GORENSETEIN T_n^d -INJECTIVE AND GORENSETEIN T_n^d -FLAT MODULES WHEN T IS A TILTING MODULE

Mostafa Amini

Communicated by Salah Kabbaj

MSC 2010 Classifications: : Primary 13D07, Secondary 16D40.

Keywords and phrases: (n, T)-Coherent, Gorensetein T_n^d -Injective, Gorensetein T_n^d -flat, Tilting.

Abstract. Let T be a tilting module. In this paper, Gorenstein T_n^d -injective and Gorenstein T_n^d -flat modules are introduced. If $G \in \operatorname{Cogen} T$ (resp; $G \in \operatorname{Gen} T$), then G is called Gorenstein T_n^d -injective (resp; Gorenstein T_n^d -flat) if there exists the exact sequence $\mathbf{M} = \cdots \to M_1 \to M_0 \to M^0 \to M^1 \to \cdots$ of \mathcal{ET} -modules (resp; \mathcal{FT} -modules) with $G = \ker(M^0 \to M^1)$ such that $\mathcal{E}_T^d(U, \mathbf{M})$ (resp; $\Gamma_d^T(U, \mathbf{F})$) leaves this sequence exact whenever $U \in \operatorname{F.Pres}^n T$ with $\operatorname{T.pdim}(U) < \infty$ (resp; $\operatorname{T.fdim}(U) < \infty$). Also, some characterizations of rings over Gorenstein T_n^d -flat modules are given.

1 Introduction

Throughout this paper, R is an associative ring with non-zero identity, all modules are unitary left R-modules. First we recall some known notions and facts needed in the sequel. Let R be a ring and T an R-module. Then

- (1) A module M is said to be cogenerated, by T, denoted by M ∈ CogenT, (resp; generated, denoted M ∈ GenT) by T if there exists an exact sequence 0 → M → Tⁿ (resp; T⁽ⁿ⁾ → M → 0), for some positive integer n.
- (2) We denote by *ProdT* (resp; *F.ProdT*), the class of modules isomorphic to direct summands of direct product of copies (resp; finitely many copies) of *T*.
- (3) We denote by AddT (resp; F.AddT), the class of modules isomorphic to direct summands of direct sum of copies (resp; finitely many copies) of T.
- (4) By $Copres^n T$ (resp; $F.Copres^n T$) and $Copres^{\infty} T$ (resp; $F.Copres^{\infty} T$), we denote the set of all modules M such that there exists exact sequences

$$0 \longrightarrow M \longrightarrow T_0 \longrightarrow T_1 \longrightarrow \cdots \longrightarrow T_{n-1} \longrightarrow T_n$$

and

$$0 \longrightarrow M \longrightarrow T_0 \longrightarrow T_1 \longrightarrow \cdots \longrightarrow T_{n-1} \longrightarrow T_n \longrightarrow \cdots,$$

respectively, where $T_i \in \text{Prod}T$ (resp. $T_i \in \text{F.Prod}T$), for every $i \ge 0$.

(5) By $Pres^{n}T$ (resp; $F.Pres^{n}T$) and $Pres^{\infty}T$ (resp; $F.Pres^{\infty}T$), we denote the set of all modules M such that there exists exact sequences

$$T_n \longrightarrow T_{n-1} \longrightarrow \cdots \longrightarrow T_1 \longrightarrow T_0 \longrightarrow M \longrightarrow 0$$

and

$$\cdots \longrightarrow T_n \longrightarrow T_{n-1} \longrightarrow \cdots \longrightarrow T_1 \longrightarrow T_0 \longrightarrow M \longrightarrow 0,$$

respectively, where $T_i \in \text{Add}T$ (resp. $T_i \in \text{F.Add}T$), for every $i \ge 0$.

(6) Following [1], a module T is called *tilting* if it satisfies the following conditions:
(a) pd(T) ≤ 1, where pd(T) denotes the projective dimension of T.
(b)Extⁱ(T, T^(λ)) = 0, for each i > 0 and for every cardinal λ.
(c) There exists the exact sequence 0 → R → T₀ → T₁ → 0, where T₀, T₁ ∈ AddT.

