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Abstract In this article we study the radius invarience and diameter invariance after edge
deletion in a graph using D-distance. We give examples to show that rD(G) Q rD(G′) and
dD(G) Q dD(G′). Next we study the invariance property in complete graphs, cyclic graphs and
wheel graphs. The complete bipartite graph Km,m−1 is also studied. Through out the article we
use D- distance introduced by the first two authors. We end the article with some open problems.

1 Introduction

Let G be a graph and G′ be the graph obtained from G by deleting an edge (sometimes we may
call it as ’derived graph’ of G). In this article we would like to study the radius and diameter
D-radius and D-diameter of G′ in comparison to those of G. In this context the following cases
arise :

(i) rD(G) = rD(G′), dD(G) = dD(G′)

(ii) rD(G) > rD(G′), dD(G) > dD(G′)

(iii) rD(G) > rD(G′), dD(G) < dD(G′)

(iv) rD(G) < rD(G′), dD(G) > dD(G′)

(v) rD(G) < rD(G′), dD(G) < dD(G′)

The examples discussed in the next section will show that all the above cases are possible.
Thus the study of invariance of D-radius and D-diameter becomes very interesting. Invari-

ance problem were studied earlier, for example see [1, 3].
The D distance between vertices of a graph was introduced by Reddy Babu and Varma in

[4]. Using this distance in a natural way we can define D-eccentricity of vertex (eD(v)) and D
radius, D-diameter of a graph (rD(G) and dD(G), resply.).

A graph is called D-radius invariant ( D-diameter invariant, resply.) if rD(G) = rD(G′)
(diaD(G) = diaD(G′), resply.).

In the present article, we study the D-radius invariant and D-diameter invariant properties
of complete graph, cyclic graph, wheel graph and bipartite graph, Km,m−1.

Some more classes of graphs will be studied in a separate article [5].
Through out this article unless otherwise specified G′ denotes a graph obtained from G by

deleting an edge.
We start with examples as mentioned above.

2 Examples

We begin this section with an example of a graph, which is both radius and diameter invariant.

Example 2.1. Consider the (5, 7) graph G as shown in figure 1. Let G′ be the derived graph,
G′ = G \ {v1v5}. Then the eccentricities of vertices in G and G′ are as shown table 1.
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Figure 1. Various Graphs G

Eccentricity v1 v2 v3 v4 v5

G 10 8 10 10 10
G′ 10 8 9 10 9

Table 1. Eccentricities in G and G′

From this table we can see that rD(G) = rD(G′) and diaD(G) = diaD(G′). Observe that in
G′ for some vertices the eccentricities have been changed.

In the next example we see that both radius and diameter of the derived graph decreases.

Example 2.2. Consider the (5, 8) graph G as shown in figure 1. Let G′ be the derived graph
G′ = G \ {v1v2}. Then the eccentricities of vertices in G and G′ are as shown table 2.

Eccentricity v1 v2 v3 v4 v5

G 11 9 11 11 9
G′ 10 10 10 10 8

Table 2. Eccentricities in G and G′

From this table we can see that rD(G) = 9, rD(G′) = 8 and diaD(G) = 11, diaD(G′) = 10.
Hence rD(G) > rD(G′) and diaD(G) > diaD(G′). Observe that in G′ all vertices of the
eccentricities have been changed.

In the next example we see that radius decreases and diameter increases in the derived graph.

Example 2.3. Consider the (5, 7) graph G as shown in figure 1, Let G′ be the derived graph.G′ =
G \ {v3v4}. Then the eccentricities of vertices in G and G′ are as shown table 3.

From this table we can see that rD(G) = 10, rD(G′) = 9 and diaD(G) = 10, diaD(G′) =
12. Hence rD(G) > rD(G′) and diaD(G) < diaD(G′). Observe that in G′ for some vertices the
eccentricities have not been changed.

In the next example we see that radius increases and diameter decreases in the derived graph.

Example 2.4. Consider the (5, 8) graph G as shown in figure 1. Let G′ be the derived graph.G′ =
G \ {v1v3}. Then the eccentricities of vertices in G and G′ are as shown table 4.

