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Abstract In this paper we design a MATLAB program to obtain maximal graphs associated
to rings Zn and compute their energy. This program expresses an intrinsic relationship between
the elements of the ring Zn and its structural properties of graphs. In addition, the maximal
graph gives a class of graphs whose line graph is hyperenergetic.

1 Introduction

All rings considered below are commutative and unital. For any ring R, R′ denote the set of all
nonunits of R. Maximal graph associated to a ring R was introduced in [4], and is defined as
the simple graph with vertices the elements of R, and two distinct vertices x, y are adjacent if
and only if there is a maximal ideal of R containing both x and y. It is denoted by G(R). The
restriction of maximal graph to nonunit elements of R is considered in [5], and is denoted by
Γ(R). Since unit elements of R are just isolated vertices in G(R), the authors continued to call
Γ(R) also the maximal graph associated to R.

In [10], we study the structure of maximal graph theoretically. Note that sketching the maxi-
mal graphs of high order is not always easy as it may be the union of many complete graphs such
that intersection of any two of these has at least two vertices. Thus, in this paper, we design a
MATLAB program to obtain maximal graph associated to ring Zn. Also we discuss the concept
of energy of a graph which was first introduced by Gutman in [6].

For a simple graph G with n vertices, the adjacency matrix is a n × n matrix defined as
A = (aij)n×n, where

aij =

{
1, if vi and vj are adjacent;
0, otherwise.

Thus, A is real, symmetric matrix. Since diagonal entries of A are zero and hence the sum of
all the eigenvalues is equal to zero. The eigenvalues of a graph G is defined as the eigenvalues
of the adjacency matrix associated with G. The spectrum of a graph G is the set of eigenvalues
of G together with their multiplicity. It is denoted as Spec(G). Let λ1, λ2, . . . , λk be distinct
eigenvalues of a graph G having multiplicities m1, m2, . . . , mk. Then the spectrum of the graph
G is written as

Spec(G) =

(
λ1 λ2 . . . λk

m1 m2 . . . mk

)
By order of a graph G we mean the number of vertices in G; and by m(G) we mean the

number of edges in G. Note that the order of Γ(Zn) is n−φ(n), where φ is Euler’s phi function.
The energy of a graph G of order n is denoted by EG and is defined as the sum of the absolute
values of the eigenvalues of G, that is,

EG =
n∑
i=1

|λi|,

where λ′is are the eigenvalues of G. A graph G of order n having energy EG > 2(n−1) is called
hyperenergetic and graphs having energy EG ≤ 2(n− 1) is called non-hyperenergetic.

In Section 2, we prove that for any finite ring R with k maximal ideals and |R′| ≥ 4, Γ(R)
has an eigenvalue −1 of multiplicity n − (2k − 1), where n is the order of Γ(R). In addition,
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we prove that for any finite ring R with two maximal ideal and |R′| ≥ 4, Γ(R) has four distinct
eigenvalues. We are used a MATLAB program to draw the maximal graph corresponding to ring
Zn and to compute the energy of Γ(Zn). In Section 3, we prove that L(Γ(R)) is hyperenergetic
except for few listed rings.

2 Energy of Maximal Graph

Recall that the energy of a graph G is the sum of absolute values of all the eigenvalues of G. For
the maximal graph G(R) associated to a ring R, it can be easily verified that the energy of G(R)
and the energy of Γ(R) are same as the isolated vertices do not affect the energy of a graph.
Since the adjacency matrix of any undirected, simple graph is real symmetric, the eigenvalues of
Γ(R) are real. Thus, EΓ(R) is a real number. However, for any local ring R the energy of Γ(R)
is an integer. This we show in the first result of this section.

Theorem 2.1. Let (R,m) be a finite local ring. Then the energy of Γ(R) is an integer.