- (7) For any tilting module T, if $N \in \text{Cogen}T$ and $M \in \text{Gen}T$, then [5, Proposition 2.1] implies that $\text{Cogen}T = \text{Copres}^{\infty}T$ and $\text{Gen}T = \text{Pres}^{\infty}T$. This shows that any module cogenerated by T and any module generated by T has an ProdT-resolution and AddT-resolution.
- (8) For any homomorphism f, we denote by kerf and imf, the kernel and image of f, respectively. Let $N \in \text{Cogen}T$ and $M \in \text{Gen}T$ be two modules, where T is tilting module. We define the functors

$$\Gamma_n^T(M,-) := \frac{\ker(\delta_n \otimes \mathbf{1}_B)}{\operatorname{im}(\delta_{n+1} \otimes \mathbf{1}_B)}; \ \mathcal{E}_T^n(-,N) := \frac{\ker\delta_*^n}{\operatorname{im}\delta_*^{n-1}},$$

where

$$\cdots \longrightarrow T_2 \xrightarrow{\delta_2} T_1 \xrightarrow{\delta_1} T_0 \xrightarrow{\delta_0} M \longrightarrow 0$$

is an AddT-resolution of M,

and

$$0 \longrightarrow N \xrightarrow{\delta_0} T^0 \xrightarrow{\delta_1} T^1 \xrightarrow{\delta_2} \cdots$$

is an Prod*T*-resolution of N and $\delta_*^n = Hom(\delta_n, id_B)$, for every $i \ge 0$.

- Let $M \in \text{Gen}T$ be a module. A similar proof to that of [6, Lemma 2.11] shows that $\mathcal{E}_T^0(M, -) \cong \text{Hom}(M, -)$. Similarly, it is seen that $\Gamma_T^0(M, -) \cong M \otimes -$. Moreover, $\mathcal{E}_T^1(M, -) = 0$ implies that $M \in \text{Add}T$. If $N \in \text{Cogen}T$, then $\mathcal{E}_T^1(-, N) = 0$ implies that $N \in \text{Prod}T$. It is clear that T.pdim(M) = n if and only if n is the least non-negative integer such that $\mathcal{E}_T^{n+1}(M, B) = 0$, for any module B. Naturally, we say that M has T-flat dimension (T-injective dimension) n, denoted by T.fdim(M) = n (T.idim(N) = n) if n is the least non-negative integer such that $\Gamma_{n+1}^T(M, B) = 0$ ($\mathcal{E}_T^{n+1}(B, N) = 0$), for any module B. A module with zero T-projective (resp., T-injective) dimension is called T-projective (resp., T-injective) (see [5, 8]).
- (9) *M* is said to be *n*-presented [10, 11] if there is an exact sequence of *R*-modules $F_n \rightarrow F_{n-1} \rightarrow \cdots \rightarrow F_1 \rightarrow F_0 \rightarrow M \rightarrow$, where each F_i is a finitely generated free.
- (10) R is said to be *n*-coherent [10, 11] if every *n*-presented R-module is (n + 1)-presented.
- (11) *M* is said to be *Gorenstein flat* (resp., *Gorenstein injective*) [2, 4] if there is an exact sequence $\cdots \rightarrow I_1 \rightarrow I_0 \rightarrow I^0 \rightarrow I^1 \rightarrow \cdots$ of flat (resp., injective) modules with $M = \ker(I^0 \rightarrow I^1)$ such that $U \otimes_R (\text{resp; Hom}(U, -))$ leaves the sequence exact whenever *U* is an injective module.

A module M is called T_n^d -injective if $\mathcal{E}_T^{d+1}(U, M) = 0$ for every $U \in F.\operatorname{Pres}^n T$. A module M is called T_n^d -flat if $\Gamma_{d+1}^T(U, M) = 0$ for every $U \in F.\operatorname{Pres}^n T$ (see [9]). We denote by \mathcal{ET} and \mathcal{FT} the class of T_n^d -injective modules belong to CogenT and T_n^d -flat modules belong to GenT, respectively. In this paper, T is a tilting module. We introduce the *Gorenstein* T_n^d -injective and *Gorenstein* T_n^d -flat modules. A module $G \in \operatorname{Cogen} T$ is called Gorenstein T_n^d -injective if there exists the following exact sequence of \mathcal{ET} -modules:

$$\mathbf{M} = \cdots \longrightarrow M_1 \longrightarrow M_0 \longrightarrow M^0 \longrightarrow M^1 \longrightarrow \cdots$$

with $G = \ker(M^0 \to M^1)$ such that $\mathcal{E}_T^d(U, \mathbf{M})$ leaves this sequence exact whenever $U \in F.\operatorname{Pres}^n T$ with $\operatorname{T.pdim}(U) < \infty$. A module $G \in \operatorname{Gen} T$ is said to be Gorenstein T_n^d -flat if there exists an exact sequence of \mathcal{FT} -modules:

$$\mathbf{N} = \cdots \longrightarrow N_1 \longrightarrow N_0 \longrightarrow N^0 \longrightarrow N^1 \longrightarrow \cdots$$

with $G = \ker(N^0 \to N^1)$ such that $\Gamma_d^T(U, \mathbf{N})$ leaves this sequence exact whenever $U \in F.\operatorname{Pres}^n T$ with $T.\operatorname{fdim}(U) < \infty$. Replacing T by R as an R-module, every Gorenstein T_0^0 -injective R-module is Gorenstein injective, and every Gorenstein T_1^0 -flat is Gorenstein flat.

