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Abstract The reciprocal complementary Wiener index is a Wiener like molecular descrip-
tor. It was introduced in the chemical graph theory and has shown to be useful. Reciprocal
complementary Wiener index of a graph G is defined as

RCW (G) =
∑

{u,v}⊆V (G)

1
1 +D − dG(u, v)

,

where D is the diameter of a graph G and dG(u, v) is the distance between the vertices u and v.
The aim of this paper is to determine new inequalities involving the reciprocal complementary
Wiener index (RCW ) and characterize graphs extremal with respect to them.

1 Introduction

Let G be a simple, undirected, connected graph with n vertices and m edges and Ḡ is its comple-
ment with m̄(= (n2)−m) edges. The distance between the vertices u and v, denoted by dG(u, v),
is the length of the shortest path between them. The eccentricity of v, denoted e(v), is defined
to be the greatest distance from v to any other vertex. The diameter of a graph G, denoted by
diam(G) = D is the maximum distance between any pair of vertices of G. The degree of a
vertex v ∈ V (G) is denoted by dG(v) and is defined as the number of edges that are incident
with v in the graph G. The minimum vertex degree is denoted by δ, the maximum by 4. As
usual, we denote by Pn the path, by Cn the cycle, by Sn the star, by Kn the complete graph,
each on n vertices.

The vertex connectivity k of a graph G is defined to be the minimum number of vertices
whose removal from G results in to a disconnected or a trivial graph. A subset S of a vertex set
V (G) of a graph G is said to be an independent set, if no two vertices of S are adjacent in G. The
independence number β0(G) of G is the maximum number of vertices in the independent sets in
G. A dominating set for a graph G = (V,E) is a subset D of V such that every vertex not in D is
adjacent to at least one member of D. The domination number γ(G) is the number of vertices in
a smallest dominating set for G. A dominating set D of a graph G is an independent dominating
set if the induced subgraph < D > has no edges. The independent domination number γ0(G) of
a graph G is the minimum cardinality of an independent dominating set. A chromatic number
of graph G , written χ(G) is the minimum number of colors needed to label the vertices so
that adjacent vertices receive different colors. Related to the notations, undefined terminologies
reader can refer [2, 10].

Topological indices are numerical quantities of molecular graphs (or simple graphs), that are
invariant under graph isomorphism and are used to correlate with various physical properties,
chemical reactivity or biological activity. There are numerous of topological indices that have
found some applications in theorotical chemistry, especially in QSPR/QSAR research. With in
all topological indices one of the most important, widely studied and oldest topological index is
the Wiener index [32]. In light of Wiener’s definition Hosoya formalized it as Wiener number
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by means of the distance matrix [11]. Wiener index of a graph G is defined as follows

W (G) =
∑

{u,v}⊆V (G)

dG(u, v). (1.1)

It has innumerable applications for designing quantitative structure property relationships (QSPR)
[15, 16]. Mathematical research on W (G) started in 1976 [6], since then this distance based
quantity was much studied in [4, 5, 17, 20, 22, 23, 31, 33, 34] and see the references cited there
in and recent researches concerning this quantity; see for instance [1, 8, 9, 18, 19, 21, 24, 27].

The complementary Wiener index [13, 29]of a graph G denoted by CW (G) is defined as

CW (G) =
∑

{u,v}⊆V (G)

(1 +D − dG(u, v)), (1.2)

where D is the diameter of graph G. The reciprocal complementary Wiener index [12, 13] of a
graph G is denoted by RCW (G) and is defined as follows

RCW (G) =
∑

{u,v}⊆V (G)

1
1 +D − dG(u, v)

. (1.3)

In the family of Wiener-like molecular descriptors [30], RCW index is the newest addition. It
has been introduced by Ivanciuc et al. [12, 13, 14, 15]. The RCW index has been successfully
applied in the structure-property modeling of the molar heat capacity, standard Gibbs energy
of formation and vaporization enthalpy, refractive index, and density of 134 alkanes C6 − C10
[12, 35]. For recent results we refer the reader to see [3, 26, 28, 35] and for a survey paper [34].

The reciprocal complementary distance number of a vertex u of a graph G is denoted by
RCD(u|G) and is defined as

RCD(u|G) =
∑

v∈V (G)

1
1 +D − dG(u, v)

. (1.4)

From (1.4) we can rewrite (1.3) as

RCW (G) =
1
2

∑
u∈V (G)

RCD(u|G). (1.5)

In [35] Zhou et al. determined various lower and upper bounds for the RCW index and also
given Nordhaus-Gaddum type results for the same which states that

RCW (G) +RCW (Ḡ) ≥ RCW (Pn) +RCW (P̄n).

