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Abstract A few years ago, Peter Larcombe discovered an amazing property regarding two by
two matrices. For any such 2 × 2 matrix A, the ratios of the two anti-diagonal entries is the
same for all powers of A. We discuss extensions to higher dimensions, and give a short bijective
proof of Larcombe and Eric Fennessey’s elegant extension to tri-diagonal matrices of arbitrary
dimension. This article is accompanied by a Maple package.

Peter Larcombe’s Surprising Discovery

In [2], Peter Larcombe gave four proofs of a seemingly new and amazing property of a 2 × 2
matrix, for any such matrix (we denote the (i, j) entry of a matrix B by Bij)

A12 · (Am)21 = A21 · (Am)12 ,

for all positive integers m.

We first observe that, in hindsight (but only in hindsight!) this is not that surprising. More
generally, for a general n × n matrix A, and any subset S of cardinality n + 1 of the set of n2

entries {(i, j) | 1 ≤ i, j ≤ n}, there exist polynomials qs(A) in the entries of A (independent of
m) such that ∑

s∈S
qs · (Am)s = 0 , (1)

for all m > 1.

This fact follows from the Cayley-Hamilton equation that says that If PA(x) := det(A − x I)
is the characteristic polynomial of A, then the n× n matrix PA(A) equals the zero matrix 0 .
Writing

PA(x) =
n∑

k=0

pkx
k ,

we have
n∑

k=0

pkA
k = 0 ,

where 0 is the all-zero matrix. Multiplying by Am we get

n∑
k=0

pkA
m+k = 0 ,

for all m.
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Taking the ij entry, we have that each of the n2 sequences (Am)ij satisfy the same nth-order
linear recurrence equation with constant coefficients

n∑
k=0

pk(A
m+k)ij = 0 .

It is well-known and easy to see ([1][8]) that any n+1 sequences that satisfy the same recurrence
of order n, must be linearly dependent. Also, in order to find the relation, it is enough to
find n + 1 values of the qs for which (1) holds for the m = 1, 2, . . . , n. Then this linear
combination also satisfies that very same linear recurrence, and since it vanishes at the first n
initial conditions it must be identically zero.

If our subset S of entries only consists of non-diagonal entries, we can do even better, Eq. (1) is
true for any set S of n non-diagonal entries.

Note that the Cayley-Hamilton equation implies that

n∑
k=1

pkA
k

is a diagonal matrix (namely − det(A)I), hence for a non-diagonal entry ij (i 6= j), (Am)ij
always satisfies the same linear recurrence equation (with constant coefficients) of order n − 1,
hence any n such non-diagonal entries must be linearly dependent. In the original case of a 2×2
matrix discussed in [2], it follows that the (1, 2) and (2, 1) entries of Am always satisfy the same
relation as those of A, hence we have yet-another-proof (without equations!) of Larcombe’s
amazing discovery.

But what about higher dimensions? Now things get much more complicated, and we need a
computer algebra system (in our case Maple). For example, we have the following

Theorem: Let A = (aij)1≤i,j≤3 be a 3× 3 matrix, then for all m ≥ 1, we have

(a12a21a23 − a13a21a22 + a13a21a33 − a13a23a31) · (Am)12

+(a12a23a31 − a13a21a32) · (Am)13

+
(
−a2

12a23 + a12a13a22 − a12a13a33 + a2
13a32

)
· (Am)21 = 0 .

There are three more such theorems (up to trivial isomorphism) for the n = 3 case, while there
are 27 inequivalent cases for n = 4. They can all be found in the following output file

https://sites.math.rutgers.edu/�zeilberg/tokhniot/oLarcombe1.txt

We were unable to find the corresponding relations for n = 5, they got too complicated!

A bijective proof of the Larcombe-Fennessey theorem about Tridiagonal matrices

Any matrix identity for a fixed dimension is essentially high-school algebra and can be verified
by a computer algebra system, even if the power m is arbitrary. But the following theorem of
Larcombe and Fennessey, regarding tridiagonal matrices of arbitrary dimension is university
algebra and is more interesting.

Theorem (Larcombe and Fennessey [3][6]) : Let A be a general n × n tridiagonal matrix (for
any n ≥ 2), then for all 1 ≤ i < n, and all m ≥ 1, we have

ai,i+1 · (Am)i+1,i = ai+1,i · (Am)i,i+1 . (2)

For a concrete example see [3].
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We will give a combinatorial proof. Fix n and let ai,j (1 ≤ i, j ≤ n) be n2 commuting indeter-
minates. It follows immediately from the definition of matrix multiplication that the (i, j) entry
of Am is the weight-enumerator of the set of (m+ 1)-letter words in the alphabet {1, 2, . . . , n}
whose first letter is i and last letter is j, with the weight

Weight(w1 . . . wm+1) := aw1 w2 · aw2 w3 · · · awm−1 wm · awm wm+1 .