A ring R is called (n, T)-coherent if F.Presⁿ $T = F.Pres^{n+1}T$. In Section 2, we study some basic properties of the Gorenstein T_n^d -flat and Gorenstein T_n^d -injective modules. Then some characterizations of (n, T)-coherent rings over Gorenstein T_n^d -injective and Gorenstein T_n^d -flat modules are given.

2 Main Results

We start with the following lemma.

Lemma 2.1. Let $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be an exact sequence. Then

- (1) If $A \in \operatorname{Pres}^n T$ and $C \in \operatorname{Pres}^n T$, then $B \in \operatorname{Pres}^n T$.
- (2) If $A \in \operatorname{Pres}^{n}T$ and $B \in \operatorname{Pres}^{n+1}T$, then $C \in \operatorname{Pres}^{n+1}T$.
- (3) If $B \in \operatorname{Pres}^{n}T$ and $C \in \operatorname{Pres}^{n+1}T$, then $A \in \operatorname{Pres}^{n}T$.

Proof. (1) We prove the assertion by induction on n. If n = 0, then the commutative diagram with exact rows

exists, where $T'_0, T''_0 \in \text{Add}T$, i_0 is the inclusion map, π_0 is a canonical epimorphism and $h_0 = fh'_0$ is epimorphism, by Five Lemma. Let $K'_1 = \ker h'_0$, $K_1 = \ker h_0$ and $K''_1 = \ker h''_0$. So, $B \in$ $\operatorname{Pres}^{0}T$. It is clear that $K'_{1}, K''_{1} \in \operatorname{Pres}^{n}T$; so, the induction hypotises implies that $K_{1} \in \operatorname{Pres}^{n}T$. Hence $B \in \operatorname{Pres}^n T$.

(2) First assume that n = 0. If $B \in \operatorname{Pres}^1 T$ and $A \in \operatorname{Pres}^0 T$, then the following commutative diagram with exact rows:

$$\begin{array}{cccc} T_{0}^{'} & \longrightarrow A \longrightarrow 0 \\ & \downarrow \gamma & \downarrow f \\ T_{1} & \stackrel{\alpha_{2}}{\longrightarrow} T_{0} & \stackrel{\alpha_{1}}{\longrightarrow} B \longrightarrow 0 \\ & \parallel & \downarrow g \\ T_{0}^{'} \oplus T_{1} & \stackrel{h}{\longrightarrow} T_{0} & \stackrel{g\alpha_{1}}{\longrightarrow} C \longrightarrow 0 \\ & \downarrow \\ & 0 \end{array}$$

in which the existence of γ follows from the exactness of the sequence

$$\operatorname{Hom}(T_{0}^{'}, T_{0}) \to \operatorname{Hom}(T_{0}^{'}, B) \to 0,$$

since T_0' is T-projective. Also, h is defined by $h(t_0', t_1) = \gamma(t_0') + \alpha(t_1)$. Therefore, we deduce that $C \in \operatorname{Pres}^{1}T$. For n > 0, the assertion follows from induction.

(3) This is proved similarly.

Definition 2.2. Let G be a module.

(1) If $G \in \text{Cogen}T$, then G is called Gorenstein T_n^d -injective if there exists the following exact sequence of \mathcal{ET} -modules:

$$\mathbf{M} = \cdots \longrightarrow M_1 \longrightarrow M_0 \longrightarrow M^0 \longrightarrow M^1 \longrightarrow \cdots$$

with $G = \ker(M^0 \to M^1)$ such that $\mathcal{E}^d_T(U, \mathbf{M})$ leaves this sequence exact whenever $U \in$ F.PresⁿT with T.pdim $(U) < \infty$.

(2) If $G \in \text{Gen}T$, then G is called Gorenstein T_n^d -flat if there exists the following exact sequence of \mathcal{FT} -modules:

$$\mathbf{N} = \cdots \longrightarrow N_1 \longrightarrow N_0 \longrightarrow N^0 \longrightarrow N^1 \longrightarrow \cdots$$

with $G = \ker(N^0 \to N^1)$ such that $\Gamma_d^T(U, \mathbf{N})$ leaves this sequence exact whenever $U \in$ F.PresⁿT with T.fdim $(U) < \infty$.

In the following theorem, we show that in the case of (n, T)-coherent rings, the existence of \mathcal{FT} -complex and \mathcal{ET} -complex of a module is sufficient to be Gorenstein T_n^d -flat and Gorenstein T_n^d -injective.

