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Abstract In this paper, we introduce and advance the basic theory of primary ideals for Lie
algebras and investigate their properties in details illustrated by several examples. We give some
characterizations for ideals to be primary ideals. We also introduce the concept of strongly
irreducible ideals. We study the interrelations among primary, prime, semi-prime, strongly ir-
reducible, irreducible and maximal ideals in Lie algebra. We show that the maximal ideal is
primary ideal. We also show that the concepts of strongly irreducible, primary and prime ideals
are all equivalent for prime radical ideals.

1 Introduction

The concept of primary ideals has played an important role in the theory of rings, but has not been
used in the study of Lie algebras. It is the purpose of the present paper to introduce the concept
of primary ideals into Lie algebras and investigate their properties in details illustrated by several
examples. We give some characterizations for ideals to be primary ideals. We also introduce the
concept of strongly irreducible ideals. We study the interrelations among primary, prime, semi-
prime, strongly irreducible, irreducible and maximal ideals. We show that the maximal ideal is
primary. We also show that the concepts of strongly irreducible, primary and prime ideals are all
equivalent for prime radical ideals.

Let F be a field of an arbitrary characteristic. Let L be always a Lie algebra over F , which is
not necessarily finite dimensional.

The definitions and results given in this section are based on the work of Kawamoto in [1]
and Aldosray in [2].

An ideal P of L is said to be prime if [A, B] ⊆ P with A,B ideals of L implies A ⊆ P or
B ⊆ P .

The prime radical of an ideal A of L is the intersection of all the prime ideals of L containing
A and is denoted by r(A). We write rL for r(0), the intersection of all the prime ideals of L, and
call it the prime radical of L. We say that an ideal A of L is prime radical ideal if r(A) = A.

An ideal Q of L is said to be semi-prime if A2 ⊆ Q with A an ideal of L implies A ⊆ Q.
It is clear that every prime ideal of L is prime radical ideal of L. Counterexample that the

converse is not true was given by Kawamoto in [1].

2 Primary ideals

In this section, we introduce and study a new generalizations of prime ideals in Lie algebra.

Theorem 2.1. The intersection of prime ideals of L is a semi-prime ideal of L.

Proof. First, note that the intersection of ideals in L is an ideal of L, [3]. Now, let {Pα : α ∈ Λ}
be a collection of prime ideals of L, suppose that A2 ⊆

⋂
α∈Λ

Pα with A is an ideal of L, then
A2 ⊆ Pα for every α ∈ Λ. Since each Pα is a prime ideal of L, then A ⊆ Pα for every α ∈ Λ.
Thus A ⊆

⋂
α∈Λ

Pα. Therefore,
⋂
α∈Λ

Pα is a semi-prime ideal of L.

Corollary 2.2. The prime radical of any ideal in L is a semi-prime ideal of L.
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Corollary 2.3. Let Q be an ideal of L. If A2 ⊆ Q with A an ideal of L, then A ⊆ r(Q).

Now, we introduce the concept of primary ideals in L as follows.

Definition 2.4. An ideal P of L is said to be primary if [A,B] ⊆ P withA,B ideals of L implies
A ⊆ r(P ) or B ⊆ r(P ).

Theorem 2.5. If r(P ) is a prime ideal of L, then P is a primary ideal of L.

Proof. Let A and B be two ideals of L with [A,B] ⊆ P . Since P ⊆ r(P ), then [A,B] ⊆ r(P ),
but r(P ) is prime, thus A ⊆ r(P ) or B ⊆ r(P ). Therefore P is primary.

By definition of prime radical and Theorem 2.5, we get the following corollary:

Corollary 2.6. Every prime ideal of L is primary.

The converse of Corollary 2.6 need not be true. In the next example, we show that there exists
a primary ideal which is not prime.

