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Abstract An R-module M is called weakly Hopfian (respectively generalized co-Hopfian) if
for every small epimorphism (respectively essential monomorphism) f of M is isomorphism. If
M is quasi projective co-Hopfian (respectively quasi injective Hopfian) then M is weakly Hop-
fian (respectively generalized co-Hopfian). We prove an analogue to Hilbert’s basis Theorem
for weakly Hopfian (respectively, generalized co-Hopfian) module, M , i.e. if M [x]/(xn+1) is
weakly Hopfian (respectively, generalized co-Hopfian) R[x]/(xn+1)-module then M is weakly
Hopfian (respectively, generalized co-Hopfian) R-module. And also we characterize the auto-
morphisms of an R-module M satisfies the property (L).

1 Introduction and preliminaries

The study of modules by properties of their endomorphisms is a classical research subject. In the
beginning of 1980, A. Kaidi and M. Sanghartroduced the concept of modules which satisfy the
properties (I), (S) and (F). In 1987, P. Schupp showed, in [9], that the extension property (E) in
the category of groups characterizes the inner automorphisms. And in [8], Pettet gave an easier
proof of Schupp’s result and proved at the same time that the inner automorphisms of a group G
are also characterized by the lifting property (L) in the category of groups. We say the a module
M satisfies the property (I) (resp. (S)), if any injective (resp. surjective) endomorphism of M is
an automorphism of M , and we say that M satisfies the property (F), if for any endomorphism f
ofM there exists an integer n ≥ 1 such thatM = Im(fn)⊕Ker(fn), we say that α ∈ AutR(M)
satisfies the property (E) if for allR-moduleN and any monomorphism λ : M → N , there exists
α̃ ∈ AutR(N) such that α̃λ = λα. And we say that α ∈ AutR(M) satisfies the property (L)
if for all module N and any epimorphism λ : N → M , there exists α̃ ∈ AutR(N) such that
λα̃ = αλ. In 1986, V.A. Hiremath, introduced the concept of Hopfian modules for modules
satisfying the property (S). A bit later, K. Varadarajan, introduced the concept of co-Hopfian
modules for modules satisfying the property (I). A submodule K of an R-module M is said to
be small in M , written K � M , if for every submodule L ⊆ M with K + L = M implies
L =M . A submodule K of an R-module M is said to be essential in M , written K ≤e M , if for
every submodule L ⊆M with K ∩L = 0 implies L = 0. In 2001, Haghany and Vedadi, [5], and
in 2002, Ghorbani and Haghany, [4], respectively, introduced and investigated the weakly co-
Hopfian (respectively generalized Hopfian) modules (i.e., every injective endomorphism has an
essential image) (respectively every surjective endomorphism has a small kernel). Such modules
and their generalizations were introduced and studied by many authors (for more information
about this and others related topics, see, for instance,[4], [5], [6], [11], [13]). An R-module M
is called weakly Hopfian (respectively generalized co-Hopfian) if for every small epimorphism
(respectively essential monomorphism) f of M is isomorphism. The rings considered in this
paper are associative with unit. Unless otherwise mentioned, all the modules considered are left
unitary modules. The paper is organized as follows:

In Section 1, we recalling some well-known facts about Hopfian and co-Hopfian modules
and some definitions.
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In Section 2, we prove that for a quasi projective module M and N a fully invariant small
submodule of M , if M is weakly Hopfian then M/N is weakly Hopfian, (Theorem 2.3). As
a consequence we obtain for a finitely generated quasi-projective module M , if M is weakly
Hopfian then M/Jac(M) is weakly Hopfian, (Corollary 2.4). And we show that if M is quasi
projective co-Hopfian (respectively quasi injective Hopfian) then M is weakly Hopfian (respec-
tively generalized co-Hopfian), (Proposition 2.5) (respectively (Proposition 2.6)).

Varadarajan [11] showed that the left R-module M is Hopfian if and only if the left R[x]-
module M [x] is Hopfian if and only if the left R[x]/(xn+1)-module M [x]/(xn+1) is Hopfian,
where n is a non-negative integer and x is a commuting indeterminate over R. However, for any
R-module M 6= 0, the R[x]-module M [x] is never co-Hopfian. In fact, the map "multiplication
by x" is injective and non surjective. We are motivated to prove that, if M [x]/(xn+1) is weakly
Hopfian (respectively, generalized co-Hopfian) R[x]/(xn+1)-module then M is weakly Hopfian
(respectively, generalized co-Hopfian) R-module, (Theorem 2.8 and Theorem 2.10).