Theorem 2.3. Let R be an (n, T)-coherent. Then

(1) $G \in \text{Cogen}T$ is Gorenstein T_n^d -injective if and only if there is an exact sequence

 $\mathbf{M} = \cdots \longrightarrow M_1 \longrightarrow M_0 \longrightarrow M^0 \longrightarrow M^1 \longrightarrow \cdots$

of \mathcal{ET} -modules such that $G = \ker(M^0 \to M^1)$.

(2) $G \in \text{Gen}T$ is Gorenstein T_n^d -flat if and only if there is an exact sequence

 $\mathbf{N} = \cdots \longrightarrow N_1 \longrightarrow N_0 \longrightarrow N^0 \longrightarrow N^1 \longrightarrow \cdots$

of \mathcal{FT} -modules such that $G = \ker(N^0 \to N^1)$.

Proof. (1) (\Longrightarrow) : This is a direct consequence of definition.

 (\Leftarrow) : By definition, it suffices to show that $\mathcal{E}_T^d(U, \mathbf{M})$ is exact for every module $U \in F.\operatorname{Pres}^n T$ with $\operatorname{T.pdim}(U) < \infty$. To prove this, we use the induction on d. Let d = 0 and $\operatorname{T.pdim}(U) = m$, then we show that $\operatorname{Hom}(U, \mathbf{M})$ is exact. To prove this, we use the induction on m. The case m = 0 is clear. Assume that $m \ge 1$. Since $\operatorname{T.pdim}(U) = m$, there exists an exact sequence $0 \to L \to T_0 \to U \to 0$ with $T_0 \in F.\operatorname{Add}T \subseteq F.\operatorname{Pres}^{n-1}T$. Now, from the (n, T)-coherence of R and Lemma 2.1, we deduce that $L, T_0 \in F.\operatorname{Pres}^n T$. Also, $\operatorname{T.pdim}(L) \le m - 1$ and $\operatorname{T.pdim}(T_0) = 0$. So, the following short exact sequence of complexes exists:

By induction, $\text{Hom}(L, \mathbf{M})$ and $\text{Hom}(T_0, \mathbf{M})$ are exact, hence $\text{Hom}(U, \mathbf{M})$ is exact by [7, Theorem 6.10].

Let $d \ge 1$ and $U \in \text{F.Pres}^n T$. Consider the exact sequence $0 \to K \to T_0 \to U \to 0$, where $T_0 \in \text{F.Add}T$. So the following short exact sequence of complexes exists:

By induction, $\mathcal{E}_T^{d-1}(K, \mathbf{M})$ is exact. So, $\mathcal{E}_T^d(U, \mathbf{M})$ is exact and hence, G is Gorenstein T_n^d -flat. (2) A similar proof to that of (1).

Remark 2.4. (1) If $U \in F$.PresⁿT, then $U \in F$.Pres^mT for any $n \ge m$.

- (2) Every T_m^d -injective *R*-module is T_n^d -injective, for any $n \ge m$.
- (3) Direct sum of T_n^d -injective *R*-modules is T_n^d -injective.
- (4) Every T_m^d -flat *R*-module is T_n^d -flat, for any $n \ge m$.

Corollary 2.5. Let R be an (n,T)-coherent ring and $G \in \text{Cogen}T$ a module. Then the following assertions are equivalent:

- (1) G is Gorenstein T_n^d -injective;
- (2) There is an exact sequence $\cdots \to M_1 \to M_0 \to G \to 0$ of modules, where every $M_i \in \mathcal{ET}$;
- (3) There is a short exact sequence $0 \to L \to N \to G \to 0$ of modules, where $N \in \mathcal{ET}$ and L is Gorenstein T_n^d -injective.

Proof. (1) \Longrightarrow (2) and (1) \Longrightarrow (3) follow from definition.

 $(2) \Longrightarrow (1)$ For any module $G \in \text{Cogen}T$, there is an exact sequence

 $0 \longrightarrow G \longrightarrow T^0 \longrightarrow T^1 \longrightarrow \cdots$

where any $T^i \in \operatorname{Prod} T \subseteq \mathcal{ET}$. So, the exact sequence

$$\cdots \longrightarrow M_1 \longrightarrow M_0 \longrightarrow T^0 \longrightarrow T^1 \longrightarrow \cdots$$

of \mathcal{ET} - modules exists, where $G = \ker(T^0 \to T^1)$. Therefore, G is Gorenstein T_n^d -injective, by Theorem 2.3.

