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Abstract. It is known that the SK index ([10]) of a graph G is defined by

SK(G) =
∑

uv∈E(G)

du + dv
2

.

In this paper, the explicit expressions for the SK index over different types of corona products
on graphs are presented.

1 Introduction and Terminologies

Throughout this paper all graphs G will be assumed undirected and without any self loops or
parallel edges having the vertex set V (G) and the edge set E(G). Unless stated otherwise the
cardinality of V (G) will be considered n while the cardinality of E(G) will be considered m.
Recall that the degree of any vertex v in G is denoted by dG(v) (or shortly dv) which is the
number of edges incident to v.

A topological index is defined as a real valued function, which maps each molecular graph
to a real number and is necessarily invariant under automorphism of graphs. There are various
topological indices having strong correlation with physio-chemical characteristics and have been
found to be useful in isomer discrimination, quantitative structure activity relationship (QSAR)
and structure property relationship (QSPR). A topological index of a chemical compound is an
integer, derived following a rule, which can be used to characterize the chemical compound
and predict certain physio-chemical properties like boiling point, molecular weight, density, re-
fractive index, and so forth [2, 5]. Molecules and molecular compounds are often modeled by
molecular graph. A molecular graph is a representation of the structural formula of a chemical
compound in terms of graph theory, whose vertices correspond to the atoms of the compound
and edges correspond to chemical bonds. Note that hydrogen atoms are often omitted.

Among the various degree-based topological indices, the first and second Zagreb indices of a
graph G are one of the oldest and most studied topological indices that are firstly introduced by
Gutman and Trinajstic in [6] which are defined respectively as

M1(G) =
∑

u∈V (G)

d2
u and M2(G) =

∑
u,v∈V (G)

dudv .

In fact these Zagreb indices have extensively studied both with respect to mathematical and
chemical point of view. After these degree-based indices, there have been introduced so many
same based indices and it still keep going. For example, in [10], Shegahalli et al. introduced new
topological indices; Arithmetic-Geometric AG1 index, SK index, SK1 index and SK2 index
for a graph G, and further presented their formulas. Among these four indices, we wil give our
attention to the SK index that is defined by

SK(G) =
∑

uv∈E(G)

du + dv
2

,

where du and dv are the degrees of the vertices u and v in G.
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On the other hand, to define some graph products over simple graphs always imply interesting
results over these structures in applied sciences. For example, the corona product of graphs ap-
pears in chemical literature as plerographs of the hydrogen suppressed molecular graphs known
as kenographs. Also, by specializing the components of corona products of graphs, different
type of graphs can be obtained such as t-thorny graph, sunlet graph, suspension graphs and
some classes of bridge graphs (we may refer [1, 3, 4, 7, 15, 11] for the details). Because of these
consequences, people interested to study on indices for the corona products. For instance, in
[8], Liu studied the F -index of different type of corona product of graphs, and [15] the authors
computed the Szeged, vertex PI and the first and second Zagreb indices of corona products.

With a similar thought as in [8, 15], in this paper, we will express the SK index of different
types of corona products within different sections as the main results.

2 SK index of corona products

Our main results will be given in this section via separate subsections under the name of classical
corona product, subdivision-vertex corona product, subdivision-edge corona product, subdivision-
vertex neighborhood corona product, subdivision-edge neighborhood corona product and finally
the vertex-edge corona product.

2.1 The Case: Classical Corona Product

Let G1 and G2 be two simple connected graphs with nj number of vertices and mj number of
edges respectively, for j ∈ {1, 2}. The (classical) corona product G1 ◦G2 of these two graphs is
obtained by taking one copy of G1 and n1 copies of G2; and then by joining each vertex of the
i-th copy G2 to the i-th vertex of G1, where 1 ≤ i ≤ n1 (see, for instance, [13, 16]). From the
definition, it is clear that the product G1 ◦G2 has total n1 +n2n1 vertices and m1 +n1m2 +n1n2
edges. With a similar approximation as in the paper [15], to obtain a detailed calculation, let us
partition the edges of G1 ◦G2 into the three subsets E1, E2 and E3 as follows:

(i) E1 = {e ∈ E(G1 ◦G2) | e ∈ E(G2)} such that the cardinality |E1| = n1m2. For an edge
e = uv ∈ E1, there always exist dG1◦G2(u) = dG2(u) + 1 and dG1◦G2(v) = dG2(v) + 1.