Further more, in [34] Xu et al. obtained that, for any tree on n vertices, the path Pn and
Sn(orK1,n−1) attains minimum value and maximum value for the RCW index respectively.

RCW (Pn) ≤ RCW (T ) ≤ RCW (Sn).

In the continuation of the study on RCW index Qi and Zhou [25] characterized the trees of fixed
number of vertices and matching number with the smallest RCW index, and the non-caterpillars
on n ≥ 7 vertices with the smallest, the second- smallest and the third-smallest RCW index.

The aim of this paper is to obtain new inequalities involving the reciprocal complementary
Wiener index and characterize graphs extremal with respect to them. In particular, we provide
lower and upper bounds on RCW of a graph G in terms of some graph parameters like n, m, D,
vertex connectivity(k), independence number(β0), independence domination number(γ0) and
chromatic number(χ).

2 Lower Bounds on RCW

In this section, we establish lower bounds on RCW of a graph G in terms of number of ver-
tices n, number of edges m, diameter D, vertex connectivity (k), independence number(β0),
independence domination number(γ0), and chromatic number(χ).
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Theorem 2.1. Let G be a non-complete connected graph of order n, size m with D ≥ 3. Then

RCW (G) ≥ 1
(D − 1)

[
n(n− 1)

2
+

1
D − 2

− m

D

]
. (2.1)

Equality holds if and only if G contains exactly two vertices of eccentricity three and rest are of
eccentricity two.

Proof. Let u ∈ V be an arbitrary vertex in G and D ≥ 3. Then define two sets A and B as
A = {u ∈ V |e(u) = 2}, B = {u ∈ V |e(u) ≥ 3}. Then |A|+ |B| = n.
Now, consider two cases which are as follows
Case a): If u ∈ A, we define two sets A1 and A2 as follows
A1 = {v ∈ V |1/1 +D − dG(u, v) = 1/D}, A2 = {v ∈ V |1/1 +D − dG(u, v) = 1/D − 1}.
By (1.4), we get

RCD(u|G) =
|A1|
D

+
|A2|
D − 1

= |A1|+ |A2|+
|A1|
D
− |A1|+

|A2|
D − 1

− |A2|

= n− 1 +
1−D
D
|A1|+

(2−D)(n− 1− |A1|)
D − 1

=
D(n− 1)− dG(u)

D(D − 1)
. (2.2)

Case b): If u ∈ B, we define three sets
B1 = {v ∈ V |1/1 +D − dG(u, v) = 1/D}, B2 = {v ∈ V |1/1 +D − dG(u, v) = 1/D − 1},
B3 = {v ∈ V |1/1 +D − dG(u, v) ≥ 1/D − 2}.
Clearly, |B1|+ |B2|+ |B3| = n− 1.
Then by (1.4), we get

RCD(u|G) = D2n−D2 − 2Dn+ 3D −DdG(u) + 2dG(u)
D(D − 1)(D − 2)

. (2.3)

Now from (1.5), we have the following

RCW (G) =
1
2

∑
u∈V (G)

RCD(u|G)

=
1
2

∑
u∈A

RCD(u|G) + 1
2

∑
u∈B

RCD(u|G) (2.4)

Using (2.2) and (2.3) in (2.4), then we get

RCW (G) ≥ 1
2D(D − 1)(D − 2)

 (D2n−D2)(|A|+ |B|)−D
∑
u∈A dG(u)

−2Dn(|A|+ |B|) + 2D|A|+ 3D|B|
+2
∑
u∈B dG(u)


=

n(D2n−D2)− 2mD − 2Dn2 + 2D(|A|+ |B|) +D|B|+ 4m
2D(D − 1)(D − 2)

≥ D2n(n− 1)− 2m(D − 2)− 2Dn(n− 1) + 2D
2D(D − 1)(D − 2)

since |B| ≥ 2,

=
1

(D − 1)

[
n(n− 1)

2
+

1
D − 2

− m

D

]
.
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Theorem 2.2. LetG be a non-complete connected graph of order n connectivity k andH1, H2, . . . ,Ht

be the connected components of G− S, where S be any cut set and |S| = k. Then

RCW (G) ≥ 1
2D

[
n(n− 1)−

(
2l(l+ k − n)

D − 1

)]
,

where l = min1≤i≤t{|V (Hi)|}.
Further, the equality holds if and only if G = Kl +Kk +Kn−l−k.