In Section 3, we prove that every automorphism of projective module satisfies the property
(L), (Proposition 3.3), and we prove that an Automorphism α of finitely generated p-primary
module M over Dedekind domain not a field R satisfies the property (L) if and only if there
exists k ∈ R invertible such that α = k.idM , (Theorem 3.9).

Let R be a ring and M an R-module. We recall the following definitions and facts:

Definition 1.1. M is called Hopfian (respectively co-Hopfian) if every surjective (respectively
injective) endomorphism of M is an automorphism.

The ring R is called left Hopfian (respectively left co-Hopfian) if the left R-module R is
Hopfian (respectively co-Hopfian).

Remark 1.2. �

• Every Noetherian R-module M (i.e., M has ACC on submodules), is Hopfian [7].

• Every Artinian R-module M (i.e., M has DCC on submodules), is co-Hopfian) [7].

• The additive group Q of rational numbers is a non-Noetherian non-Artinian Z-module,
which is Hopfian and co-Hopfian [7].

Definition 1.3. An R-module M is said to be Fitting module if for any endomorphism f of M ,
there exists a positive integer n ≥ 1 such that: M = Kerfn ⊕ Imfn.

Remark 1.4. �

• Every Artinian and Noetherian R-module is Fitting [1].

• Every Fitting R-module is Hopfian and co-Hopfian [1].

Definition 1.5. A ring R is said Dedekind finite if, ∀a, b ∈ R, ab = 1 ⇒ ba = 1. An R-module
M is said Dedekind finite if EndR(M) is Dedekind finite.

Remark 1.6. �

• A ring R is left Hopfian if and only if R is Dedekind finite, if and only if R is right Hopfian
[7].

• Every commutative ring is Hopfian [7].

Definition 1.7. [13]. M is called weakly Hopfian (respectively generalized co-Hopfian) if every
small surjective (respectively essential injective) endomorphism of M is an automorphism.

2 Notes on Generalizations of Hopfian and co-Hopfian modules

Definition 2.1. An R-module M is called quasi-projective (respectively quasi-injective) if for
any surjective (respectively injective) homomorphism g of M onto N (respectively of N into
M ) and any homomorphism, γ of M (respectively N ) to N (respectively to M ), there exists an
endomorphism h of M such that: γ = gh (respectively γ = hg) (i.e., there exists h : M → M
such that the diagram
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NM 0

M

g

γh

respectively

N M0

M

g

γ h

commutes). Clearly, every projective module is quasi-projective and every injective module
is quasi-injective.

Lemma 2.2. (see [14]). Let M , N , and L be modules. Then two epimorphisms f : M → N and
g : N → L are small if and only if gf is small.

Theorem 2.3. Let M be a quasi projective module and N be a fully invariant small submodule
of M , if M is weakly Hopfian then M/N is weakly Hopfian.

Proof. Assume that M is weakly Hopfian and let N be a fully invariant small submodule of
M . If f : M/N → M/N is a small epimorphism, then by the small canonical epimorphism
π : M → M/N and by lemma 2.2, we have fπ : M → M/N is small epimorphism. Since
M is quasi projective, there exists an endomorphism g of M such that πg = fπ. This equality
implies that g is small epimorphism, sinceM is weakly Hopfian, g is an automorphism. We have
f(x+N) = fπ(x) = πg(x) = g(x) +N , and kerf = K/N where N ⊂ K = {x ∈M ; g(x) ∈
N} = g−1(N) ⊂ M . Since N is a fully invariant small submodule of M thus g−1(N) ⊂ N .
Therefore Kerf = g−1(N)/N = 0 and M/N is weakly Hopfian.

Corollary 2.4. Let M be a finitely generated quasi-projective module, if M is weakly Hopfian
then M/Jac(M) is weakly Hopfian.

Proof. Jac(M) is a fully invariant submodule of M , and since M is assumed finitely generated
we have Jac(M) is small in M . Thus is M/Jac(M) is weakly Hopfian from Theorem 2.3.