From this table we can see that rD(G) = 8, rD(G′) = 10 and diaD(G) = 11, diaD(G′) =
10. Hence rD(G) < rD(G′) and diaD(G) > diaD(G′). Observe that in G′ the eccentricities of
all vertices have changed.

Similarly, in the next example we see that both radius and diameter of the derived graph
increases.



Edge Deletion and Invariance 137

Eccentricity v1 v2 v3 v4 v5

G 10 10 10 10 10
G′ 9 9 12 12 10

Table 3. Eccentricities in G and G′

Eccentricity v1 v2 v3 v4 v5

G 8 11 11 11 11
G′ 10 10 10 10 10

Table 4. Eccentricities in G and G′

Example 2.5. Consider the (5, 7) graph G as shown in figure 1. Let G′ be the derived graph,G′ =
G \ {v3v4}. Then the eccentricities of vertices in G and G′ are as shown table 5.

Eccentricity v1 v2 v3 v4 v5

G 10 10 10 10 8
G′ 9 9 12 12 10

Table 5. Eccentricities in G and G′

From this table we can see that rD(G) = 8, rD(G′) = 9 and diaD(G) = 9, diaD(G′) = 12.
Hence rD(G) < rD(G′) and diaD(G) < diaD(G′). Observe that in G′ for some vertices the
eccentricities have been changed.

3 The Complete Graph Kn

In this section we study the invariance properties of the complete graph on n vertices. We begin
with the following theorem.

Theorem 3.1. Consider the complete graph Kn, (n ≥ 3) and G = Kn \ {an edge}. Then we
have rD(G) = 2n− 1 and diaD(G) = 3(n− 1).

Proof. Suppose G is the derived graph of the complete graph Kn, i.e., G = Kn \ {e}. Without
loss of generality, assume that e = v1v2. We know that Kn is (n− 1) regular graph.

In G, degree of v1 = degree of v2 = n − 2 and degree of all other vertices is n − 1. Then the
shortest path between v1, v2 is of length 2 and hence the D-distance dD(v1, v2) = 2 + (n− 2) +
(n− 2)+n− 1 = 3(n− 1). Then further dD(vi, v1) = 2n− 2 for i 6= 1 and dD(vi, vj) = 2n− 1
for {i, j} 6= {1, 2}. Then eD(vi) = eD(vj) = 2n − 1 and eD(v1) = eD(v2) = 3n − 3 for
{i, j} 6= {1, 2}. Thus rD(G) = min{eD(v)} = 2n− 1, diaD(G) = max{eD(v)} = 3n− 3.

Corollary 3.2. We have

rD(K ′n)− rD(Kn) = 0; diaD(K ′n)− diaD(Kn) = n− 2

Proof. The corollary follows from the above theorem and the theorem 3.7 of [4].

If we delete two edges from complete graph, we have the following

Theorem 3.3. Let G be as above with n ≥ 6. Let G′ be the graph derived graph of G. Then we
have

rD(G′) = rD(G); diaD(G′) = diaD(G)− 1

Proof. Without loss of generality assume that G = Kn \{v1, v2} and G′ = G\{e = vivj}. Then
two cases arise, namely,



138 Varma, P. L. N., D. Reddy Babu and M. V. Ramanjaneyulu

(i) e has a common vertex with v1v2,

(ii) e does not have any common vertex with e = v1v2.

Case(i): Assume that e = v1vj . Then degree of v1 = n − 3, the degree of v2 = n − 2, the
degree of vj = n − 2 and the degree of all other vertices is n − 1. Thus the degree sequence is
{n− 3, n− 2, n− 2, n− 1, · · · , n− 1, n− 1, n− 1}. Then the shortest path between v1 and v2
is of length is 2 and hence we have dD(v1, v2) = (n− 3) + (n− 1) + (n− 2) + 2 = 3n− 4,
dD(v1, vj) = (n− 3) + (n− 1) + (n− 2) + 2 = 3n− 4,
dD(v2, vj) = (n− 2) + (n− 2) + 1 = 2n− 3,
dD(v1, vl) = (n− 3) + (n− 1) + 1 = 2n− 3 for l 6= j,
dD(v2, vl) = (n− 2) + (n− 1) + 1 = 2n− 2 for l 6= j,
dD(vl, vm) = (n− 1) + (n− 1) + 1 = 2n− 1 for {l,m} 6= {1, 2, j}.