Proof. Let G be a graph with n vertices and |S| = k, where S be any cut-set of G. Let Hi for
i = 1, 2, . . . , t be the connected components of G − S, with l = min1≤i≤t{|V (Hi)|}. Without
loss of generality, assume that |V (H1)| = l, G1 = H1 and G2 =

⋃t
i=2 Hi.

Then, |V (G1)| = l and |V (G2)| = n− k − l. Now we have

RCW (G) =
1
2

∑
u∈V (G)

RCD(u|G)

=
1
2

 ∑
u∈V (G1)

RCD(u|G) +
∑
u∈S

RCD(u|G) +
∑

u∈V (G2)

RCD(u|G)

 . (2.5)

The result follows in three cases: which are as follows
Case a): Let u ∈ V (G1). Then we have

RCD(u|G) =
∑

v∈V (G)

1
1 +D − dG(u, v)

=
∑

v∈V (G1)

1
1 +D − dG(u, v)

+
∑
v∈S

1
1 +D − dG(u, v)

+
∑

v∈V (G2)

1
1 +D − dG(u, v)

≥ l − 1
D

+
k

D
+
n− l − k
D − 1

=
D(n− 1)− (l+ k − 1)

D(D − 1)
. (2.6)

Since dG(u, v) ≥ 1, if v ∈ V (G1), v ∈ S and dG(u, v) ≥ 2, if v ∈ V (G2).
Case b) : Let u ∈ S. Then,

RCD(u|G) =
∑

v∈V (G)

1
1 +D − dG(u, v)

=
∑

v∈V (G1)

1
1 +D − dG(u, v)

+
∑
v∈S

1
1 +D − dG(u, v)

+
∑

v∈V (G2)

1
1 +D − dG(u, v)

≥ l

D
+
k − 1
D

+
n− l − k

D

=
n− 1
D

. (2.7)

Since dG(u, v) ≥ 1, if the vertex v is in either sets V (G1), S and V (G2).
Case c) : Let u ∈ V (G2). Then we have the following

RCD(u|G) ≥ l

D − 1
+
k

D
+
n− l − k − 1

D

=
D(n− 1)− (n− l − 1)

D(D − 1)
. (2.8)



108 H. S. Ramane and V. V. Manjalapur

Using (2.6), (2.7) and (2.8) in (2.5), then we get the required result. Proof of second part of the
Theorem 2.2 holds from the proof of inequality itself.

Theorem 2.3. Let G be a non-complete connected graph of order n. Then

RCW (G) ≥ 1
2D

[
n(n− 1) +

β0(β0 − 1)
(D − 1)

]
.

Equality holds if and only if G = Kβ0 +Kn−β0 .

Proof. Let S be the maximum independent set with |S| = β0 and u be any vertex in S. Then

RCD(u|G) =
∑

v∈V (G)

1
1 +D − dG(u, v)

=
∑
v∈S

1
1 +D − dG(u, v)

+
∑

v∈V−S

1
1 +D − dG(u, v)

≥ β0 − 1
D − 1

+
n− β0

D

=
1
D

[
n−

(
D − β0

D − 1

)]
. (2.9)

Since u 6= v and u ∈ S, so that there are (β0 − 1) vertices in S which are at distance at least two
from u and dG(u, v) ≤ 1, for any v ∈ V − S.
Next, Let u ∈ V − S. Then

RCD(u|G) =
∑

v∈V (G)

1
1 +D − dG(u, v)

≥ n− 1
D

. (2.10)

Therefore, from (1.5), we have the following

RCW (G) =
1
2

∑
u∈V (G)

RCD(u|G)

=
∑
u∈S

RCD(u|G) +
∑

u∈V−S
RCD(u|G)

≥ 1
2

[(
1
D

[
n−

(
D − β0

D − 1

)])
β0 + (n− β0)

(
n− 1
D

)]
from (2.9) and (2.10)

=
1

2D

[
n(n− 1) +

β0(β0 − 1)
(D − 1)

]
.

For the equality, one can easily see that equality holds if and only if the graphG = Kβ0 +Kn−β0 .
Conversely, suppose the equality holds, then we have to prove G = Kβ0 + Kn−β0 . If pos-

sible assume that G 6= Kβ0 + Kn−β0 . Let S be the maximum independent set with |S| = β0
in G. For any two vertices u and v in G, the reciprocal complementary distance is 1

D−1 and
1
D if both u and v are in S and V − S respectively otherwise, it will lead to RCW (G) >
1

2D

[
n(n− 1) + β0(β0−1)

(D−1)

]
, a contradiction. Thus 〈S〉 = Kβ0 and 〈V − S〉 = Kn−β0 . Further,

if u ∈ S and v ∈ V − S, we claim that reciprocal complementary distance is 1
D , for, otherwise

RCD(vi|G) > n−β0
D and there by RCW (G) > 1

2D

[
n(n− 1) + β0(β0−1)

(D−1)

]
holds, a contradiction.

