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Abstract In this paper we design a MATLAB program to obtain maximal graphs associated
to rings Z,, and compute their energy. This program expresses an intrinsic relationship between
the elements of the ring Z,, and its structural properties of graphs. In addition, the maximal
graph gives a class of graphs whose line graph is hyperenergetic.

1 Introduction

All rings considered below are commutative and unital. For any ring R, R’ denote the set of all
nonunits of R. Maximal graph associated to a ring R was introduced in [4], and is defined as
the simple graph with vertices the elements of R, and two distinct vertices x,y are adjacent if
and only if there is a maximal ideal of R containing both x and y. It is denoted by G(R). The
restriction of maximal graph to nonunit elements of R is considered in [5], and is denoted by
I'(R). Since unit elements of R are just isolated vertices in G(R), the authors continued to call
I'(R) also the maximal graph associated to R.

In [10], we study the structure of maximal graph theoretically. Note that sketching the maxi-
mal graphs of high order is not always easy as it may be the union of many complete graphs such
that intersection of any two of these has at least two vertices. Thus, in this paper, we design a
MATLAB program to obtain maximal graph associated to ring Z,,. Also we discuss the concept
of energy of a graph which was first introduced by Gutman in [6].

For a simple graph G with n vertices, the adjacency matrix is a n x n matrix defined as
A = (a;j)nxn. Where

1, if v; and v; are adjacent;
A;; =
7 0, otherwise.

Thus, A is real, symmetric matrix. Since diagonal entries of A are zero and hence the sum of
all the eigenvalues is equal to zero. The eigenvalues of a graph G is defined as the eigenvalues
of the adjacency matrix associated with GG. The spectrum of a graph G is the set of eigenvalues

of G together with their multiplicity. It is denoted as Spec(G). Let Aj, A,..., A be distinct
eigenvalues of a graph G having multiplicities m;, my, ..., my. Then the spectrum of the graph
G is written as
Al A A
Spec(G) = ( e F )
mi mp ... Mg

By order of a graph G we mean the number of vertices in G; and by m(G) we mean the
number of edges in G. Note that the order of I'(Z,,) is n — ¢(n), where ¢ is Euler’s phi function.
The energy of a graph G of order n is denoted by F¢ and is defined as the sum of the absolute
values of the eigenvalues of G, that is,

n

Eq = Z ‘)‘2|a

i=1

where \.s are the eigenvalues of G. A graph G of order n having energy E¢ > 2(n— 1) is called
hyperenergetic and graphs having energy E¢ < 2(n — 1) is called non-hyperenergetic.

In Section 2, we prove that for any finite ring R with ¥ maximal ideals and |R'| > 4, T'(R)
has an eigenvalue —1 of multiplicity n — (2% — 1), where n is the order of I'(R). In addition,
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we prove that for any finite ring R with two maximal ideal and |R’| > 4, I'(R) has four distinct
eigenvalues. We are used a MATLAB program to draw the maximal graph corresponding to ring
Z,, and to compute the energy of I'(Z,,). In Section 3, we prove that L(T'(R)) is hyperenergetic
except for few listed rings.

2 Energy of Maximal Graph

Recall that the energy of a graph G is the sum of absolute values of all the eigenvalues of G. For
the maximal graph G(R) associated to a ring R, it can be easily verified that the energy of G(R)
and the energy of I'(R) are same as the isolated vertices do not affect the energy of a graph.
Since the adjacency matrix of any undirected, simple graph is real symmetric, the eigenvalues of
['(R) are real. Thus, Er(g) is a real number. However, for any local ring R the energy of I'(R)
is an integer. This we show in the first result of this section.

Theorem 2.1. Let (R, m) be a finite local ring. Then the energy of I'(R) is an integer.