Proof. Since any finite local ring have pn elements for some prime p and n ∈ N, we may assume
that |R| = pm for some prime p and m ∈ N. Thus, for some k ∈ N we have |m| = pk as |m|
divides |R|. Clearly, Γ(R) is a complete graph of order pk and hence by [1, Section 11.3], the
eigenvalues of Γ(R) are pk − 1 and −1 of multiplicity 1 and pk − 1, respectively. Therefore,
energy of Γ(R) is

EΓ(R) = |pk − 1|+ | − 1|+ | − 1|+ · · ·+ | − 1|︸ ︷︷ ︸
(pk−1) times

= 2(pk − 1).

2

As a companion to Theorem 2.1 we have the following corollary.

Corollary 2.2. For n = pk, where p is a prime and k ≥ 1, the energy of Γ(Zn) is an integer.

Proof. Since Zn is a local ring with maximal ideal of cardinality pk−1, the result follows by
Theorem 2.1. 2

Spectral graph theory drew lot of attention because of its wide application in the fields of
chemistry, biology, and graph coloring. Thus, spectrum of a graph are of particular interest.
Note that if R is a ring with n nonunits and k maximal ideals, then n ≥ 2k − 1 as the smallest
ring with k maximal ideals is Z2 × · · · × Z2︸ ︷︷ ︸

k times

. In the next theorem, we discuss the multiplicity of

eigenvalue −1 of Γ(R) for any non-local ring R.

Theorem 2.3. Let R be a finite ring with k maximal ideals and n nonunits. If n > 2k − 1, then
Γ(R) has an eigenvalue −1 of multiplicity n − (2k − 1); otherwise −1 is not the eigenvalue of
Γ(R).

Proof. Since R is a finite ring with k maximal ideals, say, m1,m2, · · · ,mk. Then by [9, Re-
mark 2.9], R ∼= R1 ×R2 × · · · ×Rk such that

|mi| = p
(mi−1)α1
i

k∏
j=1
i6=j

p
mjαj

j , |mi ∩mj | = p
(mi−1)αi

i p
(mj−1)αj

j

k∏
l=1

i,j 6=l

pmlαl

l , . . .

| ∩ki=1 mi| =
k∏
i=1

p
(mi−1)αi

i ,

where mi is the length of Ri as a module over itself and |Ri| = pmiαi
i for all i. Thus, by [10,

Theorem 3.1], Γ(R) ∼= Kn1 ∪Kn2 ∪ · · · ∪Knk
where ni = p

(mi−1)αi

i

∏k
j=1
i6=j

p
mjαj

j . Let A be the
adjacency matrix of Γ(R). Then A is a n× n matrix, where n is the order of Γ(R). Since Γ(R)
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is a simple graph and Γ(R) ∼= Kn1 ∪Kn2 ∪ · · · ∪Knk
, we have the rows in A+ I corresponding

to the vertices of Kni
\∪kj=1

i6=j

Knj
, (Kni

∩Knj
)\∪kl=1

i,j 6=l

Knl
, . . . ,∩ki=1Kni

, respectively, are same.

Thus,

A+ I ∼

(
A1 O

O O

)
, where A1 is a non-singular 2k − 1× 2k − 1 matrix.

From this, we conclude that rank(A+ I) = 2k − 1. If n > 2k − 1, then −1 is the eigenvalue of
Γ(R) of multiplicity n− (2k − 1). If n = 2k − 1, then rank(A+ I) = n, and hence −1 is not an
eigenvalue of Γ(R). 2

Theorem 2.4. Let R be a finite ring with two maximal ideals and |R′| ≥ 4. Then Γ(R) has four
distinct eigenvalues with −1 an eigenvalue of multiplicity n− 3, where n is the order of Γ(R).

Proof. By Theorem 2.3, −1 is the eigenvalue of Γ(R) of multiplicity n − 3. Thus, Γ(R) has
at most four distinct eigenvalues. Also, by [2, Proposition 1.3.3], Γ(R) has at least 3 distinct
eigenvalues. Suppose Γ(R) has exactly 3 distinct eigenvalues, say, −1, λ1, λ2. Let λ1 be the
largest among them. Then by [2, Theorem 2.2.1], the multiplicity of λ1 is one. This implies that
multiplicity of λ2 is 2. As the sum of all eigenvalues of Γ(R) is equal to trace of A, we have

−1(n− 3) + λ1 + 2λ2 = 0

λ1 + 2λ2 = n− 3

Now by [1, Corollary 11.5.2], λ1 < n−1. This implies that λ2 > −1. Thus, all three eigenvalues
of Γ(R) are greater than −2, which is a contradiction by [11, Proposition 5]. This shows that
Γ(R) has four distinct eigenvalues. 2

As an immediate consequence of Theorem 2.4 we have the following corollary.