Thus G = Kβ0 +Kn−β0 . This completes the proof.

Theorem 2.4. Let G be any connected graph of order n. Then,

RCW (G) ≥ 1
2D

[
n(n− 1) +

γ0(γ0 − 1)
(D − 1)

]
.
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Proof. The proof follows directly from Theorem 2.3.

Theorem 2.5. Let G be a non-complete connected graph of order n with chromatic number
χ(G) = t. Then

RCW (G) ≥ 1
2D(D − 1)

[
Dn(n− 1)− n2 +

t∑
i=1

n2
i

]
. (2.11)

Equality holds if and only if G = Kn1,n2,...,nt
.

Proof. Suppose χ(G) = t, then the vertex set V (G) of G can be partitioned into t color classes
ζ1, ζ2, . . . , ζt such that no two vertices in any ζi adjacent and let |ζi| = ni, for i = 1, 2, . . . , t.
Thus, n =

∑t
1=1 ni. Let u ∈ ζi, for i = 1, 2, . . . , t. Then from (1.4), we have

RCD(u|G) =
∑

v∈V (G)

1
1 +D − dG(u, v)

=
∑
v∈ζi

1
1 +D − dG(u, v)

+
∑

v∈V−ζi

1
1 +D − dG(u, v)

≥ ni − 1
D − 1

+
n− ni
D

=
D(n− 1)− n+ ni

D(D − 1)
. (2.12)

Since dG(u, v) ≥ 2, if v ∈ ζi and dG(u, v) ≥ 1, if v ∈ V − ζi. Therefore

RCW (G) =
1
2

∑
u∈V (G)

RCD(u|G)

=
1
2

 t∑
i=1

∑
ui∈ζi

1
1 +D − dG(u, v)


≥ 1

2

 t∑
i=1

∑
ui∈ζi

D(n− 1)− n+ ni
D(D − 1)

 from Eq. (2.12)

=
1
2

[
Dn(n− 1)− n2 +

∑t
i=1 n

2
i

D(D − 1)

]
.

Further, one can easily see that equality holds in (2.11) for a graph G = Kn1,n2,...,nt . On
the other hand, if the equality holds in (2.11) and χ(G) = t, then the vertex set V (G) can be
partitioned into the color classes ζ1, ζ2, . . . , ζt such that |ζi| = ni, for i = 1, 2, . . . , t. Now, we
claim that any two vertices u and v belonging to two different color classes are adjacent. For if
u ∈ ζi, and v ∈ ζj for i 6= j are not adjacent then

∑
v∈V−ζi

1
1+D−dG(u,v) >

n−ni

D , which in turn

implies that, RCD(u|G) > D(n−1)−n+ni

D(D−1) and there by it will lead to

RCW (G) >
1
2

[
Dn(n− 1)− n2 +

∑t
i=1 n

2
i

D(D − 1)

]

a contradiction. Again, if both u and v belongs to the same color class then the reciprocal com-
plementary distance is 1

D−1 , otherwise it leads to the same contradiction. HenceG = Kn1,n2,...,nt

holds.

Note: For any graph G, we know that D ≤ (n−4+ 1) [7]. Suppose4 and δ are the maximum
and minimum degrees respectively then, diameter is of the form D ≤ n− (4+ δ) + 2.
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Proposition 2.6. [35] Let G be a non complete connected graph with n ≥ 3 vertices and m
edges. Then

RCW (G) ≤ n(n− 1)−m
2

(2.13)

with equality if and only if G has diameter 2.

Theorem 2.7. Let G be a non complete connected graph with n vertices and m edges, δ and 4
are the minimum and maximum degree respectively. Then

RCW (G) ≥
[

1
n−4

] [
n(n− 1)

2
− m

n−4+ 1

]
. (2.14)

Equality holds if and only if atleast one vertex should have maximum degree4 = n− 1 in G or
G ∼= Sn.

Proof. Since D ≤ n −4+ 1. Now, we have m – pairs are at distance 1 and
[
(n2)−m

]
– pairs

are at distance 2. From (1.3), we get the required result.

Theorem 2.8. Let G be a graph with order n, size m and4+ δ ≤ n. Then

RCW (G) ≥
[

1
n− (4+ δ) + 1

] [
n(n− 1)

2
− m

n− (4+ δ) + 2

]
. (2.15)

Equality holds if and only if D = n− (4+ δ) + 2.