Proof. Since any finite local ring have p™ elements for some prime p and n € N, we may assume
that |R| = p™ for some prime p and m € N. Thus, for some k € N we have |m| = p* as |m|
divides |R|. Clearly, I'(R) is a complete graph of order p* and hence by [1, Section 11.3], the
eigenvalues of I'(R) are p* — 1 and —1 of multiplicity 1 and p* — 1, respectively. Therefore,
energy of I'(R) is

EF(R):|pk—]|+‘—1|+|—]|+...+|_1‘:2(pk_1).

(pk—1) times

As a companion to Theorem 2.1 we have the following corollary.
Corollary 2.2. For n = p*, where p is a prime and k > 1, the energy of I'(Zy,) is an integer.

Proof. Since Z, is a local ring with maximal ideal of cardinality p*~!, the result follows by
Theorem 2.1. O

Spectral graph theory drew lot of attention because of its wide application in the fields of
chemistry, biology, and graph coloring. Thus, spectrum of a graph are of particular interest.
Note that if R is a ring with n nonunits and ¥ maximal ideals, then n > 2k _ 1 as the smallest
ring with & maximal ideals is Z, X --- X Z,. In the next theorem, we discuss the multiplicity of

~—_———

k times
eigenvalue —1 of ['( R) for any non-local ring R.

Theorem 2.3. Let R be a finite ring with k maximal ideals and n nonunits. If n > 2% — 1, then
['(R) has an eigenvalue —1 of multiplicity n — (2F — 1); otherwise —1 is not the eigenvalue of
I'(R).

Proof. Since R is a finite ring with £ maximal ideals, say, m;, my,--- ,my. Then by [9, Re-
mark 2.9], R~ R; x Ry X --- X R}, such that

k k
_ (mi—ly mia; _ (mi—Da; _(mj—1)a; mia
Imi| =p; Hpjj 7y i nmy | =p; 1pj ! Jlel fyeen
o1 =1
i#g i3 F#l

k
[T | P
i=1
where m; is the length of R; as a module over itself and |R;| = p;**** for all ¢. Thus, by [10,
Theorem 3.1, T'(R) & K,,, U K,,, U---U K,,, where n; = pl(_mi—1)ai H%! p;'n]_aj‘ i
i7j

adjacency matrix of I'(R). Then A is a n x n matrix, where n is the order of I'(R). Since I'(R)
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is a simple graph and I'(R) = K,,, U K,,, U--- U K,,,, we have the rows in A + I corresponding
to the vertices of K, \U%_, K., (K,, NKy,)\U*_, K,,,...,N¥ K,,, respectively, are same.

i#] i, #l
Thus,

A O
A+1T~ ( Ol O ) , where A, is a non-singular 2 — 1 x 2¥ — 1 matrix.

From this, we conclude that rank(A + 1) = 2% — 1. If n > 2* — 1, then —1 is the eigenvalue of
['(R) of multiplicity n — (2% — 1). If n = 2% — 1, then rank(A + I) = n, and hence —1 is not an
eigenvalue of I'(R). D

Theorem 2.4. Let R be a finite ring with two maximal ideals and |R'| > 4. Then I'(R) has four
distinct eigenvalues with —1 an eigenvalue of multiplicity n — 3, where n is the order of T(R).

Proof. By Theorem 2.3, —1 is the eigenvalue of I'(R) of multiplicity n — 3. Thus, I'(R) has
at most four distinct eigenvalues. Also, by [2, Proposition 1.3.3], I'(R) has at least 3 distinct
eigenvalues. Suppose I'(R) has exactly 3 distinct eigenvalues, say, —1, A1, A,. Let A\ be the
largest among them. Then by [2, Theorem 2.2.1], the multiplicity of A; is one. This implies that
multiplicity of A, is 2. As the sum of all eigenvalues of I'(R) is equal to trace of A, we have

—1(n—=3)4+ X +20=0
M2 =n-3

Now by [1, Corollary 11.5.2], A\; < n—1. This implies that A, > —1. Thus, all three eigenvalues
of I'(R) are greater than —2, which is a contradiction by [11, Proposition 5]. This shows that
I'(R) has four distinct eigenvalues. O

As an immediate consequence of Theorem 2.4 we have the following corollary.

