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Abstract In this note, how the residual smallness of R(+)M is related to the residual small-
ness of the ring R and the R-module M is discussed.

1 Introduction

Throughout this paper, all rings are assumed to be commutative with nonzero identity; all ring
extensions and ring homomorphisms are unital. Recently, residual smallness of rings and mod-
ules is studied by Oman and Salminen in [4, 5]. Let R be a ring. An infinite R-module M is
said to be a residually small R-module if for each nonzero m ∈M , there exists an R-submodule
N of M not containing m such that |M/N | < |M | (as usual, |Y | denotes the cardinality of a
set Y ). An infinite ring R is said to be a residually small ring if R is a residually small R-
module. In this note, we discuss the residual smallness of idealization of a module. Recall
from [2, p.2] that if R is a ring and M is an R-module, then the idealization R(+)M is a ring
with additive structure is that of the abelian group R ⊕M , and its multiplication is defined by
(r1,m1) (r2,m2) := (r1r2, r1m2 + r2m1), for all r1, r2 ∈ R and m1,m2 ∈ M . Note that R can
be treated as a subring ofR(+)M via the canonical injective ring homomorphism r 7→ (r, 0). For
further study on idealization, see [1]. In this note, we discuss the residual smallness of R(+)M
when |M | < |R|, |R| < |M |, and |R| = |M |.

2 Results

We start with the case |M | < |R|.

Theorem 2.1. Let R be a ring and M be an R-module such that |M | < |R|. If R(+)M is a
residually small ring, then R is a residually small ring. The converse holds, when M is finitely
generated.

Proof. By [4, Proposition 3.8], R is a residually small ring. Conversely, assume that R is
residually small and M = Rx1 + Rx2 + · · · + Rxn for some x1, x2, . . . , xn ∈ M . It follows
that M ∼= Rn/N where N is the kernel of the map φ : Rn → M defined as φ(r1, r2, . . . , rn) =
r1x1 + r2x2 + · · ·+ rnxn. Since |M | < |R|, N 6= {0}. Now, take a nonzero (r,m) ∈ R(+)M .
If r 6= 0, then there exists an ideal J of R not containing r such that |R/J | < |R|. Now, by
[1, Theorem 3.1], J(+)M is an ideal of R(+)M and R(+)M

J(+)M
∼= R/J . It follows that |R(+)M

J(+)M | =
|R/J | < |R| = |R(+)M |. Also, (r,m) /∈ J(+)M . Thus, we are done. Now, assume that
r = 0 and so m is nonzero. Note that R can be treated as an R-submodule of Rn via the map
r 7→ (r, r, . . . , r). Set I = N ∩ R. Note that I is an ideal of R and |R/I| ≤ |Rn/N | = |M |.
Clearly, IM is the zero submodule of M . Therefore, by [1, Theorem 3.1], I(+){0} is an ideal
of R(+)M and R(+)M

I(+){0}
∼= (R/I)(+)M . It follows that

∣∣∣R(+)M

I(+){0}

∣∣∣ = |(R/I)(+)M | = |M | < |R| = |R(+)M |



150 Rahul Kumar and Atul Gaur

Also, (0,m) /∈ I(+){0}. Thus, R(+)M is a residually small ring. 2

From the last theorem, one may naturally think if the residual smallness of M is also a
necessary condition for R(+)M to be a residually small ring. The answer is no, as is evident
from the next example.

Example 2.2. Let R = Q×Q[[X]] and M = Q× {0}. Then M is not residually small as M is
a simple R-module. Now, we assert that R(+)M is a residually small ring. First note that R is a
residually small ring, by [4, Example 2.1(iv)] and [4, Theorem 3.4]. Also, |M | < |R|. Thus, the
assertion follows by Theorem 2.1.

Now, if we consider |R| < |M |, then the residual smallness ofM is a necessary and sufficient
condition for R(+)M to be a residually small ring. This is precisely our next result.

Theorem 2.3. Let R be a ring and M be an R-module such that |R| < |M |. Then R(+)M is a
residually small ring if and only if M is a residually small R-module.

Proof. Let R(+)M be a residually small ring. Then it is easy to see that R(+)M is a residually
small R-module and M is an R-submodule of R(+)M . Thus, by [5, Proposition 1], M is a
residually small R-module. Conversely, assume that M is residually small. Take any nonzero
(r,m) ∈ R(+)M . If m is nonzero, then there exists an R-submodule N of M not containing
m such that |M/N | < |M |. It follows that (r,m) /∈ {0}(+)N . Now, by [1, Theorem 3.1],
{0}(+)N is an ideal of R(+)M and R(+)M

{0}(+)N
∼= R(+)M/N . It follows that∣∣∣ R(+)M

{0}(+)N

∣∣∣ = |R(+)M/N | < |M | = |R(+)M |

Thus, we are done. Now, assume that m = 0. Then clearly r 6= 0 and hence (r,m) /∈ {0}(+)M .
Again by [1, Theorem 3.1], {0}(+)M is an ideal of R(+)M and R(+)M

{0}(+)M
∼= R. Moreover,∣∣∣ R(+)M

{0}(+)M

∣∣∣ = |R| < |M | = |R(+)M |. Therefore, R(+)M is a residually small ring. 2

Our last theorem discusses the case |R| = |M |. Recall from [3] that an ideal I of a ring R is
said to be large if |R/I| < |R|.

Theorem 2.4. Let R be a ring and M be an R-module such that |R| = |M |. If R(+)M is a
residually small ring, then R is a residually small ring and M is a residually small R-module.
Converse holds when every nonzero submodule N of M contained IM for some large ideal I of
R.

Proof. Let R(+)M be a residually small ring such that |R| = |M |. Then by [4, Proposition 3.8],
R is a residually small ring. It is easy to see that R(+)M is a residually small R-module and M
is an R-submodule of R(+)M . Thus, by [5, Proposition 1], M is a residually small R-module.
Conversely, assume that R is a residually ring and M is a residually small R-module. Let (r,m)
be a nonzero element in R(+)M . If r 6= 0, then there exists an ideal I of R not containing r
such that |R/I| < |R|. It follows that (r,m) /∈ I(+)M . Now, by [1, Theorem 3.1], I(+)M is an
ideal of R(+)M and R(+)M

I(+)M
∼= R/I . Therefore,∣∣∣R(+)M

I(+)M

∣∣∣ = |R/I| < |R| = |R(+)M |

and hence we are done. Now, we may assume that r = 0 and so m 6= 0. Then there exists an
R-submodule N of M not containing m such that |M/N | < |M |. Since N is nonzero, IM ⊆ N
for some ideal large ideal I of R. It follows that |R/I| < |R|. Moreover, by [1, Theorem 3.1],
I(+)N is an ideal of R(+)M and R(+)M

I(+)N
∼= R/I(+)M/N . Since |R| = |M |,∣∣∣R(+)M

I(+)N

∣∣∣ = |R/I(+)M/N | < |R| = |R(+)M |

Note that (0,m) /∈ I(+)N and hence the result holds. 2
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