(ii) E2 = {e ∈ E(G1 ◦ G2) | e ∈ E(G1)} such that the cardinality |E2| = m1. For an edge
e = uv ∈ E2, there always exist dG1◦G2(u) = dG1(u) + n2 and dG1◦G2(v) = dG2(v) + n2.

(iii) E3 = {e ∈ E(G1 ◦ G2) | e = uv, u ∈ E(G2), v ∈ E(G1)} such that the cardinality
|E3| = n1n2. For an edge e = uv ∈ E3, there always exist dG1◦G2(u) = dG2(u) + 1 and
dG1◦G2(v) = dG1(v) + n2.

We then have the following main theorem for this section.

Theorem 2.1. The SK index of the classical corona product G1 ◦G2 is presented by

SK(G1 ◦G2) = n1SK(G2) + SK(G1) + 2n1m2 + 2n2m1 +
n1n2(1 + n2)

2
. (2.1)

Proof. From the definitions of SK index and corona product, we obtain

SK(G1 ◦G2) =
∑

uv∈G1◦G2

du + dv
2

=
3∑

i=1

( ∑
uv∈Ei

du + dv
2

)
,

where ∑
uv∈E1

du+dv

2 = n1SK(G2) + n1m2 ,∑
uv∈E2

du+dv

2 = SK(G1) + n2m1 ,∑
uv∈E3

du+dv

2 = m2n1 + n2m1 +
n1n2(1+n2)

2 .

 (2.2)

Adding three equations in (2.2) gives the equality given in (2.1).
Hence the result.
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Corollary 2.2. Let us assume that G1 is any graph of order n1 while G2 is a complete graph of
order n2. Then we have

SK(G1 ◦G2) = SK(G1) + 2n2m1 +
n1n2[(n2)2 + n2]

2
.

Proof. Substituting SK(G2) =
n2(n2−1)2

2 and m2 =
n2(n2−1)

2 in Equation (2.1), we get the result.

Another consequence of Theorem 2.1 is the following.

Corollary 2.3. Let Pn and Cn denote the path and cycle on n vertices, respectively. Then the
following equalities always hold.

SK(Pn1 ◦ Pn2) = 6n1n2 − 3n1 − 2n2 − 3 +
n1n2(n2 + 1)

2
,

SK(Cn1 ◦ Cn2) = 6n1n2 + 2n1 +
n1n2(n2 + 1)

2
,

SK(Pn1 ◦ Cn2) = 6n1n2 + 2n1 − 2n2 − 3 +
n1n2(n2 + 1)

2
.

2.2 The Case: Subdivision-Vertex Corona

Recall that, for a simple graph G, the subdivision graph S = S(G) is obtained from G by
replacing each of its edges with a path of length two or, equivalently, by inserting an additional
vertex into each edge of G.

Considering the definition of subdivision graphs, the subdivision-vertex corona product G1�
G2 of G1 and G2 is actually obtained from the S(G1) and n1 copies of G2 such that for all disjoint
vertices joining the i-th vertex of G1 to every vertex in the i-th copy of G2 ([7, 9]). It is easy to
see that G1 �G2 has n1(1 + n2) +m1 vertices and 2m1 + n1(n2 +m2) edges.

As in Section 2.1, we can partition the edges of G1 � G2 into the three subsets as in the
following:

(a) E1 = {e ∈ E(G1�G2) | e ∈ E(G2)} such that the cardinality |E1| = n1m2. For an edge
e = uv ∈ E1, there do exist dG1�G2(u) = dG2(u) + 1 and dG1�G2(v) = dG2(v) + 1.

(b) E2 = {e ∈ E(G1 � G2) | e ∈ E(S(G1))} such that the cardinality |E2| = 2m1. For an
edge e = uv ∈ E2, there do exist dG1�G2(u) = dG1(u) + n2 and dG1�G2(v) = dS(G1)(v) = 2.

(c) E3 = {e ∈ E(G1 � G2) | e = uv, u ∈ E(G2), v ∈ E(G1)} such that the cardinality
|E3| = n1n2. For an edge e = uv ∈ E3, there do exist dG1�G2(u) = dG2(u)+1 and dG1�G2(v) =
dG1(v) + n2.