Corollary 2.5. Let n = prqs, where p, q are distinct primes and r, s ≥ 1. Then Γ(Zn) has an
eigenvalue −1 of multiplicity m − 3, where m is the order of Γ(Zn). In particular, Γ(Zn) has
four distinct eigenvalues.

Proof. As Zprqs is a ring with two maximal ideals of cardinality pr−1qs and prqs−1, the result
follows by Theorem 2.4. 2

Note that it may not be easy to find out the energy of a maximal graph Γ(R) associated to
any ring R. Naturally one may think of a computer program to compute the same. Thus, we now
used a MATLAB program to draw a maximal graph and find out the energy of maximal graph
associated to the ring Zn.
The maximal graphs of Z20 and Z60 obtained from the MATLAB program are shown in Figures
1 and 2.

Remark 2.6. From the definition of maximal graph we can easily observe that the maximal graph
Γ(Zn), n = pα1

1 pα2
2 · · · p

αk

k , is same as the maximal graph Γ(R) for all the rings R with exactly k
maximal ideals, say m1,m2, . . . ,mk, such that |mi| = pα1

1 · · · p
αi−1
i · · · pαk

k for all i.

By using the MATLAB programs, we computed eigenvalues and energy of Γ(Zn) for various
values of n and observe the following:

(i) Let n = pα1
1 pα2

2 , where p1, p2 are distinct primes, α1, α2 are positive integers and at least
one αi is greater than one. Then Γ(Zn) is hyperenergetic except n = 12.

(ii) For n = pq, where p and q are distinct primes, p < q, the value of largest eigenvalue, say
λ, of Γ(Zpq) lies between q − 1 and q, that is, q − 1 < λ < q. Also, we observe that the
spectrum of Γ(Zpq) is the following:

Spec(Γ(Zpq)) =
(
−1− a −1 p− 2 + b q − 1 + a− b

1 p+ q − 4 1 1

)
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Figure 1. The maximal graph G(Z20)

Figure 2. The maximal graph G(Z60)

where 0 < a, b < 1, and the maximal graph Γ(Zn) is non-hyperenergetic. In particular,
EΓ(Zn) < 2(p+ q − 2).

(iii) For n = pα1
1 pα2

2 pα3
3 , where p1, p2, p3 are distinct primes and α1, α2, α3 are positive integers,

the maximal graph Γ(Zn) has an eigenvalue −1 of multiplicity m−7, where m is the order
of Γ(Zn). Also, Γ(Zn) is hyperenergetic graph having 8 distinct eigenvalues.

(iv) For n = pα1
1 pα2

2 pα3
3 pα4

4 , where p1, p2, p3, p4 are distinct primes, α1, α2, α3, α4 are positive
integers, the maximal graph Γ(Zn) has an eigenvalue −1 of multiplicity m− 15, where m
is the order of Γ(Zn). Also, Γ(Zn) is hyperenergetic having 16 distinct eigenvalues.

(v) For n = pα1
1 pα2

2 pα3
3 pα4

4 pα5
5 , where p1, p2, p3, p4, p5 are distinct primes and α1, α2, α3, α4, α5

are positive integers, the maximal graph Γ(Zn) has an eigenvalue−1 of multiplicitym−31,
where m is the order of Γ(Zn). Also, Γ(Zn) is hyperenergetic having 32 distinct eigenval-
ues.

Note that in all the cases listed above Γ(Zn) has 2k distinct eigenvalues with−1 an eigenvalue
of multiplicitym−(2k−1), wherem is the order of Γ(Zn) and k is the number of distinct primes
in the factorization of n. Because of the limited computational efficiency of the computer we
could not verify the above observations for n = pα1

1 pα2
2 · · · p

αk

k for k ≥ 6, where p1, p2, . . . , pk
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are distinct primes and α1, α2, . . . , αk are positive integers. In particular, we could not find
any number for which Γ(Zn) do not satisfy above points. This forces us to list the following
conjecture.