Corollary 2.5. Let n = p"q®, where p, q are distinct primes and v, s > 1. Then I'(Z,,) has an
eigenvalue —1 of multiplicity m — 3, where m is the order of I'(Z,,). In particular, T'(Z,,) has
four distinct eigenvalues.

Proof. As Z,r,- is a ring with two maximal ideals of cardinality p"~1¢° and p"¢°~!, the result
follows by Theorem 2.4. O

Note that it may not be easy to find out the energy of a maximal graph I'(R) associated to
any ring R. Naturally one may think of a computer program to compute the same. Thus, we now
used a MATLAB program to draw a maximal graph and find out the energy of maximal graph
associated to the ring Z,,.

The maximal graphs of Z;y and Zg, obtained from the MATLLAB program are shown in Figures
1 and 2.

Remark 2.6. From the definition of maximal graph we can easily observe that the maximal graph
['(Zy),n = p{'p5* - - - pi*, is same as the maximal graph I'(R) for all the rings R with exactly &

71..

maximal ideals, say mj, my, ..., my, such that [m;| = p{" - - - pi" -py* for all i.

By using the MATLAB programs, we computed eigenvalues and energy of I'(Z,,) for various
values of n and observe the following:

(i) Let n = p{"'py?, where p;, ps are distinct primes, o, a, are positive integers and at least
one «; is greater than one. Then I'(Z,,) is hyperenergetic except n = 12.

(i) For n = pq, where p and q are distinct primes, p < g, the value of largest eigenvalue, say
A, of I'(Z,,) lies between ¢ — 1 and ¢, thatis, ¢ — 1 < A < ¢. Also, we observe that the
spectrum of I'(Z,,,) is the following:

—1—-a -1 p—2+b qg—14a—>
Spec(I'(Zyq)) = ( 1 ptq—4 1 | )
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1 #9

# #7

Figure 1. The maximal graph G(Zy)

Figure 2. The maximal graph G(Zp)

where 0 < a,b < 1, and the maximal graph I'(Z,,) is non-hyperenergetic. In particular,
EF(Zn) < 2(]) +q— 2)

(iii) For n = p{"'p32p3*, where pi, p,, p3 are distinct primes and o, oz, a3 are positive integers,

the maximal graph I'(Z,,) has an eigenvalue —1 of multiplicity m — 7, where m is the order
of I'(Z,,). Also, I'(Z,,) is hyperenergetic graph having 8 distinct eigenvalues.

(iv) For n = p{"'p3?p3°py*, where pi, p2,p3, ps are distinct primes, o, o, a3, o are positive

integers, the maximal graph I'(Z,,) has an eigenvalue —1 of multiplicity m — 15, where m
is the order of I'(Z,,). Also, I'(Z,,) is hyperenergetic having 16 distinct eigenvalues.

Qp (X3 g Q5

(v) For n = p{"p3?p5°py*ps°, where py, p2, p3, ps, ps are distinct primes and oy, az, a3, a4, s

are positive integers, the maximal graph I'(Z,,) has an eigenvalue —1 of multiplicity m—31,
where m is the order of I'(Z,,). Also, I'(Z,,) is hyperenergetic having 32 distinct eigenval-
ues.

Note that in all the cases listed above I'(Z,,) has 2* distinct eigenvalues with —1 an eigenvalue

of multiplicity m — (28 — 1), where m is the order of ['(Z,,) and k is the number of distinct primes
in the factorization of n. Because of the limited computational efficiency of the computer we
could not verify the above observations for n = p{"'p3? --- pp* for k > 6, where p1,ps, ..., pk
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are distinct primes and «p, o, ..., q, are positive integers. In particular, we could not find
any number for which T'(Z,,) do not satisfy above points. This forces us to list the following
conjecture.