Proof. We have D ≤ n− (4+ δ) + 2. Thus the result is follows from Theorem 2.7.

Remark 2.9. If the graph G has maximum degree 4 = n − 1 and 4 + δ = n in (2.14) and
(2.15), respectively, then both equations reduces to the equality part of (2.13).

3 Upper bounds on RCW(G)

In this section, we give upper bounds forRCW of graphG in terms of n,m andD. The radius of
graph G is defined as, the minimum eccentricity among all vertices of G and denoted as rad(G).

Theorem 3.1. Let G be a connected graph of order n, size m with D = rad(G) = 3. Then

RCW (G) ≤ n(n− 2)
2

− 2m
3
.

Equality holds when G ∼= C6.

Proof. Since G be a graph with D = rad(G) = 3, we have e(u) = 3, for every vertex u in G.
Define the sets Ai(u) = {v ∈ V | 1

1+D−dG(u,v) =
1

4−i} for i = 1, 2, 3.

Clearly, |
⋃3
i=1 Ai(u) |= n.

| A2(u) | + | A3(u) |= n− 1− dG(u). (3.1)

Since |A1(u)| = dG(u) and |A2(u)| ≥ 2, for otherwise, there is a vertex w ∈ A2(u) such that
e(w) ≤ 2, a contradiction. Thus,

RCD(u|G) =
∑
v∈V

1
1 +D − dG(u, v)

=
|A1(u)|
D

+
|A2(u)|
D − 1

+
|A3(u)|
D − 2

=
1
3
|A1(u)|+

1
2
|A2(u)|+ |A3(u)|

=
dG(u)

3
+

1
2
[|A2(u)|+ |A3(u)|] +

1
2
|A3(u)|. (3.2)
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Now, from (3.1), we have the following

|A3(u)| = n− 1− dG(u)− |A2(u)|
≤ n− 1− dG(u)− 2 since |A2(u)| ≥ 2

= n− 3− dG(u).

Using (3.1) and above argument in (3.2), we get

RCD(u|G) ≤ 3n− 6− dG(u)
3

. (3.3)

Next, using (3.3) in (1.5), we get the required result.

Theorem 3.2. Let G be a connected graph of order n, size m and D = rad(G) = α ≥ 3. Then

RCW (G) ≤ 1
D − 1

[
n(n− 1)

2
− m

D
+ n

(
α−1∑
i=3

(i− 2)
(D − (i− 1))

+
(α− 2)

2(D − (α− 1))

)]
. (3.4)

Equality holds if and only if G ∼= C2α.

Proof. Let u be any vertex in G, then define the set Ai(u) = {v ∈ V | 1
1+D−dG(u,v) =

1
D−(i−1)},

for i = 1, 2, . . . , α. By (1.4), we have

RCD(u|G) =
|A1(u)|
D

+
|A2(u)|
D − 1

+
|A3(u)|
D − 2

+ . . .+
|Aα(u)|

D − (α− 1)

=
dG(u)

D
+
n− 1− dG(u)

D − 1
+
α−1∑
i=3

(i− 2)|Aα−1(u)|
(D − (i− 1))(D − 1)

+
(α− 2)|Aα(u)|

2(D − (α− 1))(D − 1)
. (3.5)

Since, |Aα(u)| ≥ 1 and |Ai(u)| ≥ 2, for i = 1, 2, . . . , α− 1, then (3.5) becomes

RCD(u|G) ≤ n− 1
D − 1

− dG(u)

D(D − 1)

+ 2
α−1∑
i=3

(i− 2)
(D − (i− 1))(D − 1)

+
(α− 2)

(D − (α− 1))(D − 1)
(3.6)

Using (3.6) in (1.5), we get the required result and easily we can see that, the equality is holds
for the graph G ∼= C2α.

Next, For the equality in (3.4), we have to prove that G ∼= C2α. Suppose G � C2α, then
|A1i(u)| ≥ 3, for i = 2, 3, . . . , α− 1. This implies (3.6) becomes

RCD(u|G) ≤ n− 1
D − 1

− dG(u)

D(D − 1)
+ 3

α−1∑
i=3

(i− 2)
(D − (i− 1))(D − 1)

+
(α− 2)

(D − (α− 1))(D − 1)
.

Hence from (1.5), we get

RCW (G) ≤ 1
D − 1

[
n(n− 1)

2
− m

D
+
n

2

(
3
α−1∑
i=3

(i− 2)
(D − (i− 1))

+
(α− 2)

(D − (α− 1))

)]
.

This is a contradiction, so that G ∼= C2α. This completes the proof.
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