3-divisor cordiality of some product related graphs

S.Sathish Narayanan

Communicated by Ayman Badawi

MSC 2010 Classifications: 05C78

Keywords and phrases: star, path, ladder, complete graph, prism.

Abstract Let G be a (p,q) graph and $2 \le k \le p$. Let $f: V(G) \to \{1,2,\ldots,k\}$ be a map. For each edge uv, assign the label 1 if either f(u) or f(v) divides the other and 0 otherwise. f is called a k-divisor cordial labeling if $|v_f(i)-v_f(j)| \le 1$ i, $j \in \{1,2,\ldots,k\}$ and $|e_f(0)-e_f(1)| \le 1$ where $v_f(x)$ denotes the number of vertices labeled with x, where $x \in \{1,2,\ldots,k\}$, $e_f(i)$ denote the number of edges labeled with $i,i \in \{0,1\}$. A graph with a k-divisor cordial labeling is called a k-divisor cordial graph. In this paper, we discuss 3-divisor cordial labeling behavior of ladder, prism and book graphs.

1 Introduction

Graphs considered here are finite, undirected and simple. In 1980, Cahit [1] introduced the cordial labeling of graphs. In [4], Varatharajan, Navanaeethakrishnan, and Nagarajan introduced a notion, called divisor cordial labeling and proved the standard graphs such as paths, cycles, wheels, stars and some complete bipartite graphs are divisor cordial. Sathish Narayanan introduced the notion of k-divisor cordial labeling in [5]. In [6], 3-divisor cordiality of wheel and $\overline{K_n} + 2K_2$ have been studied. In this paper we studied the 3-divisor cordial labeling behavior of ladder, prism and book graphs. Terms and definitions not defined here are used in the sense of Harary [3] and Gallian [2].

2 3-divisor cordial labeling

Definition 2.1. Let G be a (p,q) graph and $2 \le k \le p$. Let $f: V(G) \to \{1,2,\ldots,k\}$ be a map. For each edge xy, assign the label 1 if either f(x) or f(y) divides the other and 0 otherwise. f is called a k-divisor cordial labeling if $|v_f(i) - v_f(j)| \le 1$ $i,j \in \{1,2,\ldots,k\}$ and $|e_f(0) - e_f(1)| \le 1$ where $v_f(x)$ denotes the number of vertices labeled with x, where $x \in \{1,2,\ldots,k\}$, $e_f(i)$ denote the number of edges labeled with $i,i \in \{0,1\}$. A graph with a k-divisor cordial labeling is called a k-divisor cordial graph.

Definition 2.2. The *Cartesian product* of two graphs G_1 and G_2 is the graph $G_1 \square G_2$ with the vertex set $V_1 \square V_2$ and two vertices $u = (u_1, u_2)$ and $v = (v_1, v_2)$ are adjacent whenever $[u_1 = v_1]$ and u_2 adj v_2 or $[u_2 = v_2]$ and u_1 adj v_1 .

First we consider the graph ladder $L_n = P_n \square P_2$. Let $V(L_n) = \{u_i, v_i : 1 \le i \le n\}$ and $E(L_n) = \{u_i u_{i+1}, v_i v_{i+1} : 1 \le i \le n-1\} \cup \{u_i v_i : 1 \le i \le n\}$. Note that L_n consists of 2n vertices and 3n-2 edges.

Theorem 2.3. The ladder $L_n = P_n \square P_2$ is 3-divisor cordial.

Proof. The proof is divided into twelve cases. **Case 1.** $n \equiv 0 \pmod{12}$.

Let n = 12t where $t \ge 1$. Here we define a map $f: V(L_n) \to \{1, 2, 3\}$ as follows:

$$f(u_{2i-1}) = f(v_{2i}) = 2, \quad 1 \le i \le 3t$$

$$f(u_{2i}) = f(v_{2i-1}) = 3, \quad 1 \le i \le 3t$$

$$f(u_{6t+i}) = f(v_{6t+i}) = 2, \quad 1 \le i \le t$$

$$f(u_{7t+i}) = f(v_{7i+i}) = 1, \quad 1 \le i \le 4t$$

$$f(u_{11t+i}) = f(v_{11t+i}) = 3, \quad 1 \le i \le t$$

Case 2. $n \equiv 1 \pmod{12}$.