Conjecture 2.7. (i) Letn = p{"'p3? - - pp*, where py, pa, . . . py, are distinct primes and «, a, . . .

are positive integers. Then I'(Z,,) has 2 distinct elgenvalues with —1 an eigenvalue of mul-
tiplicity m — (2% — 1), where m is the order of T'(Z,,).

o Q2

(ii) For n = p{"'p3?---py*, where pi,ps, ... pi are distinct primes, ai, o, ... oy are positive
integers, and k > 3. Then I'(Z,,) is hyperenergetic.
3 Energy of L(I'(R))

Recall from Introduction that a graph G of order n having energy Eg > 2(n — 1) is called
hyperenergetic, and graphs having energy Eg < 2(n — 1) is called non-hyperenergetic. In this
section, we list the rings R such that L(I'(R)) is hyperenergetic or non-hypenergetic.

Theorem 3.1. Let R be a finite ring with |R'| > 5. Then L(I'(R)) is hyperenergetic unless R is
isomorphic to one of the following rings:

Fz X Z4, Fz X Fz[.’lﬁ]/(aﬁz), Fz X IF4, F3 X F3, ]F3 X F4, F4 X F4.

Proof. Let R be a finite ring with n maximal ideals and |R’| > 5. To show that L(I'(R)) is
hyperenergetic, by [8, Theorem 1], it is enough to show that

m([(R)) = 2V(I'(R)) = 2| R,

Since R is a finite ring, we have by [9, Remark 2.9(i)],

R = |I(R {Hp et —w}

i=1

Also by [10, Theorem 4.2] and [9, Remark 2.9(i)], we have

-

mﬂﬁw—ﬁ@%A%]

If possible, suppose that m(I'(R)) < 2| R’|. Then

{HpQ(’f—H (p™ —1 }<5{Hp H 1)} 3.1

i=1

m([(R)) =

Note that even for |J(R)| = 1,

szm_H (i —1 <5{Hp H —1)},

i=1 =1

for all n > 3. Thus, for n > 3, that is, for ring R with at least three maximal ideals, L(I'(R)) is
hyperenergetic.
Now assume that n = 1, that is, R is a local ring. In this case, (3.1) reduces to

|[J(R)] <5,

which is also a contradiction as |R’| > 5. Thus, for all local rings R such that |R’| > 5, L(I'(R))
is hyperenergetic.

Qg
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Now assume that n = 2. Then (3.1) reduces to

TR + 3™ = 1} < S{p{" +p5> — 1} (3.2)

Now, we have the following three cases:
Case (i). Let | J(R)| > 3. Since for all primes p;, p> and ay, ap € N, we have

P+ p™ = 1> 2{p + 5 — 1}

Thus,
6{py" +p5> — 1} < [J(R){p1™ +p3* — 1} < 5{p{" +p3* — 1},

which is a contradiction. Therefore, for rings R with two maximal ideals such that |J(R)| > 3,
L(I'(R)) is hyperenergetic.
Case (ii). Let |J(R)| = 2. In this case, (3.2) reduces to

Pyt (2pt = 5) +p3?(2p3* —5) < -3

which is true only for o) = 1, p = 1 and p; = 2,p, = 2, thatis, for R =2 F, x Zgsor R = [, x
Fa[x]/(2?). Since T(Fy x Z4) = ['(Fy xF,[x]/(2?)), itis enough to check whether L(T'(Fy x Zy))
is hyperenergetic or not. For this, we construct the adjacency matrix A of L(I'(F, x Z4)) is given
as follows:

011111101120
1 o11 1101000
11011011000
1 11010001 01
11110000011
A=]11 1 00 0 0 1 1 1 10
1 01 001O011T10P0
011 0011O0O0O00PO0
1 0010110011
1 0001 110101
000110O0O0T1T10P0

Thus, the spectrum of L(I'(F, x Zy

Spec(L(T(Fs x Z4))) = (2 02 6)

~—

) is given as

5 3 21

and hence Epr(r,xz,) = 20 = 2- 11 —2 = Eg,,. Thus, we conclude that L(I'(F, x Zg)) is
non-hyperenergetic. Therefore, L(I'(R)) is hyperenergetic, for all rings with two maximal ideals
and | J(R)| = 2 except F; x Z4 and F, x F,[z]/(2?) (up to isomorphism).

