v_{f}(3)$
$n \equiv 0(\bmod 3)$	$\frac{2 n}{3}$	$\frac{2 n}{3}$	$\frac{2 n}{3}$
$n \equiv 1(\bmod 3)$	$\frac{2 n-2}{3}$	$\frac{2 n+1}{3}$	$\frac{2 n+1}{3}$
$n \equiv 2(\bmod 3)$	$\frac{2 n+2}{3}$	$\frac{2 n-1}{3}$	$\frac{2 n-1}{3}$

Table 1.

Nature of n	$e_{f}(0)$	$e_{f}(1)$
$n \equiv 0(\bmod 2)$	$\frac{3 n-2}{2}$	$\frac{3 n-2}{2}$
$n \equiv 1(\bmod 2)$	$\frac{3 n-1}{2}$	$\frac{3 n-3}{2}$

Table 2.
Hence L_{n} is 3-divisor cordial.
Next we consider prism graph $C_{n} \square P_{2}$. Let $V\left(C_{n} \square P_{2}\right)=V\left(L_{n}\right)$ and $E\left(C_{n} \square P_{2}\right)=E\left(L_{n}\right) \cup$ $\left\{u_{n} u_{1}, v_{n} v_{1}\right\}$.

Theorem 2.4. Prism $C_{n} \square P_{2}$ is 3-divisor cordial.
Proof. Assign the labels to the vertices as in Theorem 2.3. The vertex condition given in Table 1 and the edge condition given in Table 3 shows that $C_{n} \square P_{2}$ is 3-divisor cordial.

Nature of n	$e_{f}(0)$	$e_{f}(1)$
$n \equiv 0(\bmod 2)$	$\frac{3 n}{2}$	$\frac{3 n}{2}$
$n \equiv 1(\bmod 2)$	$\frac{3 n-1}{2}$	$\frac{3 n+1}{2}$

Table 3.

This completes the proof.
Next we discuss 3-divisor cordial labeling behavior of book graph. A book graph is a cartesian product of star graph with K_{2} and we denote it by $B_{n}=K_{1, n} \square K_{2}$. Let $V\left(B_{n}\right)=$ $\left\{u, v, u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(B_{n}\right)=\left\{u v, u u_{i}, v v_{i}: 1 \leq i \leq n\right\}$. Note that B_{n} consists of $2 n+2$ vertices and $3 n+1$ edges.

Theorem 2.5. Book $B_{n}=K_{1, n} \square K_{2}$ is 3-divisor cordial, for all n.
Proof. We construct a vertex labeling f from the set of vertices of B_{n} to the set $\{1,2,3\}$ by $f(u)=2, f(v)=3$ and we consider the following cases for the labeling of other vertices.
Case 1. $n \equiv 0(\bmod 6)$.
Let $n=6 t$ where $t \geq 1$. Here

$$
f\left(u_{i}\right)=\left\{\begin{array}{ll}
3 & \text { if } 1 \leq i \leq 3 t \\
2 & \text { if } 3 t+1 \leq i \leq 4 t \\
1 & \text { if } 4 t+1 \leq i \leq 6 t
\end{array} \quad f\left(v_{i}\right)= \begin{cases}2 & \text { if } 1 \leq i \leq 3 t \\
1 & \text { if } 3 t+1 \leq i \leq 5 t \\
3 & \text { if } 5 t+1 \leq i \leq 6 t\end{cases}\right.
$$