Let n = 12t + 1 where $t \ge 1$. We define a map $f: V(L_n) \to \{1, 2, 3\}$ as follows:

$$\begin{array}{llll} f(u_{2i-1}) & = & 2, & 1 \leq i \leq 3t+1 \\ f(u_{2i}) & = & 3, & 1 \leq i \leq 3t \\ f(v_{2i-1}) & = & 3, & 1 \leq i \leq 3t+1 \\ f(v_{2i}) & = & 2, & 1 \leq i \leq 3t+1 \\ f(u_{6t+2+i}) & = & f(v_{6t+2+i}) & = & 2, & 1 \leq i \leq t \\ f(u_{7t+3+i}) & = & f(v_{7t+3+i}) & = & 3, & 1 \leq i \leq t \\ f(u_{8t+3+i}) & = & f(v_{8t+3+i}) & = & 1, & 1 \leq i \leq 4t-2 \end{array}$$

and
$$f(u_{6t+2}) = f(v_{6t+2}) = f(u_{7t+3}) = f(v_{7t+3}) = 1$$
.

Case 3. $n \equiv 2 \pmod{12}$.

For n = 2, Figure 1 shows that L_2 is a 3-divisor cordial graph.

Figure 1.

Let n=12t+2 where $t\geq 1$. We define a map $f:V(L_n)\to \{1,2,3\}$ as follows: assign the labels to the vertices $u_i, v_i \ (1\leq i\leq 6t+1)$ as in case 2.

$$f(u_{6t+1+i}) = f(v_{6t+1+i}) = 2, \quad 1 \le i \le t$$

$$f(u_{7t+1+i}) = f(v_{7t+1+i}) = 1, \quad 1 \le i \le 4t+1$$

$$f(u_{11t+2+i}) = f(v_{11t+2+i}) = 3, \quad 1 \le i \le t.$$

Case 4. $n \equiv 3 \pmod{12}$.

The vertex labelings given in Figure 2 establish that L_3 and L_{15} are 3-divisor cordial graphs.

Figure 2.

Let n = 12t + 3 where $t \ge 2$. We define a map $f: V(L_n) \to \{1, 2, 3\}$ as follows: assign the

labels to the vertices u_i , v_i $(1 \le i \le 6t + 1)$ as in case 2.

$$\begin{array}{llll} f(u_{6t+1+i}) & = & 2, & 1 \leq i \leq 3 \\ f(v_{6t+1+i}) & = & 3, & 1 \leq i \leq 3 \\ f(u_{6t+5+i}) & = & f(v_{6t+5+i}) & = & 2, & 1 \leq i \leq t-1 \\ f(u_{7t+5+i}) & = & f(v_{7t+5+i}) & = & 3, & 1 \leq i \leq t-1 \\ f(u_{8t+4+i}) & = & f(v_{8t+4+i}) & = & 1, & 1 \leq i \leq 4t-1 \end{array}$$

and
$$f(u_{6t+5}) = f(v_{6t+5}) = f(u_{7t+5}) = f(v_{7t+5}) = 1$$
.

Case 5. $n \equiv 4 \pmod{12}$.

Figure 3 shows that L_4 is a 3-divisor cordial graph.

Figure 3.

Let n=12t+4 where $t\geq 1$. We define a map $f:V(L_n)\to\{1,2,3\}$ as follows: assign the labels to the vertices $u_i,\,v_i\ (1\leq i\leq 6t+1)$ as in case 2. Then put the number 3 to the vertex u_{6t+2} and 2 to v_{6t+2} . Then

$$\begin{array}{lclcl} f(u_{6t+2+i}) & = & f(v_{6t+2+i}) & = & 2, & 1 \le i \le t \\ f(u_{7t+3+i}) & = & f(v_{7t+3+i}) & = & 1, & 1 \le i \le 4t \\ f(u_{11t+4+i}) & = & f(v_{11t+4+i}) & = & 3, & 1 \le i \le t \end{array}$$

$$f(v_{7t+3}) = f(v_{11t+4}) = 1$$
, $f(u_{7t+3}) = 2$ and $f(u_{11t+4}) = 3$. Case 6. $n \equiv 5 \pmod{12}$.

From Figure 4, we observe that L_5 is 3-divisor cordial.

Figure 4.

Let n = 12t + 5 where $t \ge 1$. We define a map $f: V(L_n) \to \{1, 2, 3\}$ as follows:

$$\begin{array}{lll} f(u_{2i-1}) & = & 2, & 1 \leq i \leq 3t+2 \\ f(u_{2i}) & = & 3, & 1 \leq i \leq 3t+1 \\ f(v_{2i-1}) & = & 3, & 1 \leq i \leq 3t+2 \\ f(v_{2i}) & = & 2, & 1 \leq i \leq 3t+1 \\ f(u_{6t+4+i}) & = & f(v_{6t+4+i}) & = & 2, & 1 \leq i \leq t \\ f(u_{7t+5+i}) & = & f(v_{7t+5+i}) & = & 3, & 1 \leq i \leq t \\ f(u_{8t+5+i}) & = & f(v_{8t+5+i}) & = & 1, & 1 \leq i \leq 4t \end{array}$$

and
$$f(u_{6t+4}) = f(v_{6t+4}) = f(u_{7t+5}) = f(v_{7t+5}) = 1$$
.