Therefore eD(v1) = eD(v2) = eD(vj) = 3n − 4, eD(vl) = eD(vm) = 2n − 1 for {l,m} 6=
{1, 2, j}. Thus rD(G′) = min{e(v)} = 2n− 1, diaD(G′) = max{e(v)} = 3n− 4 as claimed.

Case(ii): In this case e has no common vertex with v1v2. We have deg(v1) = deg(v2) = deg(vi)
= deg(vj) = n − 2 and the degree of all other vertices is n − 1. Thus {n − 2, n − 2, n − 2, n −
2, · · · , n− 1} is the degree sequence of G′. Then the D distances between these vertices are
dD(v1, v2) = 3n− 4,
dD(v1, vl) = 2n− 2 for l 6= {i, j},
dD(v1, vi) = 2n− 3,
dD(v2, vl) = 2n− 2 for l 6= {i, j},
dD(v2, vi) = dD(v2, vj) = 2n− 3,
dD(vi, vj) = 3n− 4,
dD(vl, vm) = (n− 1) + (n− 1) + 1 = 2n− 1 for {l,m} 6= {1, 2, i, j}.

Therefore the eccentricities are eD(v1) = eD(v2) = eD(vi) = eD(vj) = 3n − 4, eD(vl) =
eD(vm) = 2n − 1 for {l,m} 6= {1, 2, i, j}. Thus rD(G′) = min{e(v)} = 2n − 1, diaD(G′) =
max{e(v)} = 3n− 4 as claimed.

From above theorem 3.1 we have rD(G) = 2n− 1 and diaD(G) = 3n− 3. Therefore we get
rD(G) = rD(G′) and diaD(G′) = diaD(G)− 1.

Theorem 3.4. In the above situation, we have

(i) if n = 4, then rD(G′) = rD(G)± 1, diaD(G′) = diaD(G)− 1.

(ii) if n = 5, then rD(G′) = rD(G) or rD(G)− 1, diaD(G′) = diaD(G)− 1.

4 The Cyclic Graph Cn

In the context of cyclic graphs we have the following

Theorem 4.1. G = Cn \ {an edge} Then we have

rD(G) =

{
3m+ 1 if n = 2m
3m− 2 if n = 2m-1

and
diaD(G) = 3(n− 1).

Proof. It is obvious that G = Cn \ {e} is nothing but the path graph, Pn, on n vertices. Then the
theorem follows from the proposition 3.9 of [4].

5 The Wheel Graph Wn,1

In this section we deal with the derived graph of wheel graph Wn,1. Let {v0, v1, v2, · · · , vn} be
the vertex set of Wn,1. We assume that v0 is adjacent to all other vertices. Thus deg(v0) = n
and degrees of all other vertices is 3. By abuse of notation, sometimes we may call v0 as central
vertex.

We need to consider the two cases n ≥ 10 and n < 10 separately. Then we have
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Theorem 5.1. Let G be a derived graph of Wn,1 (n ≥ 10) by deleting an edge which is not
adjacent to the central vertex. Then G is radius and diameter invariant.

Proof. Let G = Wn,1 \ {ei} where ei = vivi+1 i 6= 0 .
In the derived graph G the degree of vi = the degree of vi+1 = 2, the degree of v0 = n

and the degree of all other vertices is 3. The shortest path from v0 to vi of length 1. Thus
dD(v0, vi) = dD(v0, vi+1) = n + 3, dD(v0, vj) = n + 4 for j 6= i, i + 1 and dD(vj , vk) can be
any of {7, 10, 11, 14, 15, 19, · · · , (n + 6), (n + 7), (n + 8)}. Thus eD(v0) = n + 4, eD(vi) =
eD(vi+1) = n + 3 and eD(vk) = n + 8 for k 6= 0, i, i + 1. Hence rD(G) = n + 4 and
diaD(G) = n+ 8.