Example 2.7. Let L = gln ⊕ S, where gln is the set of all n× n matrices over the field F and S
is any simple Lie algebra. The ideals of L are 0, S, sln, sln⊕S,Z, Z⊕S, gln and L, where sln is
the set of all n× n matrices of trace zero and Z = Z(gln) = {A ∈ gln : [A,B] = AB − BA =
0 for all B ∈ gln} is the centre of gln. However, gln, Z ⊕ S and L are the prime ideals only.
Now sln is not prime ideal because [Z, gln] = 0 ⊆ sln but neither Z ⊆ sln nor gln ⊆ sln. Since
gln = r(sln) = L ∩ gln is prime ideal, then by Theorem 2.5, sln is primary.

Theorem 2.8. Let P be a primary ideal of L. If P is a prime radical ideal of L, then P is a prime
ideal of L.

Proof. Let A and B be two ideals of L with [A,B] ⊆ P , then we get A ⊆ r(P ) = P or
B ⊆ r(P ) = P . Thus, P is prime.

We show that there are no implications between primary and semi-prime.

Example 2.9. Let L be the Lie algebra in Example 2.7, we have sln is primary ideal. We show
that sln is not semi-prime. Now Z2 = 0 ⊆ sln but Z 6⊆ sln. Therefore, sln can’t be semi-prime.

Definition 2.10. ([4]) A Lie algebra L is said to be simple if it is non-abelian and contains no
non-zero proper ideals.

Example 2.11. ([1]) Let L = S1 ⊕ S2 ⊕ S3, where S1, S2 and S3 be finite-dimensional simple
Lie algebras. Then the ideals containing S1 properly are S1 ⊕ S2, S1 ⊕ S3 and L. Hence S1 is
semi-prime. Since [S1 ⊕ S2, S1 ⊕ S3] ⊆ S1, thus, S1 is not prime. We prove that S1 is a semi-
prime ideal but not primary ideal. Now r(S1) = (S1 ⊕ S2) ∩ (S1 ⊕ S3) = S1. Suppose that S1
is primary, then it must be prime by Theorem 2.8, which is contradiction. Therefore, S1 is not
primary ideal.

Definition 2.12. ([5]) A Lie algebra L is said to be semi-simple if it is a direct sum of simple
Lie algebras.

It is clear that every simple Lie algebra is semi-simple.

Lemma 2.13. If A is an ideal of a semi-simple Lie algevra L, then A2 = A.

Proof. We can write L =
⊕

i∈I Si for some index set I , where Si is simple ideal.
Now, we have
1. [Si, Sj ] ⊆ Si ∩ Sj = 0 for i 6= j.
2. Since S2

i ⊆ Si, then S2
i = 0 or S2

i = Si, because Si is simple. Hence Si is not abelian,
thus S2

i 6= 0. Therefore, S2
i = Si.

Let A be an ideal of L, then A =
⊕

i∈J Si, where J ⊆ I .
Consequently

A2 = [A,A] = [
⊕
i∈J

Si,
⊕
i∈J

Si]
bilinearity

=
⊕
i6=j

[Si, Sj ]⊕
⊕
i=j

[Si, Sj ] = 0⊕
⊕
i∈J

Si = A.
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Lemma 2.14. Every ideal of a semi-simple Lie algebra L is semi-prime ideal.

Proof. Let Q be an ideal of L, then for any ideal A of L, we have A = A2 because L is a
semi-simple Lie algebra, hence A2 ⊆ Q implies A ⊆ Q . Thus Q is semi-prime ideal.

Definition 2.15. A proper ideal I of L is said to be strongly irreducible if for each pair of ideals
A and B of L, A ∩B ⊆ I implies that either A ⊆ I or B ⊆ I .

Definition 2.16. ([1]) An ideal N of L is said to be irreducible if N = A ∩ B with A,B ideals
of L implies N = A or N = B.

It is clear that every strongly irreducible ideal of L is an irreducible ideal of L.

Lemma 2.17. If A and B are two ideals of L, then [A,B] ⊆ A ∩B

Proof. Suppose that z ∈ [A,B], then z =
∑
i ci[xi, yi] where xi ∈ A and yi ∈ B. Hence

ci[xi, yi] ∈ A and ci[xi, yi] ∈ B for every i, because A and B are ideals of L. Therefore
z ∈ A ∩B.

Theorem 2.18. Every prime ideal of L is strongly irreducible.