Case 7. $n \equiv 6 \pmod{12}$.

For L_6 , Figure 5 establish that L_6 is 3-divisor cordial.

Let n=12t+6 where $t\geq 1$. Consider $f:V(L_n)\to \{1,2,3\}$ as follows: assign the labels to the vertices $u_i, v_i \ (1\leq i\leq 6t+3)$ as in case 6. Then

$$f(u_{6t+3+i}) = f(v_{6t+3+i}) = 2, \quad 1 \le i \le t$$

$$f(u_{7t+4+i}) = f(v_{7t+4+i}) = 1, \quad 1 \le i \le 4t+1$$

$$f(u_{11t+6+i}) = f(v_{11t+6+i}) = 3, \quad 1 \le i \le t$$

Figure 5.

 $f(v_{7t+4}) = f(v_{11t+6}) = 1$, $f(u_{7t+4}) = 2$ and $f(u_{11t+6}) = 3$. **Case 8.** $n \equiv 7 \pmod{12}$.

Figure 6 shows that L_7 is a 3-divisor cordial graph.

Figure 6.

Let n = 12t + 7 where $t \ge 1$. We define a map $f: V(L_n) \to \{1, 2, 3\}$ as follows:

$$f(u_{2i-1}) = f(v_{2i}) = 2, \quad 1 \le i \le 3t + 2$$

$$f(u_{2i}) = f(v_{2i-1}) = 3, \quad 1 \le i \le 3t + 2$$

$$f(u_{6t+5+i}) = f(v_{6t+5+i}) = 2, \quad 1 \le i \le t$$

$$f(u_{7t+7+i}) = f(v_{7t+7+i}) = 3, \quad 1 \le i \le t$$

$$f(u_{8t+8+i}) = f(v_{8t+8+i}) = 1, \quad 1 \le i \le 4t - 1$$

 $f(v_{7t+6}) = f(u_{7t+7}) = f(v_{7t+7}) = f(v_{8t+8}) = 1$, $f(u_{7t+6}) = 2$ and $f(u_{8t+8}) = 3$. **Case 9.** $n \equiv 8 \pmod{12}$.

Let n = 12t + 8 where $t \ge 0$. We define a map $f: V(L_n) \to \{1, 2, 3\}$ as follows:

$$f(u_{2i-1}) = f(v_{2i}) = 2, \quad 1 \le i \le 3t + 2$$

$$f(u_{2i}) = f(v_{2i-1}) = 3, \quad 1 \le i \le 3t + 2$$

$$f(u_{6t+4+i}) = f(v_{6t+4+i}) = 2, \quad 1 \le i \le t$$

$$f(u_{7t+5+i}) = f(v_{7t+5+i}) = 1, \quad 1 \le i \le 4t + 2$$

$$f(u_{11t+8+i}) = f(v_{11t+8+i}) = 3, \quad 1 \le i \le t$$

 $f(v_{7t+5}) = f(v_{11t+8}) = 1$, $f(u_{7t+5}) = 2$ and $f(u_{11t+8}) = 3$.

Case 10. $n \equiv 9 \pmod{12}$.

Let n = 12t + 9 where $t \ge 0$. We define a map $f: V(L_n) \to \{1, 2, 3\}$ as follows:

$$\begin{array}{lll} f(u_{2i-1}) & = & 2, & 1 \leq i \leq 3t+3 \\ f(u_{2i}) & = & 3, & 1 \leq i \leq 3t+2 \\ f(v_{2i-1}) & = & 3, & 1 \leq i \leq 3t+3 \\ f(v_{2i}) & = & 2, & 1 \leq i \leq 3t+2 \\ f(u_{6t+6+i}) & = & f(v_{6t+6+i}) & = & 2, & 1 \leq i \leq t \\ f(u_{7t+8+i}) & = & f(v_{7t+8+i}) & = & 3, & 1 \leq i \leq t \\ f(u_{8t+9+i}) & = & f(v_{8t+9+i}) & = & 1, & 1 \leq i \leq 4t \end{array}$$

 $f(u_{6t+6}) = f(v_{6t+6}) = f(v_{7t+7}) = f(u_{7t+8}) = f(v_{7t+8}) = f(v_{8t+9}) = 1, f(u_{7t+7}) = 2$ and $f(u_{8t+9}) = 3$.