Conjecture 2.7. (i) Let n = pα1
1 pα2

2 · · · p
αk

k , where p1, p2, . . . pk are distinct primes and α1, α2, . . . αk
are positive integers. Then Γ(Zn) has 2k distinct eigenvalues with−1 an eigenvalue of mul-
tiplicity m− (2k − 1), where m is the order of Γ(Zn).

(ii) For n = pα1
1 pα2

2 · · · p
αk

k , where p1, p2, . . . pk are distinct primes, α1, α2, . . . αk are positive
integers, and k ≥ 3. Then Γ(Zn) is hyperenergetic.

3 Energy of L(Γ(R))

Recall from Introduction that a graph G of order n having energy EG > 2(n − 1) is called
hyperenergetic, and graphs having energy EG ≤ 2(n − 1) is called non-hyperenergetic. In this
section, we list the rings R such that L(Γ(R)) is hyperenergetic or non-hypenergetic.

Theorem 3.1. Let R be a finite ring with |R′| ≥ 5. Then L(Γ(R)) is hyperenergetic unless R is
isomorphic to one of the following rings:

F2 × Z4, F2 × F2[x]/(x
2), F2 × F4, F3 × F3, F3 × F4, F4 × F4.

Proof. Let R be a finite ring with n maximal ideals and |R′| ≥ 5. To show that L(Γ(R)) is
hyperenergetic, by [8, Theorem 1], it is enough to show that

m(Γ(R)) ≥ 2V (Γ(R)) = 2|R′|.

Since R is a finite ring, we have by [9, Remark 2.9(i)],

|R′| = |J(R)|

{
n∏
i=1

pαi
i −

n∏
i=1

(pαi
i − 1)

}

Also by [10, Theorem 4.2] and [9, Remark 2.9(i)], we have

m(Γ(R)) =
1
2

[
|J(R)|2

{
n∏
i=1

p2αi
i −

n∏
i=1

(p2αi
i − 1)

}

− |J(R)|

{
n∏
i=1

pαi
i −

n∏
i=1

(pαi
i − 1)

}]

If possible, suppose that m(Γ(R)) < 2|R′|. Then

|J(R)|

{
n∏
i=1

p2αi
i −

n∏
i=1

(p2αi
i − 1)

}
< 5

{
n∏
i=1

pαi
i −

n∏
i=1

(pαi
i − 1)

}
(3.1)

Note that even for |J(R)| = 1,

n∏
i=1

p2αi
i −

n∏
i=1

(p2αi
i − 1) 6< 5

{
n∏
i=1

pαi
i −

n∏
i=1

(pαi
i − 1)

}
,

for all n ≥ 3. Thus, for n ≥ 3, that is, for ring R with at least three maximal ideals, L(Γ(R)) is
hyperenergetic.

Now assume that n = 1, that is, R is a local ring. In this case, (3.1) reduces to

|J(R)| < 5,

which is also a contradiction as |R′| ≥ 5. Thus, for all local rings R such that |R′| ≥ 5, L(Γ(R))
is hyperenergetic.
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Now assume that n = 2. Then (3.1) reduces to

|J(R)|{p2α1
1 + p2α2

2 − 1} < 5{pα1
1 + pα2

2 − 1} (3.2)

Now, we have the following three cases:
Case (i). Let |J(R)| ≥ 3. Since for all primes p1, p2 and α1, α2 ∈ N, we have

p2α1
1 + p2α2

2 − 1 ≥ 2{pα1
1 + pα2

2 − 1}

Thus,
6{pα1

1 + pα2
2 − 1} ≤ |J(R)|{p2α1

1 + p2α2
2 − 1} < 5{pα1

1 + pα2
2 − 1},

which is a contradiction. Therefore, for rings R with two maximal ideals such that |J(R)| ≥ 3,
L(Γ(R)) is hyperenergetic.