 $(3) \Longrightarrow (2)$ Assume that the exact sequence

$$0 \longrightarrow L \longrightarrow N \longrightarrow G \longrightarrow 0 \ (1)$$

exists, where $N \in \mathcal{ET}$ and L is Gorenstein T_n^d -injective. Since L is Gorenstein T_n^d -injective, there is an exact sequence

$$\cdots \longrightarrow M_{2}^{'} \longrightarrow M_{1}^{'} \longrightarrow M_{0}^{'} \longrightarrow L \longrightarrow 0$$
 (2)

where every $M'_i \in \mathcal{ET}$. Assembling the sequences (1) and (2), we get the exact sequence

$$\cdots \to M_{2}^{'} \to M_{1}^{'} \to M_{0}^{'} \to N \to G \to 0,$$

where $N, M'_i \in \mathcal{ET}$, as desired.

Corollary 2.6. Let R be an (n,T)-coherent ring and $G \in \text{Gen}T$ a module. Then the following assertions are equivalent:

- (1) G is Gorenstein T_n^d -flat;
- (2) There is an exact sequence $0 \to G \to N^0 \to N^1 \to \cdots$ of *R*-modules, where every $N^i \in \mathcal{FT}$;
- (3) There is a short exact sequence $0 \to G \to M \to K \to 0$ of *R*-modules, where $M \in \mathcal{FT}$ and *K* is Gorenstein T_n^d -flat.

Proof. $(1) \Longrightarrow (2)$ and $(1) \Longrightarrow (3)$ follow from definition.

 $(2) \Longrightarrow (1)$ For any *R*-module $G \in \text{Gen}T$, there is an exact sequence

 $\cdots \longrightarrow T_1 \longrightarrow T_0 \longrightarrow G \longrightarrow 0,$

where any $T_i \in \text{Add}T \subseteq \mathcal{FT}$. Thus, the exact sequence

$$\cdots \longrightarrow T_1 \longrightarrow T_0 \longrightarrow N^0 \longrightarrow N^1 \longrightarrow \cdots$$

of \mathcal{FT} -modules exists, where $G = \ker(N^0 \to N^1)$. Therefore by Theorem 2.3, G is Gorenstein T_n^d -flat,

 $(3) \Longrightarrow (2)$ Assume that the exact sequence

$$0 \longrightarrow G \longrightarrow M \longrightarrow K \longrightarrow 0 \ (1)$$

exists, where $M \in \mathcal{FT}$ and K is Gorenstein T_n^d -flat. Since K is Gorenstein T_n^d -flat, there is an exact sequence

$$0 \longrightarrow K \longrightarrow (N^0)' \longrightarrow (N^1)' \longrightarrow (N^2)' \longrightarrow \cdots (2)$$

where every $(N^i)' \in \mathcal{FT}$. Assembling the sequences (1) and (2), we get the exact sequence

$$0 \to G \to M \to (N^0)' \to (N^1)' \to (N^2)' \to \cdots,$$

where $M, (N^i)' \in \mathcal{FT}$, as desired.

Proposition 2.7. Let G be a module. Then:

(1) If $G \in \text{Cogen}T$ is Gorenstein T_n^d -injective, then $\mathcal{E}_T^i(U,G) = 0$ for any i > d and every $U \in \text{F.Pres}^n T$ with $\text{T.pdim}(U) < \infty$.

(2) If $0 \to G \to G_0 \to G_1 \to \cdots \to G_{m-1} \to N \to 0$ is an exact sequence of modules where every G_j is Gorenstein T_n^d -injective and $G_j \in \text{Cogen}T$, then $\mathcal{E}_T^i(U,N) = \mathcal{E}_T^{m+i}(U,G)$ for any i > d with T.pdim $(U) < \infty$.

(3) If $G \in \text{Gen}T$ is Gorenstein T_n^d -flat, then $\Gamma_i^T(U,G) = 0$ for any i > d and every $U \in \text{F.Pres}^n T$ with $T.\text{fdim}(U) < \infty$.

(4) If $0 \to N \to G_{m-1} \to G_{m-2} \to \cdots \to G_0 \to G \to 0$ is an exact sequence of modules where every G_i is Gorenstein T_n^d -flat and $G_i \in \text{Gen}T$, then $\Gamma_i^T(U,N) = \Gamma_{m+i}^T(U,G)$ with $T.fdim(U) < \infty$.

Proof. (1) Let G be a Gorenstein T_n^d -injective R-module, and T.pdim $(U) = m < \infty$. Then by hypothesis, the following \mathcal{ET} -resolution of G exists:

$$0 \to L \to M_{m-1} \to \cdots \to M_0 \to G \to 0.$$

So, $\mathcal{E}_T^i(U, M_j) = 0$ for every $0 \le j \le m-1$ and any i > d, since $U \in F.Pres^n T$ and any $M_j \in \mathcal{ET}$. Thus by [5, Proposition 2.2], we deduce that $\mathcal{E}_T^i(U, G) \cong \mathcal{E}_T^{m+i}(U, L)$. Therefore $\mathcal{E}_T^i(U, G) = 0$, since T.pdim $(U) = m < \infty$.