Therefore, we obtain the following result.

Theorem 2.4. The SK index of subdivision-vertex corona product graph G1 �G2 is given by

SK(G1 �G2) = n1SK(G2) + SK(G1) + 2n1m2 + (n2 + 1)(2m1 +
n1n2

2
) .

Proof. We clearly have

SK(G1 �G2) =
∑

uv∈E1

du + dv
2

+
∑

uv∈E2

du + dv
2

+
∑

uv∈E3

du + dv
2

,

where each part of the sum is equal to the n1SK(G2) + n1m2, SK(G1) + m1(n2 + 2) and
m2n1 + n2m1 + n1n2(1+n2)

2 , respectively. In fact, the addition of all those values imply the
equality of the index SK(G1 ◦G2) stated in the theorem.

The similar consequences as in Corollaries 2.2 and 2.3 are the following.

Corollary 2.5. Let G1 be any graph of order n1 and G2 be a complete graph of order n2. Then
the SK index of subdivision-vertex corona product of these two graphs is

SK(G1 �G2) = SK(G1) +
n1n2[(n2)2 − 1]

2
+ (n2 + 1)(m1 +

n1n2

2
) .
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Proof. Replacing SK(G2) =
n2(n2−1)2

2 and m2 = n2(n2−1)
2 in the statement of Theorem 2.4, we

get the result.

Corollary 2.6. For the SK index, we have the following equalities:

SK(Pn1 � Pn2) = 5n1n2 − 2n1 − n2 − 4 +
n1n2(n2 + 1)

2
,

SK(Cn1 � Cn2) = 4n1n2 + 2n1 + (n2 + 1)(n1 +
n1n2

2
) ,

SK(Pn1 � Cn2) = 5n1n2 + 3n1 − n2 − 4 +
n1n2(n2 + 1)

2
.

2.3 The Case: Subdivision-Edge Corona

Again by considering the definition of subdivision graphs, the subdivision-edge corona product
G1ΘG2 of G1 and G2 is obtained from the S(G1) and m1 copies of G2 such that for all disjoint
vertices joining the i-th vertex of S(G1) to every vertex in the i-th copy of G2 ([7, 9]). Clearly,
the product G1ΘG2 has m1(1 + n2) + n1 vertices and m1(n2 +m2 + 2) edges. Similarly as in
above sections, if we partition the edge set of G1ΘG2 then we get the following three subsets.

(1) E1 = {e ∈ E(G1ΘG2) | e ∈ E(G2)} such that the cardinality |E1| = m1m2. For an edge
e = uv ∈ E1, there exist dG1ΘG2(u) = dG2(u) + 1 and dG1ΘG2(v) = dG2(v) + 1.

(2) E2 = {e ∈ E(G1ΘG2) | e ∈ E(S(G1))} such that the cardinality |E2| = 2m1. For an
edge e = uv ∈ E2, there exist dG1ΘG2(u) = dG1(u) and dG1ΘG2(v) = dS(G1)(v) = 2 + n2.

(3) E3 = {e ∈ E(G1ΘG2) | e = uv, u ∈ E(G2), v ∈ E(S(G1))} such that the cardinality
|E3| = m1n2. For an edge e = uv ∈ E3, there exist dG1ΘG2(u) = dG2(u) + 1 and dG1ΘG2(v) =
dS(G1)(v) + n2.

So, the result of this section is the following:

Theorem 2.7. The SK index of subdivision-edge corona product G1ΘG2 is defined by

SK(G1ΘG2) = m1SK(G2) + SK(G1) +m1(2m2 + 2 + n2) +
m1n2(n2 + 3)

2
.

Proof. Similarly with the previous theorems, if we consider the definitions of SK index and the
product G1ΘG2, then we get

SK(G1ΘG2) =
∑

uv∈G1ΘG2

du + dv
2

=
∑

uv∈E1

du + dv
2

+
∑

uv∈E2

du + dv
2

+
∑

uv∈E3

du + dv
2

= (m1SK(G2) +m1m2) + (SK(G1) +m1(n2 + 2)) +

+

(
m1m2 +

m1n2(3 + n2

2

)
= m1SK(G2) + SK(G1) +m1(2m2 + 2 + n2) +

m1n2(n2 + 3)
2

,

as required.