Case (ii). Let |J(R)| = 2. In this case, (3.2) reduces to

pα1
1 (2pα1

1 − 5) + pα2
2 (2pα2

2 − 5) < −3

which is true only for α1 = 1, α2 = 1 and p1 = 2, p2 = 2, that is, for R ∼= F2 × Z4 or R ∼= F2 ×
F2[x]/(x2). Since Γ(F2×Z4) = Γ(F2×F2[x]/(x2)), it is enough to check whether L(Γ(F2×Z4))
is hyperenergetic or not. For this, we construct the adjacency matrix A of L(Γ(F2×Z4)) is given
as follows:

A =



0 1 1 1 1 1 1 0 1 1 0
1 0 1 1 1 1 0 1 0 0 0
1 1 0 1 1 0 1 1 0 0 0
1 1 1 0 1 0 0 0 1 0 1
1 1 1 1 0 0 0 0 0 1 1
1 1 0 0 0 0 1 1 1 1 0
1 0 1 0 0 1 0 1 1 1 0
0 1 1 0 0 1 1 0 0 0 0
1 0 0 1 0 1 1 0 0 1 1
1 0 0 0 1 1 1 0 1 0 1
0 0 0 1 1 0 0 0 1 1 0


Thus, the spectrum of L(Γ(F2 × Z4)) is given as

Spec(L(Γ(F2 × Z4))) =

(
−2 0 2 6
5 3 2 1

)

and hence EL(Γ(F2×Z4)) = 20 = 2 · 11 − 2 = EK11 . Thus, we conclude that L(Γ(F2 × Z4)) is
non-hyperenergetic. Therefore, L(Γ(R)) is hyperenergetic, for all rings with two maximal ideals
and |J(R)| = 2 except F2 × Z4 and F2 × F2[x]/(x2) (up to isomorphism).

Case (iii). Let |J(R)| = 1. In this case, (3.2) reduces to

pα1
1 (pα1

1 − 5) + pα2
2 (pα2

2 − 5) < −4 (3.3)

which is satisfied only for the following values of α1, α2, p1, p2,

(a) α1 = 1, α2 = 1, p1 = 2, p2 = 2;

(b) α1 = 1, α2 = 1, p1 = 2, p2 = 3;

(c) α1 = 1, α2 = 1, p1 = 2, p2 = 5;

(d) α1 = 1, α2 = 1, p1 = 3, p2 = 3;

(e) α1 = 1, α2 = 1, p1 = 3, p2 = 5;

(f) α1 = 1, α2 = 2, p1 = 2, p2 = 2;
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(g) α1 = 1, α2 = 2, p1 = 3, p2 = 2;

(h) α1 = 2, α2 = 2, p1 = 2, p2 = 2;

Among these (a) and (b) are ruled out as the corresponding rings do not satisfies the condition
|R′| ≥ 5.

Subcase (a). Let α1 = 1, α2 = 1, p1 = 2, p2 = 5. In this case, R ∼= F2×F5. Now adjacency
matrix A of L(Γ(F2 × F5)) is given as follows:

A =



0 1 1 1 1 0 0 0 0 0 0
1 0 1 1 1 1 1 1 0 0 0
1 1 0 1 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1
1 1 1 1 0 0 0 1 0 1 1
0 1 1 0 0 0 1 1 1 1 0
0 1 0 1 0 1 0 1 1 0 1
0 1 0 0 1 1 1 0 0 1 1
0 0 1 1 0 1 1 0 0 1 1
0 0 1 0 1 1 0 1 1 0 1
0 0 0 1 1 0 1 1 1 1 0


Thus, the spectrum of L(Γ(F2 × F5)) is given as

Spec(L(Γ(F2 × F5))) =

(
−2 −1.2749 1 2 6.2749
5 1 3 1 1

)

and hence EL(Γ(F2×F5)) = 22.5498 > 2 · 11− 2 = EK11 . Thus, L(Γ(F2 × F5)) is hyperenergetic.
Subcase (b). Let α1 = 1, α2 = 1, p1 = 3, p2 = 3. In this case, R ∼= F3 × F3. Since