Proposition 2.5. Let M be a quasi projective module, if M is co-Hopfian then it is weakly Hop-
fian.

Proof. Let f : M → M be a small surjective endomorphism, since M is quasi projective, there
exists g : M → M , such that fg = idM , then g is an injective endomorphism, since M is
co-Hopfian, g is automorphism, which shows that f is an automorphism, then M is weakly
Hopfian.

Proposition 2.6. Let M be a quasi injective module, if M is Hopfian then it is generalized co-
Hopfian.

Proof. Let f : M → M be an essential injective endomorphism, since M is quasi injective,
there exists g : M → M , such that gf = idM , then g is a surjective endomorphism, since M
is Hopfian, g is automorphism, which shows that f is an automorphism, then M is generalized
co-Hopfian.

Let M be an R-module. We will briefly recall the definitions of the modules M [x] and
M [x]/(xn+1) from [10]. The elements of M [x] are formal sums of the form a0+a1x+ ...+akxk

with k an integer greater than or equal to 0 and ai ∈M . We denote this sum by
∑k
i=1 aix

i (a0x
0

is to be understood as the element a0 ∈ M ). Addition is defined by adding the corresponding
coefficients. The R[x]-module structure is given by



SOME PROPERTIES OF ENDOMORPHISM OF MODULES 125

(
∑k
i=0 λix

i).(
∑z
j=0 ajx

j) =
∑k+z
µ=0 cµx

µ,

where cµ =
∑
i+j=µ λiaj , for any λi ∈ R, aj ∈M .

Any nonzero element β of M [x] can be written uniquely as (
∑l
i=kmix

i) with l ≥ k ≥ 0,
mi ∈ M , mk 6= 0 and ml 6= 0. In this case, we refer to k as the order of β, l as the degree of β,
mk as the initial coefficient of β, and ml as the leading coefficient of β.

Let n be any non-negative integer and

In+1 = {0} ∪ {β; 0 6= β ∈ R[x], order of β ≥ n+ 1}.

Then In+1 is a two-sided ideal of R[x]. The quotient ring R[x]/In+1 will be called the truncated
polynomial ring, truncated at degree n + 1. Since R has an identity element, In+1 is the ideal
generated by xn+1. Even when R does not have an identity element, we will "symbolically"
denote the ringR[x]/In+1 byR[x]/(xn+1). Any element ofR[x]/(xn+1) can be uniquely written
as (

∑n
i=0 λix

i) with λi ∈ R.
Let

Dn+1 = {0} ∪ {β; 0 6= β ∈M [x], order of β ≥ n+ 1}.

Then Dn+1 is an R[x]-submodule of M [x]. Since In+1M [x] ⊂ Dn+1, we see that R[x]/(xn+1)
acts onM [x]/Dn+1. We denote the moduleM [x]/Dn+1 byM [x]/(xn+1). The action ofR[x]/(xn+1)
on M [x]/(xn+1) is given by

(
∑n
i=0 λix

i).(
∑n
j=0 ajx

j) =
∑n
µ=0 cµx

µ,

where cµ =
∑
i+j=µ λiaj , for any λi ∈ R, aj ∈M .

Any nonzero element β of M [x]/Dn+1 can be written uniquely as (
∑n
i=kmix

i) with n ≥
k ≥ 0, mi ∈M , mk 6= 0. In this case, we refer to k as the order of β, mk as the initial coefficient
of β.

The R[x1, ..., xk]/(x
n1+1
1 , ..., xnk+1

k )-module M [x1, ..., xk]/(x
n1+1
1 , ..., xnk+1

k ) is defined sim-
ilarly.

Lemma 2.7. [3, Lemma 2.1]. Let M be an R-module and K � M . Then K[x]/(xn+1) �
M [x]/(xn+1) as R[x]/(xn+1)-modules, where n ≥ 0.

Theorem 2.8. Let M be an R-module. If M [x]/(xn+1) is weakly Hopfian R[x]/(xn+1)-module,
then M is weakly Hopfian R-module.