In the statement of Theorem 2.7, by substituting SK(G2) by n2(n2−1)2

2 and m2 by n2(n2−1)
2 ,

we obtain the next result.

Corollary 2.8. Suppose the graph G2 is as in Corollaries 2.2 and 2.5. Then

SK(G1ΘG2) = SK(G1) +
m1n2[(n2)2 − n2 + 4]

2
+ [(n2)

2 + 1]m1 .

Additionally,



12 P.G. Sheeja, P. S. Ranjini, V. Lokesha and A. Sinan Cevik

Corollary 2.9. We obtain

SK(Pn1 ΘPn2) = 5n1n2 − n1 − 5n2 +
(n1 − 1)n2(n2 + 3)

2
,

SK(Cn1 ΘCn2) = 5n1n2 + 4n1 +
n1n2(n2 + 3)

2
,

SK(Pn1 ΘCn2) = 5n1n2 + 4n1 − 5n2 − 5 +
(n1 − 1)n2(n2 + 3)

2
.

2.4 The Case: Subdivision-Vertex Neighborhood Corona

The subdivision-vertex neighborhood corona product G1�G2 of G1 and G2 is obtained from
the S(G1) and n1 copies of G2 such that for all disjoint vertices joining the neighbors of the i-th
vertex of S(G1) to every vertex in the i-th copy of G2 ([7, 9]). Thus, G1�G2 has m1(1+n2)+n1
vertices and 2m1+n1n2+2m1n2 edges. By partitioning the edge set of G1�G2, we again obtain
three subsets E1, E2 and E3 which are

(1a)E1 = {e ∈ E(G1�G2) | e ∈ E(G2)} such that the cardinality |E1| = n1m2. For an edge
e = uv ∈ E1, there exist dG1�G2(u) = dG2(u) + dG1(w) and dG1�G2(v) = dG2(v) + dG1(w).

(2b) E2 = {e ∈ E(G1�G2) | e ∈ E(S(G1))} such that the cardinality |E2| = 2m1. For an
edge e = uv ∈ E2, there exist dG1�G2(u) = dG1(u) and dG1�G2(v) = dS(G1)(v)+2n2 = 2+2n2.

(3c) E3 = {e ∈ E(G1�G2) | e = uv, u ∈ E(G2), v ∈ E(S(G1))} such that the cardinality
|E3| = 2m1n2. For an edge e = uv ∈ E3, there exist dG1�G2(u) = dG2(u) + dG1(w) and
dG1�G2(v) = dS(G1)(v) + 2n2 = 2 + 2n2.

Therefore the corresponding result for the related product under these material is the follow-
ing:

Theorem 2.10. The SK index of subdivision-vertex neighborhood corona product G1�G2 for
the given graphs G1 and G2 is stated by

SK(G1�G2) = n1SK(G2) + (n2 + 1)SK(G1) + 2m1n2(2 + n2) + 2m1(n2 +m2 + 1) .

Proof. An easy calculation shows that

SK(G1�G2) =
∑

uv∈G1�G2

du + dv
2

=
3∑

i=1

( ∑
uv∈Ei

du + dv
2

)

= (n1SK(G2) + 2m1n2) + (SK(G1) +m1(2n2 + 2))

+ (2m1m2 + n2SK(G1) +m1n2(2 + 2n2))

= n1SK(G2) + (n2 + 1)SK(G1) + 2m1n2(2 + n2) + 2m1(n2 +m2 + 1) .

Hence the result.

The first part of the proof of the following corollary can be obtained by taking SK(G2) as
n2(n2−1)2

2 and m2 as n2(n2−1)
2 in the statement of Theorem 2.10. Moreover the next part of it can

be seen easily as in the similar versions stated in previous sections.

Corollary 2.11. Let G2 be a complete graph of order n2 while G1 be as in the general idea. Then

SK(G1�G2) = (n2 + 1)SK(G1) +
n1n2(n2 − 1)2

2
+ 5m1n2 + 3m1(n2)

2 + 2m1 .

Furthermore, by considering Pn and Cn, the following equalities are hold for the subdivision-
vertex neighborhood corona product SK(G1�G2).

SK(Pn1�Pn2) = 12n1n2 − n1 − 11n2 − 3 + 2n2(n1n2 − n2) ,

SK(Cn1�Cn2) = 12n1n2 + 4n1 + 2n1(n2)
2 ,

SK(Pn1�Cn2) = 12n1n2 + 4n1 − 11n2 − 5 + 2n2(n1n2 − n2) .