(2) Setting $G_m = N$ and $K_{j-1} = \ker(G_{j-1} \to G_j)$, for every $0 \le j \le m-1$, the short exact sequence $0 \to K_{j-1} \to G_{j-1} \to K_j \to 0$ exists. Thus by (1), the induced exact sequences

$$0 = \mathcal{E}_{R}^{i}(U, G_{j-1}) \to \mathcal{E}_{R}^{i}(U, K_{j}) \to \mathcal{E}_{R}^{i+1}(U, K_{j-1}) \to \mathcal{E}_{R}^{i+1}(U, G_{j-1}) = 0$$

exists and so $\mathcal{E}_T^i(U, K_j) \cong \mathcal{E}_R^{i+1}(U, K_{j-1})$. Since $K_0 = G$, we have

$$\mathcal{E}_R^{m+i}(U,N) \cong \mathcal{E}_R^{m+i-1}(U,K_{m-1}) \cong \cdots \cong \mathcal{E}_R^i(U,G),$$

as desired.

(3) and (4) are similar to the proof of (1) and (2).

Lemma 2.8. Let $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be an exact sequence. Then

- (1) If A is T-injective and $A, B, C \in \text{Cogen}T$, then $B = A \oplus C$.
- (2) If $A \in \operatorname{Copres}^{n}T$ and $C \in \operatorname{Copres}^{n}T$, then $B \in \operatorname{Copres}^{n}T$.
- (3) If $C \in \operatorname{Copres}^{n}T$ and $B \in \operatorname{Copres}^{n+1}T$, then $A \in \operatorname{Copres}^{n+1}T$.
- (4) If $B \in \operatorname{Copres}^{n}T$ and $A \in \operatorname{Copres}^{n+1}T$, then $C \in \operatorname{Copres}^{n}T$.

Proof. (1) If A is T-injective and $A, B, C \in \text{Cogen}T$, then we deduce that the sequence

$$0 \longrightarrow \operatorname{Hom}(C, A) \xrightarrow{g^*} \operatorname{Hom}(B, A) \xrightarrow{f^*} \operatorname{Hom}(A, A) \longrightarrow \mathcal{E}_T^1(C, A) = 0$$

is exact. So, there exists $h: B \to A$ such that $hf = 1_A$.

(2) It is similar to the proof of Lemma 2.1(1).

(3) Let $B \in \text{Copres}^{n+1}T$ and $C \in \text{Copres}^nT$, then the following commutative diagram with exact rows:

$$0 \quad 0$$

$$\downarrow \quad \downarrow$$

$$0 \longrightarrow A \implies A$$

$$\downarrow \quad \downarrow$$

$$0 \longrightarrow B \longrightarrow T_0 \longrightarrow L \longrightarrow 0$$

$$\downarrow \quad \downarrow \quad \parallel$$

$$0 \longrightarrow C \longrightarrow D \longrightarrow L \longrightarrow 0$$

$$\downarrow \quad \downarrow$$

$$0 \quad 0$$

exists, where $T_0 \in \text{Prod}T$ and $L \in \text{Copres}^n T$. By (2), $D \in \text{Copres}^n T$. So, we deduce that $A \in \text{Copres}^{n+1} T$.

(4) Let $A \in \text{Copres}^{n+1}T$ and $B \in \text{Copres}^nT$, then the following commutative diagram with exact rows:

$$0 \quad 0$$

$$\downarrow \quad \downarrow$$

$$0 \longrightarrow A \longrightarrow T'_{0} \longrightarrow L' \longrightarrow 0$$

$$\downarrow \quad \downarrow$$

$$0 \longrightarrow B \longrightarrow T_{0} \longrightarrow L \longrightarrow 0$$

$$\downarrow \quad \downarrow \qquad \parallel$$

$$0 \longrightarrow C \longrightarrow D \longrightarrow L \longrightarrow 0$$

$$\downarrow \qquad \downarrow$$

$$0 \qquad 0$$

exists, where $T_0, T'_0 \in \text{Prod}T$ and $L \in \text{Copres}^{n-1}T$. Since T'_0 is *T*-injective, we have that $T_0 = T'_0 \oplus D$ by (1), and $D \in \text{Cogen}T$. Thus for any module *N*, we have

$$\mathcal{E}_{T}^{1}(N,T_{0})=\mathcal{E}_{T}^{1}(N,T_{0}^{'}\oplus D)=\mathcal{E}_{T}^{1}(N,T_{0}^{'})\oplus\mathcal{E}_{T}^{1}(N,D)=0.$$

Hence $D \in \text{Prod}T$. On the other hand, $L \in \text{Copres}^{n-1}T$. Therefore, we conclude that $C \in \text{Copres}^n T$.

Proposition 2.9. Let R be an (n, T)-coherent.