Proof. Let f : M → M be any small epimorphism in R-module, then α : M [x]/(xn+1) →
M [x]/(xn+1) defined by α(

∑n
i=0 aix

i) =
∑n
i=0 f(ai)x

i is a surjective endomorphism inR[x]/(xn+1)-
module, since kerf is small in M then by Lemma 2.7, kerα = (kerf)[x]/(xn+1) is small in
M [x]/(xn+1). Since M [x]/(xn+1) is weakly Hopfian R[x]/(xn+1)-module, α is automorphism
in M [x]/(xn+1). Then f is automorphism in M , and finally M is weakly Hopfian.

Lemma 2.9. [12, Lemma 1.7]. Let N be a submodule of an R-module M . Then N is essential in
M as an R-module if and only if N [x]/(xn+1) is essential in M [x]/(xn+1) as an R[x]/(xn+1)-
module.

Theorem 2.10. Let M be an R-module. IfM [x]/(xn+1) is generalized co-Hopfian R[x]/(xn+1)-
module, then M is generalized co-Hopfian R-module.

Proof. Let f : M → M be any essential injective endomorphism in R-module, then α :
M [x]/(xn+1) → M [x]/(xn+1) defined by α(

∑n
i=0 aix

i) =
∑n
i=0 f(ai)x

i is a injective endo-
morphism in R[x]/(xn+1)-module, since Imf is essential in M then by Lemma 2.9, Imα =
(Imf)[x]/(xn+1) is essential in M [x]/(xn+1). Since M [x]/(xn+1) is generalized co-Hopfian
R[x]/(xn+1)-module, α is automorphism in M [x]/(xn+1). Then f is automorphism in M , and
finally M is generalized co-Hopfian.

Theorem 2.11. Let M be an R-module. If M [x1, ..., xk]/(x
n1+1
1 , ..., xnk+1

k ) is weakly Hopfian
(respectively, generalized co-Hopfian)R[x1, ..., xk]/(x

n1+1
1 , ..., xnk+1

k )-module, thenM is weakly
Hopfian (respectively, generalized co-Hopfian) R-module.
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Proof. Use induction and the
(R[x1, ..., xk−1]/(x

n1+1
1 , ..., x

nk−1+1
k−1 ))[xk]/(x

nk+1
k )-module isomorphism

(M [x1, ..., xk−1]/(x
n1+1
1 , ..., x

nk−1+1
k−1 ))[xk]/(x

nk+1
k ) 'M [x1, ..., xk]/(x

n1+1
1 , ..., xnk+1

k )
and ring isomorphism
(R[x1, ..., xk−1]/(x

n1+1
1 , ..., x

nk−1+1
k−1 ))[xk]/(x

nk+1
k ) ' R[x1, ..., xk]/(x

n1+1
1 , ..., xnk+1

k )

3 The lifting property

Definition 3.1. Let M be an R-module and α ∈ AutR(M), we say that the α has the lifting
property if for all R-module N and any epimorphism λ : N → M , there exists α̃ ∈ AutR(N)
such that the following diagram is commutative:

N M

MN

λ

α̃

λ

α

In other words: λα̃ = αλ.

Definition 3.2. An R-module P is called projective if for any surjective homomorphism g of M
onto N and any homomorphism, γ of P to N , there exists an homomorphism h of P to M such
that: γ = gh, (i.e., there exists h : P →M such that the following diagram is commutative.

NM 0

P

g

γh

Proposition 3.3. Let R be a ring and M be a projective R-module. If α ∈ AutR(M), then α has
the lifting property.

Proof. Let N be an R-module and λ be an epimorphism from N to M , since M is a projective
module, there exists η from M to N such that the following daigram is commutative:

MN 0

M

λ

αη

We take α̃ = ηλ. Then the following diagram is commutative with exact rows:
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MN 0

N M

kerλ

kerλ 00

0
λ

αη

λ

α̃

i

i

Then by short five lemma, as α is an automorphism, then α̃ is an automorphism such that
λα̃ = ληλ = αλ, hence α has the lifting property.

Definition 3.4. [2]. Let M be an R-module, an element m in M is said to be a torsion element
if m.r = 0 for some r ∈ R. The set of all torsion elements in M is denoted by T (M) and called
the torsion submodule of M . We say that M is a torsion module if M = T (M) and that M is
torsion-free if T (M) = 0.

Lemma 3.5. [2, Corollary 6.3.4] Let M be a finitely generated torsion-free module over a
Dedekind domain R. Then M is projective.