SK INDEX OVER DIFFERENT CORONA PRODUCTS 13

2.5 The Case: Subdivision-Edge Neighborhood Corona

For the graphs G1 and G2, the subdivision-edge neighborhood corona product G1�G2 is obtained
from the S(G1) and n1 copies of G2 such that for all disjoint vertices joining the neighbors of
the i-th vertex of G1 to every vertex in the i-th copy of G2 ([7, 9]). From the definition, G1 �G2
has m1(1+n2)+n1 vertices and 2m1 +m1m2 + 2m1n2 edges. Moreover, by partition the edge
set of G1 �G2, we again obtain three subsets E1, E2 and E3 which are

(i− a) E1 = {e ∈ E(G1 �G2) | e ∈ E(G2)} such that the cardinality |E1| = m1m2. For an
edge e = uv ∈ E1, there exist dG1�G2(u) = dG2(u) + 2 and dG1�G2(v) = dG2(v) + 2.

(ii − b) E2 = {e ∈ E(G1 � G2) | e ∈ E(S(G1))} such that the cardinality |E2| = 2m1. For
an edge e = uv ∈ E2, there exist dG1�G2(u) = dG1(u)(n2 + 1) and dG1�G2(v) = dS(G1) = 2.

(iii − c) E3 = {e ∈ E(G1 � G2) | e = uv, u ∈ E(G2), v ∈ E(S(G1))} such that the
cardinality |E3| = 2m1n2. For an edge e = uv ∈ E3, there exist dG1�G2(u) = dG2(u) + 2 and
dG1�G2(v) = dG1(v)(1 + n2).

Similarly with the previous cases, we have the following result.

Theorem 2.12. The SK index of subdivision-edge neighborhood corona product graph G1 �G2
is expressed by

SK(G1 �G2) = m1SK(G2) + (n2 + 1)2SK(G1) + 4m1m2 + 2m1(1 + n2) .

Proof. We have

SK(G1 �G2) =
∑

uv∈G1�G2

du + dv
2

=
∑

uv∈E1

du + dv
2

+
∑

uv∈E2

du + dv
2

+
∑

uv∈E3

du + dv
2

= [m1SK(G2) + 2m1m2] + [(n2 + 1)SK(G1) + 2m1]

+ [2m1m2 + 2m1n2 + n2(n2 + 1)SK(G1)]

= m1SK(G2) + (n2 + 1)2SK(G1) + 4m1m2 + 2m1(1 + n2) .

This completes the proof.

The first part of the proof of the following corollary can be obtained by substituting SK(G2) =
n2(n2−1)2

2 and m2 = n2(n2−1)
2 in the statement of Theorem 2.12. Moreover the next part of it is

standard as before.

Corollary 2.13. Let G2 be a complete graph of order n2 while G1 be as in the general idea. Then

SK(G1 �G2) = (n2 + 1)2SK(G1) +
m1n2(n2 − 1)(n2 + 3)

2
+ 2m1(n2 + 1) .

In addtion, the following equalities are held for SK(G1 �G2):
8n1n2 − 5n1 − 8n2 + 5 + (n2 + 1)2(2n1 − 3) ; if G1 = Pn1 and G2 = Pn2

8n1n2 + 2n1 + 2n1(n2 + 1)2 ; if G1 = Cn1 and G2 = Cn2

8n1n2 + 2n1 − 8n2 − 2 + (n2 + 1)2(2n1 − 3) ; if G1 = Pn1 and G2 = Cn2

.

2.6 The Case: The Vertex-Edge Corona

As in all previous sections, let us start by recalling the definition of the related product.
For any two graphs G1 and G2, the vertex-edge corona product G1 ⊕G2 of them is obtained

by after taking one copy of G1, n1 copies of G2 and also m1 copies of G2, then joining the i-th
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vertex of G1 to every vertex in the i-th vertex copy of G2 and also joining the end vertices of j-th
edge of G1 to every vertex in the j-th edge copy of G2 (we may refer [7, 9]). According to the
this definition, it is not hard to see that the vertex-edge corona product graph G1 ⊕ G2 has total
n1n2 + n1 +m1n2 vertices and m1 +m1(m2 + 2n2) + n1(m2 + n2) edges.