- (1) Let $0 \to M \to G \to N \to 0$ be an exact sequence. If $N \in \text{Cogen}T$ is Gorenstein T_n^d -injective and $M \in \mathcal{ET}$, then G is Gorenstein T_n^d -injective.
- (2) Let $0 \to K \to G \to N \to 0$ be an exact sequence. If $K \in \text{Gen}T$ is Gorenstein T_n^d -flat and $N \in \mathcal{FT}$, then G is Gorenstein T_n^d -flat.

Proof. (1) By Lemma 2.8, $G \in \text{Cogen}T$, since $M, N \in \text{Cogen}T$. N is Gorenstein T_n^d -injective. So by Corollary 2.5, there exists an exact sequence of $0 \to K \to M' \to N \to 0$, where $M' \in \mathcal{ET}$ and K is Gorenstein T_n^d -injective. Now, we consider the following diagram:

The exactness of the middle horizontal sequence with $M, M' \in \mathcal{ET}$, implies that $D \in \mathcal{ET}$. Hence from the middle vertical sequence and Corollary 2.5, we deduce that G is Gorenstein T_n^d -injective.

(2) By Lemma 2.1, $G \in \text{Gen}T$, since $K, N \in \text{Gen}T$. K is Gorenstein T_n^d -flat. So by Corollary 2.6, there exists an exact sequence of $0 \to K \to N' \to L \to 0$, where $N' \in \mathcal{FT}$ and L is Gorenstein T_n^d -flat. Now, we consider the following diagram:

The exactness of the middle horizontal sequence with $N, N' \in \mathcal{FT}$, implies that $E \in \mathcal{FT}$. Hence from the middle vertical sequence and Corollary 2.6, we deduce that G is Gorenstein T_n^d -flat.

In this part, we show that which conditions under every module in CogenT is Gorenstein T_n^d -injective.

Proposition 2.10. Let *R* be a ring. The following assertions are equivalent:

- (1) Every module in CogenT is Gorenstein T_n^d -injective;
- (2) The ring satisfies the following two conditions:
 - (i) Every T-projective module is T_n^d -injective.
 - (ii) $\mathcal{E}_T^{d+1}(U, N) = 0$ for any $N \in \text{Cogen}T$ and any $U \in \text{F.Pres}^n T$ with $\text{T.pdim}(U) < \infty$.

Proof. (1) \implies (2) The condition (*i*) follows from this fact that every *T*-projective module *M* is Gorenstein T_n^d -injective. So, the following \mathcal{ET} -resolution of *M* exists:

$$\cdots \to M_1 \to M_0 \to M \to 0.$$

Since M is T-projective, M is T_n^d -injective as a direct summand of M_0 . Also, by Proposition 2.7 and (1), the condition (*ii*) follows.

(2) \implies (1) Since T is tilting, the exact sequence $0 \rightarrow R \rightarrow T_0 \rightarrow T_1 \rightarrow 0$ exists, where $T_0, T_1 \in \text{Add}T$. So $T_0, T_1 \in \text{Gen}T$. Hence, the exact sequence $0 \rightarrow K \rightarrow T^{(m)} \rightarrow T_i \rightarrow 0$ exists for i = 0, 1. On the other hand, $K \subseteq T^{(m)} \subseteq T^m$. So, $K, T^{(m)} \in \text{Cogen}T$. Thus by [5, Proposition 2.1], $K, T^{(m)} \in \text{Copres}^{\infty}T$. Therefore by Lemma 2.8, $T_i, R \in \text{Copres}^kT$ and

hence $R \in \text{Cogen}T$. Let $G \in \text{Cogen}T$. Choose a Prod*T*-resolution $0 \to G \to T^0 \to T^1 \to \cdots$ of G and a free resolution $\cdots \to F_1 \to F_0 \to G \to 0$, where every $F_i \in \text{Cogen}T$. Also by Lemma 2.1 and [5, Proposition 2.1], we get that $F_i \in \text{Gen}T = \text{Pres}^{\infty}T$, since $T_0, T_1 \in \text{Gen}T$. Every projective in GenT is T-projective. So by (2), every F_i is T_n^d -injective. Assembling these resolutions, by Remark 2.4 and (2)(i), we get the following \mathcal{ET} -resolution:

$$\mathbf{A} = \cdots \to F_1 \to F_0 \to T^0 \to T^1 \to \cdots,$$

where $G = \ker(T^0 \to T^1)$, $K^i = \ker(T^i \to T^{i+1})$ and $K_i = \ker(F_i \to F_{i-1})$ for any $i \ge 1$. By Lemma 2.8, $K_i, K^i \in \text{Cogen}T$, since $G, T^i, F_i \in \text{Cogen}T$. Let $U \in \text{F.Pres}^n T$ with T.p.dim $(U) < \infty$. Then by (2), $\mathcal{E}_T^{d+1}(U, G) = \mathcal{E}_T^{d+1}(U, F_i) = \mathcal{E}_T^{d+1}(U, T^i) = 0$ for any $i \ge 0$. So, $\mathcal{E}_T^d(U, \mathbf{A})$ is exact, and hence G is Gorenstein T_n^d -injective.