Proof. Let P be a prime ideal of L and suppose that A and B are two ideals of L. If A∩B ⊆ P ,
by Lemma 2.17, we have [A,B] ⊆ A ∩ B, so we obtain [A,B] ⊆ P . Since P is prime, then
either A ⊆ P or B ⊆ P . Thus P is strongly irreducible.

Theorem 2.19. Every strongly irreducible ideal of a semi-simple Lie algebra L is prime.

Proof. Let P be a strongly irreducible ideal of L, then by Lemma 2.14, P is semi-prime. Let
A and B be two ideals of L satisfying [A,B] ⊆ P . If we put N = (A + P ) ∩ (B + P ), then
N2 ⊆ P , hence, N ⊆ P . Thus, A + P ⊆ P or B + P ⊆ P , because P is strongly irreducible.
Therefore, A ⊆ P or B ⊆ P .

Example 2.20. In Example 2.7, we proved that sln is primary. Note that sln is not irreducible
ideal, because sln = gln ∩ (sln ⊕ S), but neither sln = gln nor sln = sln ⊕ S, hence sln is
not strongly irreducible. Moreover, sln ⊕ S is strongly irreducible but not semi-prime because
Z2 = (0) ⊆ sln ⊕ S, however Z 6⊆ sln ⊕ S.

Example 2.21. In Example 2.11, S1 is semi-prime. Note that S1 is not irreducible, because S1
can be written as intersection of ideals containing it properly, i.e. S1 = (S1 ⊕ S2) ∩ (S1 ⊕ S3).
Thus, S1 is not strongly irreducible.

Lemma 2.22. If M is an ideal of L with r(M) = L, then M is primary ideal.

Proof. Let A and B be two ideals of L such that [A,B] ⊆ M then A ⊆ L = r(M). Moreover,
B ⊆ L = r(M), therefore M is primary ideal.

As in rings [6], we define the maximality of ideals as follows: A proper ideal M of L is said
to be maximal if it is not properly contained in any other proper ideal of L i.e. M ⊆ M ′ ⊆ L
implies that M =M ′ or M ′ = L

Kawamoto in [1] proved that every maximal ideal of L is irreducible ideal of L but the
converse need not be true. In the next example, we show that there exists a strongly irreducible
ideal which is not maximal.

Example 2.23. Let L be a 2-dimensional non-abelian Lie algebra. That is, L = (x, y) with
[x, y] = y. Then the ideals of L are (0), (y) and L we have (0) is a strongly irreducible but not
maximal. (y) is maximal but neither prime nor semi-prime, because L2 = (y). By definition L
is prime but not maximal.

As Kawamoto proved in [1], semi-prime ideal need not be maximal ideal.

Lemma 2.24. If M is a maximal prime radical ideal of L, then M is a prime ideal of L.



Primary Ideals of Lie Algebras 117

Proof. Suppose thatM is not prime, then L is the only prime ideal containingM . Thus, we have
r(M) = L, which is a contradiction. Therefore, M is prime.

In the next theorem, we show that primary concept generalized maximal concept.

Theorem 2.25. Every maximal ideal M of L is a primary ideal of L.

Proof. Suppose M is maximal ideal of L, then two cases arise:
Case I: If r(M) =M , then by Lemma 2.24, M is prime. Hence M is primary.
Case II: If r(M) = L, then by Lemma 2.22, M is primary.

The converse of Theorem 2.25 need not be true. In the next example, we show that there
exists a primary ideal which is not maximal.

Example 2.26. In example 2.23, we have (0) is primary but not maximal.

Remark 2.27. ([7]) For any element x of L, the smallest ideal of L containing x is denoted by〈
xL
〉
.

Theorem 2.28. Let P be an ideal of L. Then the following conditions are equivalent:
i) P is primary.
ii) If [a,B] ⊆ P for a ∈ L and an ideal B of L, then either a ∈ r(P ) or B ⊆ r(P ).
iii) If

[
a,< bL >

]
⊆ P for a, b ∈ L, then either a ∈ r(P ) or b ∈ r(P ).