For example Weight(123123) = a12a23a31a12a23.

If our matrix is tridiagonal, then all the words are continuous i.e. after the letter i can only come
one of the (up to) three letters {i− 1, i, i+ 1}. For example if n = 5 then the following is a legal
word

2333234333221122112234455443 ,

but the following one is not
233312 ,

because after the fourth letter, that is a ‘3’, comes the letter ‘1’.

Let Wm(i, j) be the set of legal (m + 1)-letter words in the alphabet {1, 2, . . . , n} that start
with the letter i and end with the letter j. Its weight-enumerator (i.e. sum of the weights of its
members) is (Am)ij , where now A is a generic n×n tridiagonal matrix. For ease of type-setting
let i′ := i+ 1.

Note that:

• The left side of (2) is the weight-enumerator of the set of words, iWm(i′, i), which is the set
of legal (m+ 2)-letter words that start and end with the letter i, and whose second letter is i′.

• The right side of (2) is is the weight-enumerator of i′Wm(i, i′) which is the set of legal (m+2)-
letter words that start and end with the letter i′, and whose second letter if i.

We claim that The mapping

Ti : iWm(i′, i)→ i′Wm(i, i′) ,

to be defined next, is a weight-preserving bijection.

Let w = w1w2 . . . wm+2 be a member of iWm(i′, i), then of course w1 = i and w2 = i′, and
wm+2 = i. Let k be the smallest index such that wk = i′, wk+1 = i. Of course it exists (by
“continuity”).

Case I: k = 2.

If m = 1 then the word must be i i ′i and we map it to i′ i i′.

Otherwise we can write

w = i i′ i u i ,

for some (m− 2)-letter word u, and we define

Ti(w) := i′ i u i i′ ,

that of course belongs to i′Wm(i, i′).
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Case II: k = m+ 1, then we can write

w = i i′ u i′ i ,

for some (m− 2)-letter word u, and we map it to the

Ti(w) := i′ i i′ u i′ ,

that of course belongs to i′Wm(i, i′).

Case III: 2 < k < m+ 1. Then we can write

w = i i′ u i′ i v i ,

for some words u and v, whose total length is m− 2, and we define

Ti(w) := i′ i v i i′ u i′ ,

that of course belongs to i′Wm(i, i′).

Let’s state the inverse mapping

Ui : i′Wm(i, i′)→ iWm(i′, i) .

Let w = w1w2 . . . wm+2 be a member of i′Wm(i, i′), then of course w1 = i′ and w2 = i, and
wm+2 = i′. Let k be the largest index such that wk = i, wk+1 = i′. Of course it exists (by
“continuity”).

Case I: k = m+ 1. If m = 2 the w = i′ i i′ and we let Ui(w) be i i′ i. Otherwise we can write

w = i′ i u i i′ ,

for some (m− 2)-letter word u, and we define

Ui(w) := i i′ i u i .

Case II: k = 2. We can write

w = i′ i i′ u i′

and we define

Ui(w) := i i′ u i′ i .

Case III: 2 < k < m+ 1. We can write

w = i′ i v i i′ u i′ ,

for some words u and v whose lengths add-up to m− 2, and we define

Ui(w) := i i′ u i′ i v i .
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Readers are welcome to play with the Maple package

https://sites.math.rutgers.edu/�zeilberg/tokhniot/Larcombe.txt

that contains procedure REL to discover generalized Larcombe relations (mentioned above) and
also implements the above bijection (procedures Ti and Ui, and CheckTi verifies it empirically).

In order to use the Maple package, one should have Maple, of course. Then start a Maple session,
and type read `Larcombe.txt`. For on-line help, type

ezra(); .

Darij Grinberg’s Extension

Darij Grinberg discovered that our argument proves a bit more. Here is what he wrote to us:

“I’d like to remark that (2) holds not only if A is tridiagonal, but more generally if A has the
property that

(*) au,v = av,u = 0 whenever u ≤ i and v > i satisfy v − u > 1.

(That is, there is a "tridiagonal bottleneck" between i and i+ 1 in A.) Your proof still applies to
this generalization, except that the words should not be "continuous" but rather need to pass the
(i, i + 1) checkpoint whenever they cross the border between "≤ i" and "> i". Instead of con-
tinuity, you thus need to make a "what goes up must come down" argument when constructing
the bijection.”
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