By proposition 3.10 of [4] we have rD(Wn,1) = n+4 and dD(Wn,1) = n+8. Thus it follows
that G is radius and diameter invariant as required.

Theorem 5.2. Let G be a derived graph of wheel graph Wn,1, (n ≥ 10) by deleting an edge
which is adjacent to the central vertex. Then the radius and diameter both are increased by 2.
In otherwords, we have

rD(G) = rD(Wn,1) + 2; diaD(G) = diaD(Wn,1) + 2.

Proof. Let the vertex set of the wheel graph Wn,1 be {v0, v1, v2, · · · , vn} where v0 is adjecnt to
all other vertices.

Let G = Wn,1 \ {ei} where ei = v0vi. In G the degree of v0 = (n − 1), the degree of
vi = 2 and the degree of all other vertices is 3. The shortest path between v0 and vi of length
is 2. Thus dD(v0, vi) = n + 6, dD(v0, vj) = n + 3 for j 6= i and dD(vj , vk) can be any of
{6, 7, 10, 11, 14, 15, 18, 19, · · · , n+ 7, n+ 10} for {j, k} 6= {0, i}.

Thus eD(v0) = n + 6, eD(vk) = n + 10, 1 ≤ k ≤ n. Therefore rD(G) = n + 6 and
diaD(G) = n+ 10.

Next we consider the remaining cases, namely, n ≤ 9. In this context we have the following

Theorem 5.3. Let G be derived graph of the wheel graph Wn,1, (n < 10) by deleting an edge.
In this case the D-radius D-radius and D-diameter D-diameter of G are as follows:

In the following G1 denotes a graph obtained from Wn,1 by deleting an edge which is not
adjacent to v0 and G2 denotes a graph obtained from Wn,1 by deleting an edge which is adjacent
to v0.

Sl. No. Wn,1 rD(G1) diaD(G1) rD(G2) diaD(G2)

1 W3,1 7 9 7 9
2 W4,1 10 10 8 0
3 W5,1 11 11 9 12
4 W6,1 12 14 10 14
5 W7,1 13 14 11 15
6 W8,1 14 18 12 16
7 W9,1 15 18 13 17

Table 6. D-radius and D-diameter of Wn,1 minus an edge

Proof. We will prove this theorem in two parts. In first part we delete an edge which is not
adjacent to the central vertex and in second part, an edge which is adjacent to the central vertex.

Part I:
G is obtained from Wn,1 by deleting an edge which is not adjacent to the central vertex. We will
prove the theorem for each n separately.
n = 3 :

We have G1 = W3,1 \ {e}, where e = vivj , 1 ≤ i, j ≤ 3. In G1 the degree of sequence is
{2, 2, 3, 3}. The distances between vertices are given by dD(v0, vi) = 6 or 7, and dD(vi, vj) = 6
or 9. Hence eD(v0) = 7 and eD(vi) = 9. Therefore rD(G1) = 7 and diaD(G1) = 9.
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n = 4 :
G = W4,1 \ {e}, where e = vivj , 1 ≤ i, j ≤ 4. In G the degree of sequence is {2, 2, 3, 3, 4}.

Thus dD(v0, vi) = {7, 8} dD(vi, vj) = {10, 6}. Hence eD(vi) = 10, eD(v0) = 8. Therefore
rD(G) = 8, diaD(G) = 10.
n = 5 :

G = W5,1\{e}, where e = vivj , 1 ≤ i, j ≤ 5. In G the degree of sequence is {2, 2, 3, 3, 3, 5}.
dD(v0, vi) = {8, 9} dD(vi, vj) = {6, 10, 11, 12}. Hence eD(vi) = 12, eD(v0) = 9. Therefore
rD(G) = 9, diaD(G) = 12.
n = 6 :