Proof. i)⇒ iii). For each a ∈ L,

< aL >=
∞∑
i=0

Vi where V0 = (a) and Vi = [. . . [(a), L], . . . ,︸ ︷︷ ︸
i

L].

If
[
a,< bL >

]
⊆ P, we assert that

[
Vi, < bL >

]
⊆ P for all i ≥ 0. In fact, it is true for i = 0. Let

i ≥ 1 and assume that the assertion is true for i− 1. Then[
Vi, < bL >

]
=
[
[Vi−1, L] , < bL >

]
⊆
[[
Vi−1, < bL >

]
, L
]
+
[
Vi−1,

[
L,< bL >

]]
⊆ [P,L] +

[
Vi−1, < bL >

]
⊆ P

Thus we have the assertion. It follows that[
< aL >,< bL >

]
⊆ P.

Since P is primary, either < aL > ⊆ r(P ) or < bL >⊆ r(P )
Thus a ∈ r(P ) or b ∈ r(P ).

iii) ⇒ ii). Let a ∈ (L − r(P )) and let B be an ideal of L such that [a,B] ⊆ P. For any
b ∈ B,

[
a,< bL >

]
⊆ P . Since the ideal < bL > is contained in B. As a /∈ r(P ) iii) implies

b ∈ r(P ). Hence B ⊆ r(P )

ii) ⇒ i). Let A and B be two ideals of L such that [A,B] ⊆ P and A 6⊆ r(P ) . Since
[a,B] ⊆ P for any a ∈ (A− r(P )), we have B ⊆ r(P ) by ii).

Therefore P is primary.

As it is well known, L is said to satisfy the minimal (maximal) condition for ideals, if for
each infinite, descending chain of ideals A1 ⊇ A2 ⊇ . . . (resp. for each , ascending chain
A1 ⊆ A2 ⊆ . . .) an index m exists such that Ai = Ak if m < i, m < k. We say in short:
L ∈ Min− / (resp. L ∈ Max− /). [8]

If L ∈ Max− /, then semi-prime ideals have particular characterization.

Lemma 2.29. ([1]) If L ∈ Max − / and A be an ideal of L, then the following statements are
equivalent:

i) A is a semi-prime ideal of L.
ii) A is a prime radical ideal of L.
iii) A is a finite intersection of prime ideals of L.
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Theorem 2.30. Let L ∈ Max− /, M is semi-prime and primary ideal if and only if M is prime
ideal.

Proof. Let M be semi-prime ideal of L, then by using Lemma 2.29, we get r(M) =M . If M is
primary, then M is prime ideal by Theorem 2.8. Conversely, it is clear that every prime ideal is
semi-prime and primary ideal.

Theorem 2.31. Let L ∈ Max − /, M is semi-prime and strongly irreducible if and only if M is
prime ideal.

Proof. If M is semi-prime ideal of L, then by Lemma 2.29, r(M) = M . Now
⋂
α∈Λ
{Nα :

Nα is prime ideal containing M} = r(M) = M . Since M is strongly irreducible and Nβ ⊆ M
for some β ∈ Λ, butM ⊆ Nβ , henceM = Nβ which is prime ideal. Therefore,M is prime ideal.
Conversely, it is clear that every prime ideal is semi-prime and strongly irreducible ideal.

The following corollary is an immediate result of Theorem 2.30 and Theorem 2.31.

Corollary 2.32. LetL ∈ Max−/, andM be semi-prime ideal ofL. Then the following statements
are equivalent:

i) M is prime.
ii) M is strongly irreducible.
iii) M is primary.

3 Primary Lie algebra

Definition 3.1. ([9]) A Lie algebra L is said to be prime Lie algebra if [A,B] 6= (0) for any
nonzero ideals A,B ⊂ L. A Lie algebra L is said to be semi-prime Lie algebra if [A,A] 6= (0)
for any nonzero ideal A ⊂ L.

Remark 3.2. A prime (semi-prime) Lie algebra is one in which (0) is prime (semi-prime) ideal
of L.

Theorem 3.3. A Lie algebra with non-zero center can’t be semi-prime Lie algebra.