Case 11. $n \equiv 10 \pmod{12}$.

Let n=12t+10 where $t\geq 0$. We define a map $f:V(L_n)\to\{1,2,3\}$ as follows: assign the labels to the vertices $u_i, v_i \ (1\leq i\leq 6t+5)$ as in case 10. Then

$$f(u_{6t+5+i}) = f(v_{6t+5+i}) = 2, \quad 1 \le i \le t+1$$

 $f(u_{7t+6+i}) = f(v_{7t+6+i}) = 1, \quad 1 \le i \le 4t+3$
 $f(u_{11t+9+i}) = f(v_{11t+9+i}) = 3, \quad 1 \le i \le t+1$

Case 12. $n \equiv 11 \pmod{12}$.

Let n = 12t + 11 where $t \ge 0$. We define a map $f: V(L_n) \to \{1, 2, 3\}$ as follows:

$$f(u_{2i-1}) = f(v_{2i}) = 2, \quad 1 \le i \le 3t + 3$$

$$f(u_{2i}) = f(v_{2i-1}) = 3, \quad 1 \le i \le 3t + 3$$

$$f(u_{6t+7+i}) = f(v_{6t+7+i}) = 2, \quad 1 \le i \le t$$

$$f(u_{7t+9+i}) = f(v_{7t+9+i}) = 3, \quad 1 \le i \le t$$

$$f(u_{8t+10+i}) = f(v_{8t+10+i}) = 1, \quad 1 \le i \le 4t + 1$$

$$f(u_{6t+7}) = f(v_{6t+7}) = f(v_{7t+8}) = f(u_{7t+9}) = f(v_{7t+9}) = f(v_{8t+10}) = 1, f(u_{7t+8}) = 2$$
 and $f(u_{8t+10}) = 3$.

The vertex and edge conditions are given in Table 1 and Table 2.

Nature of n	$v_f(1)$	$v_f(2)$	$v_f(3)$
$n \equiv 0 \pmod{3}$	$\frac{2n}{3}$	$\frac{2n}{3}$	$\frac{2n}{3}$
$n \equiv 1 \pmod{3}$	$\frac{2n-2}{3}$	$\frac{2n+1}{3}$	$\frac{2n+1}{3}$
$n \equiv 2 \pmod{3}$	$\frac{2n+2}{3}$	$\frac{2n-1}{3}$	$\frac{2n-1}{3}$

Table 1.

Nature of n	$e_f(0)$	$e_f(1)$
$n \equiv 0 \pmod{2}$	$\frac{3n-2}{2}$	$\frac{3n-2}{2}$
$n \equiv 1 \pmod{2}$	$\frac{3n-1}{2}$	$\frac{3n-3}{2}$

Table 2.

Hence L_n is 3-divisor cordial.

Next we consider prism graph $C_n \square P_2$. Let $V(C_n \square P_2) = V(L_n)$ and $E(C_n \square P_2) = E(L_n) \cup \{u_n u_1, v_n v_1\}$.

Theorem 2.4. Prism $C_n \square P_2$ is 3-divisor cordial.

Proof. Assign the labels to the vertices as in Theorem 2.3. The vertex condition given in Table 1 and the edge condition given in Table 3 shows that $C_n \square P_2$ is 3-divisor cordial.

Nature of n	$e_f(0)$	$e_f(1)$
$n \equiv 0 \pmod{2}$	$\frac{3n}{2}$	$\frac{3n}{2}$
$n \equiv 1 \pmod{2}$	$\frac{3n-1}{2}$	$\frac{3n+1}{2}$

Table 3.

This completes the proof.

Next we discuss 3-divisor cordial labeling behavior of book graph. A book graph is a cartesian product of star graph with K_2 and we denote it by $B_n = K_{1,n} \square K_2$. Let $V(B_n) = \{u,v,u_i,v_i:1\leq i\leq n\}$ and $E(B_n)=\{uv,uu_i,vv_i:1\leq i\leq n\}$. Note that B_n consists of 2n+2 vertices and 3n+1 edges.

Theorem 2.5. Book $B_n = K_{1,n} \square K_2$ is 3-divisor cordial, for all n.

Proof. We construct a vertex labeling f from the set of vertices of B_n to the set $\{1,2,3\}$ by f(u) = 2, f(v) = 3 and we consider the following cases for the labeling of other vertices. **Case 1.** $n \equiv 0 \pmod{6}$.