We can partition the edges of G1 ⊕G2 into five subsets as in the following:
• E1 = {e ∈ E(G1 ⊕G2) | e ∈ E(G2)} such that the cardinality |E1| = m2n1. For an edge

e = uv ∈ E1, there exist dG1⊕G2(u) = dG2(u) + 1 and dG1⊕G2(v) = dG2(v) + 1.
• E2 = {e ∈ E(G1 ⊕ G2) | e ∈ E(G1)} such that the cardinality |E2| = m1. For an edge

e = uv ∈ E2, there exist dG1⊕G2(u) = dG1(u)(n2+1)+n2 and dG1⊕G2(v) = dG1(v)(n2+1)+n2.
• E3 = {e ∈ E(G1 ⊕G2) | e ∈ E(G2)} such that the cardinality |E2| = m1m2. For an edge

e = uv ∈ E3, there exist dG1⊕G2(u) = dG2(u) + 2 and dG1⊕G2(v) = dG2(v) + 2.
• E4 = {e = uv ∈ E(G1 ⊕ G2) | u ∈ E(G2), v ∈ E(G1)} such that the cardinality

|E4| = n2n1. For an edge e = uv ∈ E4, there exist dG1⊕G2(u) = dG2(u) + 1 and dG1⊕G2(v) =
dG1(v)(n2 + 1) + n2.
• E5 = {e = uv ∈ E(G1 ⊕ G2) | u ∈ E(G2), v ∈ E(G1)} such that the cardinality

|E5| = 2n2m1. For an edge e = uv ∈ E5, there exist dG1⊕G2(u) = dG2(u) + 2 and dG1⊕G2(v) =
dG1(v)(n2 + 1) + n2.

We note that the sets E1 and E4 are the vertex copies of E(G2), and the sets E3 and E5 are
the edge copies of E(G2).

The final main result of this paper is the following.

Theorem 2.14. The SK index of the vertex-edge corona product G1 ⊕G2 is expressed by

SK(G1 ⊕G2) = (n1 +m1)SK(G2) + (n2 + 1)2SK(G1) + 2n1m2 + 2m1n2(2 + n2)

+ 4m1m2 +
n1n2(n2 + 1)

2
.

Proof. According to the our case, we have

SK(G1 ⊕G2) =
∑

uv∈G1⊕G2

du + dv
2

=
5∑

i=1

( ∑
uv∈Ei

du + dv
2

)
,

where

for uv ∈ E1, we have n1SK(G2) + n1m2 ,

for uv ∈ E2, we have (n2 + 1)SK(G1) +m1n2 ,

for uv ∈ E3, we have m1SK(G2) + 2m1m2 ,

for uv ∈ E4, we have n1m2 +m1n2(n2 + 1) + n1n2(n2+1)
2 and

for uv ∈ E5, we have 2m1m2 +m1n2(n2 + 2) + n2(n2 + 1)SK(G1) .


(2.3)

A simple calculation after adding all these five values in (2.3), we obtain the equality in the
statement of theorem, as required.

Corollary 2.15. For a complete graph G2 of order n2, the SK index of the vertex-edge corona
product G1 ⊕G2

SK(G1 ⊕G2) = (n2 + 1)2SK(G1) +
m1n2[(n2)2 + 6n2 + 5]

2
+

n1n2[(n2)2 + n2]

2
.

Proof. Substitute SK(G2) =
n2(n2−1)2

2 and m2 =
n2(n2−1)

2 in the statement of Theorem 2.14, we
get the result as required.

Also, the product SK(G1 ⊕G2) has the following special cases by considering Pn and Cn.
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Corollary 2.16.

14n1n2 − 12n1 − 10n2 + 7 + (n2 + 1)2(2n1 − 3) ; if G1 = Pn1 and G2 = Pn2

+2(n2)2(n1 − 1) + n1n2(n2+1)
2

18n1n2 + 2n1 + 4n1(n2)2 + n1n2(n2+1)
2 ; if G1 = Cn1 and G2 = Cn2

18n1n2 + 2n1 − 16n2 − ˆ3 + (n2)2(4n1 − 5) ; if G1 = Pn1 and G2 = Cn2

+n1n2(n2+1)
2

.
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