Proof. Let L be a Lie algebra and (0) 6= Z is the center. Suppose that L is a semi-prime Lie
algebra, then (0) is semi-prime ideal. Since Z2 ⊆ (0), hence Z ⊆ (0), which is a contradiction
to (0) 6= Z. Therefore, L can’t be semi-prime Lie algebra.

Definition 3.4. A Lie algebra L is said to be primary Lie algebra if (0) is primary ideal.

Example 3.5. Let L be as in Example 2.23, (0) is irreducible but neither prime nor semi-prime,
for (y)2 = (0). Apparently (0) is not maximal. As shown in Example 2.23, (y) is maximal but
neither prime nor semi-prime. By definition L is prime ideal of L, but not a prime Lie algebra.
Since r(0) = L, thus (0) is a primary ideal of L. Therefore, L is a primary Lie algebra but
neither a prime nor a semi-prime Lie algebra.

Next, we give an example of a semi-simple Lie algebra that is neither prime nor primary Lie
algebra.

Example 3.6. Let L be as in Example 2.11. Since [S1, S2] ⊆ (0) but neither S1 6⊆ (0) nor
S2 6⊆ (0), hence (0) is not prime ideal of L. Moreover, (0) is not primary ideal of L, because (0)
is a prime radical ideal which is not a prime ideal of L. Thus L is neither a prime nor a primary
Lie algebra.

Theorem 3.7. A semi-simple Lie algebra is a semi-prime Lie algebra.

Proof. Let L be a semi-simple Lie algebra. Since every ideal of semi-simple Lie algebra is
semi-prime by Lemma 2.14, then (0) is semi-prime. Hence, L is semi-prime Lie algebra.

Theorem 3.8. For a proper ideal P in a Lie algebra L, the following conditions are equivalent:
(i) P is a prime ideal.
(ii) If I and J are two ideals of L properly containing P, then [I, J ] * P
(iii) L/P is a prime Lie algebra.
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Proof. (i) =⇒ (ii) : This is clear.
(ii) =⇒ (iii) : Given ideals I and J in L/P such that [I, J ] = P ( Zero in L/P ), then

I = I ′/P and J = J ′/P for some ideals I ′ and J ′ of L. Since [I, J ] = P , then [I ′, J ′] ⊆ P .
Thus By (ii), I ′ ⊆ P or J ′ ⊆ P. Hence I = P ( Zero in L/P ) or J = P ( Zero in L/P ).
Therefore, L/P is a prime Lie algebra.

(iii) =⇒ (i) : If I and J are two ideals of L satisfying [I, J ] ⊆ P, then (I + P )/P and
(J + P )/P are ideals of L/P whose product is P ( Zero in L/P ). Then either (I + P )/P = P
or(J + P )/P = P whence either I ⊆ P or J ⊆ P . Therefore, P is a prime ideal.

Theorem 3.9. For a proper ideal P in a Lie algebra L, the following conditions are equivalent:
(i) P is a primary ideal.
(ii) If I and J are two ideals of L properly containing r(P ), then [I, J ] * P
(iii) L/P is a primary Lie algebra.

Proof. (i) =⇒ (ii) : This is clear.
(ii) =⇒ (iii) : Given ideals I and J in L/P such that [I, J ] = P (Zero in L/P ), then

I = I ′/P and J = J ′/P for some ideals I ′ and J ′ of L. Since [I, J ] = P , then [I ′, J ′] ⊆ P .
Hence, by (ii), I ′ ⊆ r(P ) or J ′ ⊆ r(P ). Thus, I ⊆ r(P ) or J ⊆ r(P ). Therefore, L/P is a
primary Lie algebra.

(iii) =⇒ (i) : If I and J are two ideals of L satisfying [I, J ] ⊆ P, then (I + P )/P and
(J+P )/P are ideals of L/P whose product is P ( Zero in L/P ). Thus either (I+P )/P ⊆ r(P )
or(J + P )/P ⊆ r(P ) whence either I + P ⊆ r(P ) or J + P ⊆ r(P ). Thus, we get I ⊆ r(P ) or
J ⊆ r(P ). Therefore, P is a primary ideal.