Let n = 6t where $t \ge 1$. Here

$$f(u_i) = \begin{cases} 3 & \text{if } 1 \le i \le 3t \\ 2 & \text{if } 3t + 1 \le i \le 4t \\ 1 & \text{if } 4t + 1 \le i \le 6t \end{cases} \qquad f(v_i) = \begin{cases} 2 & \text{if } 1 \le i \le 3t \\ 1 & \text{if } 3t + 1 \le i \le 5t \\ 3 & \text{if } 5t + 1 \le i \le 6t \end{cases}$$

In this case $v_f(1) = 4t$, $v_f(2) = v_f(3) = 4t + 1$, $e_f(0) = 9t + 1$, and $e_f(1) = 9t$.

Case 2. $n \equiv 1 \pmod{6}$.

Since $B_1\cong L_2$, Figure 1 shows that B_1 is 3-divisor cordial. Let n=6t+1 where t>0. Assign the labels to the vertices of u_i, v_i $(1\leq i\leq 6t)$ as in Case 1. Then put the labels 1, 3 respectively to the vertices u_{6t+1}, v_{6t+1} . Now relabel the vertices $v_{3t+1}, v_{5t+1}, v_{5t+2}$ by 3, 1, 1 respectively. Here $v_f(1)=4t+2, v_f(2)=v_f(3)=4t+1$, and $e_f(0)=e_f(1)=9t+2$.

Case 3. $n \equiv 2 \pmod{6}$.

Let n=6t+2 where $t\geq 0$. As in case 2, assign the labels to u_i,v_i $(1\leq i\leq 6t)$. Then assign 1, 3 respectively to the vertices u_{6t+2},v_{6t+2} . Now relabel the vertices $u_{3t+1},u_{4t+1},v_{3t+1}$ by 3, 2, 2 respectively. Note that $v_f(1)=v_f(2)=v_f(3)=4t+2,e_f(0)=9t+4,$ and $e_f(1)=9t+3$. Case 4. $n\equiv 3\pmod 6$.

Let n=6t+3 where $t\geq 0$. As in case 3, assign the labels to u_i,v_i $(1\leq i\leq 6t)$. Then assign 1, 3 to the vertices u_{6t+3},v_{6t+3} respectively. Now relabel the vertices $u_{4t+2},v_{3t+2},v_{5t+3}$ by 2, 3, 1 respectively. Clearly $v_f(1)=4t+2,v_f(2)=v_f(3)=4t+3$, and $e_f(0)=e_f(1)=9t+5$. Case 5. $n\equiv 4\pmod 6$.

Let n=6t+4 where $t\geq 0$. Assign the labels to u_i,v_i $(1\leq i\leq 6t)$ as in case 4. Then assign 1, 3 to the vertices u_{6t+4},v_{6t+4} respectively. Finally relabel the vertices $u_{3t+2},v_{3t+2},v_{5t+4}$ by 2, 2, 1 respectively. In this case $v_f(1)=4t+4,v_f(2)=v_f(3)=4t+3,e_f(0)=9t+7,$ and $e_f(1)=9t+6.$

Case 6. $n \equiv 5 \pmod{6}$.

Let n=6t+5 where $t\geq 0$. As in case 5, assign the labels to u_i,v_i $(1\leq i\leq 6t)$. Then assign 1, 3 to the vertices u_{6t+5},v_{6t+5} respectively. Now relabel the vertices $u_{4t+3},v_{3t+3},v_{5t+5}$ by 2, 3, 1 respectively. Clearly $v_f(1)=v_f(2)=v_f(3)=4t+4$, and $e_f(0)=e_f(1)=9t+8$. Hence B_n is 3-divisor cordial, for all values of n.

References

- [1] I. Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, *Ars combin.*, **23** (1987) 201-207.
- [2] J. A. Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, (2018) # Ds6.
- [3] F. Harary, Graph theory, Narosa Publishing house, New Delhi (2001).
- [4] R.Varatharajan, S.Navanaeethakrishnan, and K.Nagarajan, Divisor cordial graphs, *Internat. J. Math. Combin.*, 4 (2011) 15-25.
- [5] S.Sathish Narayanan, 3-divisor cordial labeling of graphs, Ars combinatoria, Accepted for publication.
- [6] S.Sathish Narayanan, 3-divisor cordial labeling of some join graphs, *Jordan Journal of Mathematics and Statistics*, **13(2)**(2020), 221-230.

Author information

S.Sathish Narayanan, Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412.,

India.

E-mail: sathishrvss@gmail.com

Received: February 24, 2019. Accepted: August 19, 2019.