L(Γ(F3×F3)) is of order 6, we have by [7, Theorem 3.4], L(Γ(F3×F3)) is non-hyperenergetic.
Subcase (c). Let α1 = 1, α2 = 1, p1 = 3, p2 = 5. In this case, R ∼= F3×F5. Now adjacency

matrix A of L(Γ(F3 × F5)) is given as follows:

A =



0 1 1 1 1 1 1 0 0 0 0 0 0
1 0 1 1 1 1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 1 1 1 1 0 0 0
1 1 0 1 0 1 1 1 0 0 1 1 0
1 1 0 1 1 0 1 0 1 0 1 0 1
1 1 0 1 1 1 0 0 0 1 0 1 1
0 0 0 1 1 0 0 0 1 1 1 1 0
0 0 0 1 0 1 0 1 0 1 1 0 1
0 0 0 1 0 0 1 1 1 0 0 1 1
0 0 0 0 1 1 0 1 1 0 0 1 1
0 0 0 0 1 0 1 1 0 1 1 0 1
0 0 0 0 0 1 1 0 1 1 1 1 0


Thus, the spectrum of L(Γ(F3 × F5)) is given as

Spec(L(Γ(F3 × F5))) =

(
−2 −1 0.2984 1 3 6.7016
6 1 1 3 1 1

)

and hence EL(Γ(F3×F5)) = 26 > 2 · 13− 2 = EK13 . Thus L(Γ(F3 × F5)) is hyperenergetic.
Subcase (d). Let α1 = 1, α2 = 2, p1 = 2, p2 = 2. In this case, R ∼= F2 × F4. Since

L(Γ(F2×F4)) is of order 7, we have by [7, Theorem 3.4], L(Γ(F2×F4)) is non-hyperenergetic.
Subcase (e). Let α1 = 1, α2 = 2, p1 = 3, p2 = 2. In this case, R ∼= F3×F4. Now adjacency

matrix A of L(Γ(F3 × F4)) is given as follows:
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A =



0 1 1 1 1 1 0 0 0
1 0 1 1 1 1 0 0 0
1 1 0 0 0 0 0 0 0
1 1 0 0 1 1 1 0 1
1 1 0 1 0 1 1 1 0
1 1 0 1 1 0 0 1 1
0 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 0 1
0 0 0 1 0 1 1 1 0


Thus, the spectrum of L(Γ(F3 × F4)) is given as

Spec(L(Γ(F3 × F4))) =

(
−2 −1 0 2 5
3 1 3 1 1

)

and hence EL(Γ(F3×F4)) = 14 < 2 · 9− 2 = EK9 . Thus, L(Γ(F3 × F4)) is non-hyperenergetic.
Subcase (f). Let α1 = 2, α2 = 2, p1 = 2, p2 = 2. In this case, R ∼= F4×F4. Now adjacency

matrix A of L(Γ(F4 × F4)) is given as follows:

A =



0 1 1 1 1 0 1 1 1 0 0 0
1 0 1 1 0 1 1 1 1 0 0 0
1 1 0 0 1 1 1 1 1 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0
1 0 1 1 0 1 0 0 0 0 0 0
0 1 1 1 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 1 1 1 1 0
1 1 1 0 0 0 1 0 1 1 0 1
1 1 1 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 1 0 1 1 0 1
0 0 0 0 0 0 0 1 1 1 1 0


Thus, the spectrum of L(Γ(F4 × F4)) is given as

Spec(L(Γ(F4 × F4))) =

(
−2 0 1 3 6
5 4 1 1 1

)

and hence EL(Γ(F4×F4)) = 20 < 2 · 12− 2 = EK12 . Thus, L(Γ(F4 × F4)) is non-hyperenergetic.
2

Theorem 3.2. Let R be a finite ring with |R′| ≤ 4. Then L(Γ(R)) is non-hyperenergetic.

Proof. Let |R′| ≤ 4. Then |V (Γ(R))| ≤ 4. This implies that |V (L(Γ(R)))| ≤ 6. Thus, by [7,
Theorem 3.4], L(Γ(R)) is non-hyperenergetic. 2
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