4 Homomorphic Image

In the beginning of this section we set some notions from [10] and we prove some useful lemmas.
Suppose that L1 and L2 are two Lie algebras. A linear map f : L1 → L2 is called a Lie

algebra homomorphism if f([x, y]) = [f(x), f(y)] for all x, y ∈ L1.

Lemma 4.1. Let f : L1 → L2 be a surjective Lie homomorphism, let A and B be two ideals of
L1 , then

[
f−1(A), f−1(B)

]
⊆ f−1([A,B]).

Proof. Since [A,B] ⊆ [A,B], then [f(f−1(A), f(f−1(B)] ⊆ f(f−1([A,B])). Hence, we have
f([f−1(A), f−1(B)]) ⊆ [A,B]. Thus, f−1(f([f−1(A), f−1(B)])) ⊆ f−1([A,B]). Therefore,
[f−1(A), f−1(B)] ⊆ f−1(f([f−1(A), f−1(B)])) ⊆ f−1([A,B]).

Lemma 4.2. Let f : L1 → L2 be a surjective Lie homomorphism, let P be an ideal of L1. If
ker(f) ⊆ P , then f−1f(P ) = P

Proof. In general, we have P ⊆ f−1f(P ).
Let ker(f) ⊆ P . If x ∈ f−1f(P ) then f(x) = f(p) for some p ∈ P , hence (x− p) ∈ ker(f).

Now x = (x − p) + p, with p ∈ P and x − p ∈ker(f) ⊆ P . Thus, x ∈ P . Therefore,
f−1f(P ) ⊆ P .

Kawamoto in [1], pointed out that the ideal contains the kernel of a surjective homomorphism
is a prime ideal if and only if it’s image under this surjective homomorphism is a prime ideal.

Theorem 4.3. Let L1 and L2 be two Lie algebras and let f : L1 → L2 be a surjective Lie
homomorphism. An ideal P of L1 containing Kerf is primary if and only if f(P ) is primary
ideal of L2.

Proof. Let A and B be two ideals of L2 with [A,B] ⊆ f(P ), then f−1([A,B]) ⊆ f−1f(P ).
Since P contains Kerf , by Lemmas(4.1 and 4.2), we have,

[
f−1(A), f−1(B)

]
⊆ P . Thus

f−1(A) ⊆ r(P ) or f−1(B) ⊆ r(P ) because P is primary ideal of L1. Since f is surjective, then
A ⊆ f(r(P )) or B ⊆ f(r(P )). Thus, A ⊆ r(f(P )) or B ⊆ r(f(P )), hence f(P ) is a primary
ideal of L2.

Conversely, let A and B be two ideals of L1 with [A,B] ⊆ P . Then f([A,B]) ⊆ f(P ),
hence [f(A), f(B)] ⊆ f(P ). Now f(P ) is a primary ideal of L2, so f(A) ⊆ r(f(P )) or f(B) ⊆
r(f(P )). Since P contains Kerf , therefore A ⊆ r(P ) or B ⊆ r(P ), by Lemma 4.2.
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5 Conclusions

1) Every prime ideal of L is a primary.

2) Every prime ideal of L is a strongly irreducible.

3) Every strongly irreducible ideal of L is an irreducible.

4) Every prime ideal of L is a semi-prime.

5) Every strongly irreducible ideal of a semi-simple Lie algebra L is a prime.

6) Every maximal ideal of L is a primary.

7) Every maximal ideal of L is an irreducible.

8) The concepts of strongly irreducible, primary and prime ideals are all equivalent for prime
radical ideals.

9) A Lie algebra with non-zero center can’t be semi-prime Lie algebra.

10) A semi-simple Lie algebra is a semi-prime Lie algebra.

11) P is a primary ideal if and only if L/P is a primary Lie algebra.

12) The ideal contains the kernel of a surjective homomorphism is a primary ideal if and only
if it’s image under this surjective homomorphism is a primary ideal.

The following diagram summarizes the interrelations between ideals which considered in this
paper.

Primary/7 go

Prime

'/

+3

 (

Strongly irreducible

��

Maximal

ow
Irreducible

Semi− prime
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