Corollary 3.6. Let R be a Dedekind domain, and M be a finitely generated torsion-free R-
module. If α ∈ AutR(M), then α has the lifting property.

Proof. We can apply Proposition 3.3 and Lemma 3.5.

Recall that, the annihilator of R-module M is defined to be the ideal Ann(M) of R given by
Ann(M) = {r ∈ R/m.r = 0 for all m ∈M}.

Definition 3.7. [2]. Let p be a nonzero prime ideal of R. An R-module M is called p-primary if
Ann(M) = pn for some natural number n.

Lemma 3.8. Let R be a Dedekind domain not a field, M be a finitely generated p-primary R-
module and α ∈ AutR(M) has the lifting property, if < m > is a direct summand of M then
α(m) ∈< m >.

Proof. We assume thatM generated by elementsm1, ...,ms whose orders are respectively pn1 , ..., pns ,
if n = max{n1, ..., ns}, then pnM = 0 and pn−1M 6= 0. Let < m > is a direct summand of M ,
there is a submodule M ′ of M such that

M =< m >
⊕
M ′, where m ∈M .

We prove that α(m) ∈< m >.
Consider N =< m >

⊕
M ′′, and we define a homomorphism λ from N to M by:

λ(km+m′′) = km+ pnm′′.

for all k ∈ R and m′′ ∈M ′′, is an epimorphism.
Using the fact That α checks the lifting property then there exists α̃ ∈ Aut(N) such that the

following diagram is commutative:

N M

MN

λ

α̃

λ

α

i.e.,
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λα̃ = αλ

We can write α̃(m) = km+m′′, then

λα̃(m) = λ(km+m′′)

= km+ pnm′′

= km

= αλ(m)

= α(m).

because pnm′′ = 0, thus α(m) ∈< m >.

Theorem 3.9. Let R be a Dedekind domain not a field, M be a finitely generated p-primary
R-module and α ∈ AutR(M). Then the following assertions are equivalent:

i) α has the lifting property.
ii) there exists k ∈ R invertible such that α = k.idM .

Proof. i)⇒ ii) By [2, Theorem 6.3.23], every finitely generated p-primary module over Dedekind
Domain is a direct sum of cyclic modules of orders pn1 , ...pns respectively.

Then M =
⊕s

i=1 < mi >, then ∀m ∈M,∃ri ∈ R such that

m =
∑s
i=1 rimi

then α(m) =
∑s
i=1 riα(mi), and by lemma 3.8, as < mi > is a direct summand of M , there

exists ki ∈ R invertible such that

α(mi) = kimi.

Let 1 ≤ j < i ≤ s, We can write M =< mi >
⊕
Mi with mj ∈ Mi. It is easy to see that

< mi +mj >
⊕
Mi =M . So we have:

α(mi) = kimi

α(mj) = kjmj

α(mi +mj) = k(mi +mj)

then (k − ki)mi + (k − kj)mj = 0, hence (k − ki)mi = (k − kj)mj = 0. Consequently pni

divides k − ki and pnj divides k − kj . Hence pnj divides kj − ki because i > j.
So there exists t ∈ R such that kj = ki + tpnj

α(mj) = kjmj

= (ki + tpnj )mj

= kimj + tpnjmj

= kimj

= kmj .

Then

α(m) =
n∑
i=1

riα(mi)

=
n∑
i=1

rikmi

= k

n∑
i=1

rimi

= km.
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Then there exists k ∈ R invertible such that α = k.idM .
ii)⇒ i) Evident.

Corollary 3.10. Let R be a Dedekind domain not a field, M be a finitely generated torsion R-
module and α ∈ AutR(M). Then the following assertions are equivalent:

i) α has the lifting property.
ii) there exists k ∈ R invertible such that α/Mp

= k.idMp
.

Proof. i)⇒ ii) By [2, Theorem 6.3.23], every finitely generated torsion module over Dedekind
domain is a direct sum of p-primary modules.

Then M =
⊕
Mp, then α/Mp

∈ Aut(Mp). Hence α/Mp
satisfies the lifting property (since

α has the lifting property). Now by theorem 3.9, we have α/Mp = k.idMp where k ∈ R is an
invertible.

ii)⇒ i) Evident.
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