Case (iii). Let |J(R)| = 1. In this case, (3.2) reduces to

oIt (p]" = 5) +p32 (P32 —5) < —4 (3.3)

which is satisfied only for the following values of o1, as, p1, p2,

@ a=1, =1, p =2, pp=2;

® ar=1a=1p =2 p=3

© ar=1Lam=1p =2 p=5;

(d ar=1,a=1p1 =3, pp=3;

@ ar=1, =1 p =3, p=5;

O ar=1a0=2p=2p=2
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@ a=10=2p=3p=2
) a1 =2, 00=2,p1=2,p=2
Among these (a) and (b) are ruled out as the corresponding rings do not satisfies the condition
|R'| > 5.
Subcase (a). Leta; =1, ap = 1, p; =2, po = 5. Inthis case, R = [, x F's. Now adjacency
matrix A of L(I'(IF, x Fs)) is given as follows:

011110O0O0O0O0@PO0
1 o1 11111000
11011100110
1 11010101 01
11110001011
A=1 01 1 00 0 1 1110
01 010T1TO01T101
01 0O01T1T1TQO0O0T11
001 10T1T1Q0°O0T11
00101 1O011°01
00011011110

Thus, the spectrum of L(I'(IF, x Fs)) is given as
-2 -12749 1 2 6.2749
Spec(L(I'(F2 x Fs))) = ( 5 | 311 )

and hence Ey,r(r, xry)) = 22.5498 > 211 —2 = Fk,,. Thus, L(I'(F, x Fs)) is hyperenergetic.
Subcase (b). Let oy = 1, ap = 1, p; = 3, p, = 3. In this case, R = F3 x F3. Since
L(I'(IF3 x F3)) is of order 6, we have by [7, Theorem 3.4], L(I'(F3 x F3)) is non-hyperenergetic.
Subcase (¢). Leta; =1, ap = 1, p; = 3, p» = 5. Inthis case, R = F3 x F's. Now adjacency
matrix A of L(I'(IF; x Fs)) is given as follows:

o1 11111 0O0O0O0O0O
1 0111 11 0000 OO
1 1.0 00 O0OOOO0OO0OO0OTO
1 1.0 0 1 1 1 1 1 1 0 0O
1 101 0 1 1 1 0 01 10
1 101 1 01 01 01 01
A= 1 101 1 1 0001 011
o001 10O0O011T1TT1O0
000101 01O01 1 01
0001001110011
0000110110011
000 01011011 01
000 O0O0O0T1TT1TTUO0OT1T1T1TT1TF®O0
Thus, the spectrum of L(I'(IF3 x Fs)) is given as

Spec(L(I'(F5 x Fs))) = 6 1 1 3 1 1

<—2 ~1 02984 1 3 6.7016)

and hence Ep,r(r, xrs)) = 26 > 2- 13 — 2 = Ef,,. Thus L(I'(F3 x Fs)) is hyperenergetic.
Subcase (d). Let oy = 1, ap = 2, p1 = 2, p» = 2. In this case, R = F, x F4. Since