G = W6,1 \{e}, where e = vivj , 1 ≤ i, j ≤ 6. In G the degree of sequence is {2, 2, 3, 3, 3, 6}.
Thus dD(v0, vi) = {9, 10} dD(vi, vj) = {6, 7, 10, 11, 12, 13}. Hence eD(vi) = 14, eD(v0) =
10.. Therefore rD(G) = 10, diaD(G) = 14.
n = 7 :

G = W7,1\{e}, where e = vivj , 1 ≤ i, j ≤ 7. In G the degree of sequence is {2, 2, 3, 3, 3, 3, 7}.
dD(v0, vi) = {10, 11} dD(vi, vj) = {6, 7, 11, 13, 14, 15}. Hence eD(vi) = 15, eD(v0) = 11.
Therefore rD(G) = 11, diaD(G) = 15.
n = 8 :

G = W8,1\{e}, where e = vivj , 1 ≤ i, j ≤ 8. In G the degree of sequence is {2, 2, 3, 3, 3, 3, 3, 8}.
dD(v0, vi) = {11, 12} dD(vi, vj) = {6, 7, 10, 11, 14, 15, 16}. Hence eD(vi) = 16, eD(v0) = 12.
Therefore rD(G) = 12, diaD(G) = 16.
n = 9 :

G = W9,1\{e}, where e = vivj , 1 ≤ i, j ≤ 9. In G the degree of sequence is {2, 2, 3, 3, 3, 3, 3, 9}.
dD(v0, vi) = {12, 13} dD(vi, vj) = {6, 7, 10, 11, 14, 15, 16, 17}. Hence eD(vi) = 17, eD(v0) =
13. Therefore rD(G) = 13, diaD(G) = 17.
Part II:
G is obtained from Wn,1 by deleting an edge which is not adjacent to the central vertex. We can
prove this part similar to Part-I.

From the above theorem we get the following

Corollary 5.4. Let G be the derived graph of the wheel graph Wn,1 by deleting an edge which is
not adjacent to central vertex v0. Then

(i) G is radius invariant for n ≥ 3

(ii) G is diameter invariant for n ≥ 6.

Corollary 5.5. Let G be the derived graph of the wheel graph Wn,1 by deleting an edge which is
adjacent to central vertex v0. Then

(i) G is radius invariant for n = 3 only.

(ii) G is diameter invariant for n = 5, 6 only.

6 The Complete Bipartite Graph Km,m−1

In this section we deal with complete bipartite graph on (m,m− 1), vertices We have,

Theorem 6.1. Let G be the graph Km,m−1 \ {an edge}. Then we have rD(G) = 3m − 1 and
diaD(G) = 4m− 1.

Proof. Consider the bipartite graph Km,m−1 where {v1, v2, · · · , vm, u1, · · · , um−1} is the vertex
set of Km,m−1. Let G be the graph Km,m−1 \ {vi, uj}.

In G the degree of vi = m−2, the degree of uj = m−1 and the degree of remaing v′is = m−1
and u′ks = m then the shortest path between vi,uj is of length 3. Then the D distance between
vi, uj is dD(vi, uj) = (m− 2) + (m− 1) + (m− 1) +m+ 3 = 4m− 1,
dD(vi, vl) = (m− 2) + (m− 1) +m+ 2 = 3m− 1,
dD(uk, uj) = (m− 1) + (m− 1) +m+ 2 = 3m for k 6= j,
dD(uj , vl) = (m− 1) + (m− 1) + 1 = 2m− 1 for l 6= j,
dD(uk, um) = m+m+ (m− 2) + 2 = 3m,
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dD(vi, uk) = (m− 2 +m+ 1 = 2m− 1,
Then eD(vi) = 4m− 1, eD(vl) = 3m− 1, eD(uj) = 4m− 1, and eD(uk) = 3m.

Thus rD(G) = min{e(vi), e(uj)} = 3m − 1, diaD = max{e(vi), e(uj)} = 4m − 1 as
required.

7 Open Problems

We end this article with some open problems.
In view of the above, we can ask

OP1 Classify all the graphs G for which G′ = G \ {e} is D-radius invariant.

OP2 Classify all the graphs G for which G′ = G \ {e} is D-diameter invariant.
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