Theorem 2.11. Let R be an (n, T)-coherent ring. Then the following assertions are equivalent:

- (1) Every module in CogenT is Gorenstein T_n^d -injective;
- (2) Every T-projective module is T_n^d -injective;
- (3) R is T_n^d -injective;
- (4) Every Gorenstein T_n^d -flat is Gorenstein T_n^d -injective;
- (5) Every T-flat module is Gorenstein T_n^d -injective;
- (6) Every T-projective module is Gorenstein T_n^d -injective.

Proof. $(1) \Longrightarrow (2)$ and $(2) \Longrightarrow (3)$ follow from Proposition 2.10.

 $(3) \Longrightarrow (1)$ Let $G \in \text{Cogen}T$ be a module and $\cdots \rightarrow F_1 \rightarrow F_0 \rightarrow G \rightarrow 0$ be any free resolution of G. Then, similar to proof $((2) \Longrightarrow (1))$ of Proposition 2.10, each $F_i \in \mathcal{ET}$. Hence Corollary 2.5 completes the proof.

(3) \implies (4) Let $N \in \text{Gen}T$ is Gorenstein T_n^d -flat. Similar to proof ((2) \implies (1)) from Proposition 2.10, $N \in \text{Cogen}T$. So, (2) follows immediately from (1). (4) \implies (5) every *T*-flat is T_n^d -flat and every T_n^d -flat is Gorenstein T_n^d -flat. So by (4), (5) is

hold.

 $(5) \Longrightarrow (6)$ is clear, since every T-projective is T-flat.

(6) \implies (3) Similar to proof ((1) \implies (2)) from Proposition 2.10, every *T*-projective module is T_n^d -injective. Also, the exact sequence $0 \to R \to T_0 \to T_1 \to 0$ exists, where $T_0, T_1 \in \text{Add}T$. So $T_0, T_1 \in \text{Gen}T$. Thus by [5, Proposition 2.1], $T_i \in \text{Gen}T = \text{Pres}^{\infty}T$ for i = 0, 1. Hence by Lemma 2.1, $R \in \text{Gen}T$. Therefore R is T-projective and hence, it is T_n^d -injective. П

Example 2.12. Let R be a 1-Gorenstein ring and $0 \to R \to E^0 \to E^1 \to 0$ be the minimal injective resolution of R. Then, $T = E_0 \oplus E_1$ is Gorenstein T_n^d -injective and Gorenstein T_n^d -flat, since by [3], T is a tilting module.

References

- [1] S. Bazzoni, A characterization of n-cotilting and n-tilting modules, J. Algebra. 273, 359-372 (2005).
- [2] E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220, 611-633 (1995).
- [3] E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, Walter de Gruyter. Berlin. New York (2000).
- [4] E. E. Enochs, O. M. G. Jenda and B. Torrecillas, Gorenstein flat modules, Nanjing Daxue Xuebao Shuxue Bannian Kan. 10, 1-9 (1993).
- [5] M. J. Nikmehr and F. Shaveisi, Relative T-injective modules and relative T-flat modules, Chin. Ann. Math. 32B (4), 497-506 (2011).
- [6] M. J. Nikmehr and F. Shaveisi, T-Dimension and $(n + \frac{1}{2}, T)$ -projective modules, Seams. Bull. Math. 36, 113-123 (2012).
- [7] J. J. Rotman, An Introduction to Homological Algebra, Academic Press, NewYork (2009).
- [8] F. Shaveisi and M. Amini, Gorenstein $\sigma[T]$ -injectivity on T-coherent rings, Asian-European Journal of mathmatics Math. 4, 1550083 (9 pages) (2015).

- [9] F. Shaveisi and M. Amini, Some properties of the AddT -resolutions when T is a tilting module, *Journal* of Advanced Research in Pure Mathematics. 7, 60-69 (2015).
- [10] D. Zhou, On n-coherent rings and (n, d)-rings, Comm. Algebra. 32(6), 2425-2441 (2004).
- [11] W. Xu, On *n*-presented modules and almost excellent extensions, *Comm. Algebra.* **27**(3), 1091-1102 (2007).

Author information

Mostafa Amini, Department of Mathematics, Payame Noor University, Tehran, Iran,. E-mail: amini.pnu13560gmail.com

Received: July 9, 2019. Accepted: September 22, 2019