L(T'(F, x Fy4)) is of order 7, we have by [7, Theorem 3.4], L(I'(F, x Fy4)) is non-hyperenergetic.
Subcase (e). Leta; = 1, ap =2, p; = 3, pp = 2. In this case, R = F3 x 4. Now adjacency

matrix A of L(I'(F3 x Fy4)) is given as follows:
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01 1 111000
1 o111 1000
1 1000 O0O0O0O
1 1001 1101
A= 1 10101110
1 101 1 0011
000110011
000O0OT1TT1T1TO0'1
000101110
Thus, the spectrum of L(I'(IF3 x Fy4)) is given as

Spec<L<r<F3xF4>>>=<32 o f)

and hence E,r(r, xr,)) = 14 <2-9 — 2 = Ek,. Thus, L(I'(F3 x F4)) is non-hyperenergetic.
Subcase (f). Letay =2, ap =2, p; =2, p, = 2. In this case, R = 4 x F4. Now adjacency
matrix A of L(I'(F4 x Fy4)) is given as follows:

0

[=lele el =l e
S OO O OO = = == O

SO OO OO = =O O ==
O = = = = O O O O = = =
— O = = O = O O O = = =
— = O O = = O O O = = =
—_— =0 O = = O O O O O O
—_— O = = O = O O OO o o o
S —m m P =2, O OO0 o o OO

1
1
0
0
1
1
1
1
1
0
0
0

O OO = m e Em O =D =

1
1
1
1
0
1
1
1
0
0
0

o
]

Thus, the spectrum of L(I'(F4 x Fy4)) is given as

Spec(L(F(IE‘4><IF4))):<—52 2 i ? ?>

and hence Eprr, xr,)) = 20 < 2-12 =2 = Ek,,. Thus, L(I'(F4 x F4)) is non-hyperenergetic.
]

Theorem 3.2. Let R be a finite ring with |R'| < 4. Then L(I'(R)) is non-hyperenergetic.

Proof. Let |R'| < 4. Then |V(['(R))| < 4. This implies that |V (L(I'(R)))| < 6. Thus, by [7,
Theorem 3.4], L(I'(R)) is non-hyperenergetic. O

References

[1] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Universitext, Springer, New York,
(2012).

[2] A.E. Brouwer and W. H. Haemers, Spectra of Graphs, Universitext, Springer, New York, (2012).

[3] M. Cdmara and W. H. Haemers, Spectral characterizations of almost complete graphs, Discrete Appl.
Math. 176, 19-23 (2014).



ENERGY OF A MAXIMAL GRAPH 77

[4] A. Gaur and A. Sharma, Maximal graph of a commutative ring, Int. J. Algebra 7 (12), 581-588 (2013).

[5] A. Gaur and A. Sharma, Eulerian graphs and automorphisms of a maximal graph, Indian J. Pure Appl.
Math. 48 (2), 233-244 (2017).

[6] I. Gutman, The energy of a graph, Ber. Math.-Statist. Sekt. Forsch. Graz 103, 1-22 (1978).

[7] 1. Gutman, Hyperenergetic and hypoenergetic graphs, Zb. Rad. (Beogr.) Selected topics on applications of
graph spectra 14 (22) (2011).

[8] Y. Hou and I. Gutman, Hyperenergetic line graphs, Match 43, 29-39 (2001).

[9] A.Sharma and A. Gaur, Line graphs associated to the maximal graph, J. Algebra Relat. Topics 3 (1), 1-11
(2015).

[10] A.Sharma and A. Gaur, Hamiltonian property of a maximal graph and chromatic number of its line graph,
JP J. Algebra Number Theory Appl. 38 (6), 589-607 (2016).

[11] E. R. van Dam, Nonregular graphs with three eigenvalues, J. Combin. Theory Ser. B 73 (2), 101-118
(1998).

Author information

Arti Sharma and Atul Gaur, Department of Mathematics, University of Delhi, Delhi-110007, India.
E-mail: anjanaartiQgmail.com, gaursatul@gmail.com

Received: September 9, 2019.
Accepted: December 28, 2019.



	1 Introduction
	2 Energy of Maximal Graph
	3 Energy of L((R))