In this case $v_{f}(1)=4 t, v_{f}(2)=v_{f}(3)=4 t+1, e_{f}(0)=9 t+1$, and $e_{f}(1)=9 t$.
Case 2. $n \equiv 1(\bmod 6)$.
Since $B_{1} \cong L_{2}$, Figure 1 shows that B_{1} is 3 -divisor cordial. Let $n=6 t+1$ where $t>0$. Assign the labels to the vertices of $u_{i}, v_{i}(1 \leq i \leq 6 t)$ as in Case 1 . Then put the labels 1,3 respectively to the vertices $u_{6 t+1}, v_{6 t+1}$. Now relabel the vertices $v_{3 t+1}, v_{5 t+1}, v_{5 t+2}$ by $3,1,1$ respectively. Here $v_{f}(1)=4 t+2, v_{f}(2)=v_{f}(3)=4 t+1$, and $e_{f}(0)=e_{f}(1)=9 t+2$.
Case 3. $n \equiv 2(\bmod 6)$.
Let $n=6 t+2$ where $t \geq 0$. As in case 2 , assign the labels to $u_{i}, v_{i}(1 \leq i \leq 6 t)$. Then assign 1,3 respectively to the vertices $u_{6 t+2}, v_{6 t+2}$. Now relabel the vertices $u_{3 t+1}, u_{4 t+1}, v_{3 t+1}$ by 3,2 , 2 respectively. Note that $v_{f}(1)=v_{f}(2)=v_{f}(3)=4 t+2, e_{f}(0)=9 t+4$, and $e_{f}(1)=9 t+3$. Case 4. $n \equiv 3(\bmod 6)$.
Let $n=6 t+3$ where $t \geq 0$. As in case 3 , assign the labels to $u_{i}, v_{i}(1 \leq i \leq 6 t)$. Then assign 1,3 to the vertices $u_{6 t+3}, v_{6 t+3}$ respectively. Now relabel the vertices $u_{4 t+2}, v_{3 t+2}, v_{5 t+3}$ by 2,3 , 1 respectively. Clearly $v_{f}(1)=4 t+2, v_{f}(2)=v_{f}(3)=4 t+3$, and $e_{f}(0)=e_{f}(1)=9 t+5$.
Case 5. $n \equiv 4(\bmod 6)$.
Let $n=6 t+4$ where $t \geq 0$. Assign the labels to $u_{i}, v_{i}(1 \leq i \leq 6 t)$ as in case 4 . Then assign 1,3 to the vertices $u_{6 t+4}, v_{6 t+4}$ respectively. Finally relabel the vertices $u_{3 t+2}, v_{3 t+2}, v_{5 t+4}$ by 2 , 2,1 respectively. In this case $v_{f}(1)=4 t+4, v_{f}(2)=v_{f}(3)=4 t+3, e_{f}(0)=9 t+7$, and $e_{f}(1)=9 t+6$.
Case 6. $n \equiv 5(\bmod 6)$.
Let $n=6 t+5$ where $t \geq 0$. As in case 5 , assign the labels to $u_{i}, v_{i}(1 \leq i \leq 6 t)$. Then assign 1,3 to the vertices $u_{6 t+5}, v_{6 t+5}$ respectively. Now relabel the vertices $u_{4 t+3}, v_{3 t+3}, v_{5 t+5}$ by 2,3 , 1 respectively. Clearly $v_{f}(1)=v_{f}(2)=v_{f}(3)=4 t+4$, and $e_{f}(0)=e_{f}(1)=9 t+8$.
Hence B_{n} is 3-divisor cordial, for all values of n.

References

[1] I. Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, Ars combin., 23 (1987) 201-207.
[2] J. A. Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, (2018) \# Ds6.
[3] F. Harary, Graph theory, Narosa Publishing house, New Delhi (2001).
[4] R.Varatharajan, S.Navanaeethakrishnan, and K.Nagarajan, Divisor cordial graphs, Internat. J. Math. Combin., 4 (2011) 15-25.
[5] S.Sathish Narayanan, 3-divisor cordial labeling of graphs, Ars combinatoria, Accepted for publication.
[6] S.Sathish Narayanan, 3-divisor cordial labeling of some join graphs, Jordan Journal of Mathematics and Statistics, 13(2)(2020), 221-230.

Author information

S.Sathish Narayanan, Department of Mathematics,
Sri Paramakalyani College,
Alwarkurichi-627412.,
India.
E-mail: sathishrvss@gmail.com

Received: February 24, 2019.
Accepted: August 19, 2019.

