PRESENTATIONS OF GENERAL LINEAR GROUPS WITH JORDAN REGULAR GENERATORS

Meena Sahai, Parvesh Kumari and R. K. Sharma
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 16U60; Secondary 20G35.
Keywords and phrases: Jordan regular units, general linear group, group presentation.

Abstract

In this article, we obtain presentations of the general linear groups $G L\left(2, \mathbb{Z}_{16}\right)$, $G L\left(2, \mathbb{Z}_{18}\right), \quad G L\left(2, \mathbb{Z}_{20}\right), \quad G L\left(2, \mathbb{Z}_{24}\right), \quad G L\left(2, \mathbb{Z}_{28}\right), \quad G L\left(2, \mathbb{Z}_{30}\right), \quad G L\left(2, \mathbb{Z}_{32}\right), G L\left(2, \mathbb{Z}_{36}\right)$, $G L\left(2, \mathbb{Z}_{38}\right), G L\left(2, \mathbb{Z}_{40}\right)$ and $G L\left(2, \mathbb{Z}_{42}\right)$ with Jordan regular units as generators.

1 Introduction

Let R be an arbitrary ring. Lie regular elements and units in R were introduced and studied by Sharma, Yadav and Kanwar in [5]. They defined that an element $a \in R$ is called a Lie regular element if $a=e u-u e$ for some idempotent $e \in R$ and some unit $u \in R$. A Lie regular element which is also a unit is called a Lie regular unit. They used Lie regular units to describe the general linear groups and obtained presentations of $G L\left(2, \mathbb{Z}_{4}\right), G L\left(2, \mathbb{Z}_{6}\right), G L\left(2, \mathbb{Z}_{8}\right), G L\left(2, \mathbb{Z}_{9}\right)$, $G L\left(2, \mathbb{Z}_{10}\right), G L\left(2, \mathbb{Z}_{14}\right), G L\left(2, \mathbb{Z}_{15}\right), G L\left(2, \mathbb{Z}_{22}\right), G L\left(2, \mathbb{Z}_{25}\right), G L\left(2, \mathbb{Z}_{26}\right), G L\left(2, \mathbb{Z}_{27}\right)$ and $G L\left(2, \mathbb{Z}_{34}\right)$ having Lie regular units as generators in [5, 6]. We call an element $a \in R$, a Jordan regular element if $a=e u+u e$ for some idempotent $e \in R$ and some unit $u \in R$. A Jordan regular element which is also a unit is called a Jordan regular unit. Jordan regular elements and Jordan regular units were introduced by the authors in [3]. For a commutative ring R with unity, the authors have studied Jordan regular units in $M(2, R)$ in [3]. It is proved that if 2 is a unit in R, then every unit in $M(2, R)$ is a Jordan regular unit, but if 2 is not a unit in R, then it is not necessary that every unit in $M(2, R)$ is a Jordan regular unit. Jordan regular units in $G L\left(2, \mathbb{Z}_{2^{n}}\right)$ and $G L\left(2, \mathbb{Z}_{2 n}\right)$ have been obtained in [3]. Further we have proved that for $n \geq 2$, the general linear group $G L\left(2, F_{2^{n}}\right)$ can be generated by Jordan regular units, see [4]. Here F_{q} denotes a finite field containing q elements. In the same paper, presentations of $G L\left(2, F_{4}\right), G L\left(2, F_{8}\right)$, $G L\left(2, F_{16}\right)$ and $G L\left(2, F_{32}\right)$ have been obtained having Jordan regular units as generators.

In this article, we use Jordan regular units to obtain presentations of the general linear groups $G L\left(2, \mathbb{Z}_{16}\right), G L\left(2, \mathbb{Z}_{18}\right), G L\left(2, \mathbb{Z}_{20}\right), G L\left(2, \mathbb{Z}_{24}\right), G L\left(2, \mathbb{Z}_{28}\right), G L\left(2, \mathbb{Z}_{30}\right), G L\left(2, \mathbb{Z}_{32}\right)$, $G L\left(2, \mathbb{Z}_{36}\right), G L\left(2, \mathbb{Z}_{38}\right), G L\left(2, \mathbb{Z}_{40}\right)$ and $G L\left(2, \mathbb{Z}_{42}\right)$.

We have used GAP(Groups Algorithms-programming) software for all the algebraic computations throughout this paper.

2 Presentations of General Linear Groups over $\mathbb{Z}_{\boldsymbol{n}}$

In this section, we find presentations of general linear groups over \mathbb{Z}_{n} for even n having Jordan regular units as generators. Let ϕ denote the Euler's totient function.

Proposition 2.1. [6, Proposition 2.1] For any prime p, $\left|G L\left(2, \mathbb{Z}_{p^{n}}\right)\right|=p^{2 n-1}(p+1)\left(\phi\left(p^{n}\right)\right)^{2}$.
Corollary 2.2. [6, Corollary 2.2] For any $n=\prod_{i=1}^{k} p_{i}^{\alpha_{i}}$, where p_{i}^{\prime} s are distinct primes, $\left|G L\left(2, \mathbb{Z}_{n}\right)\right|$ $=\prod_{i=1}^{k} p_{i}^{2 \alpha_{i}-1}\left(p_{i}+1\right)\left(\phi\left(p_{i}^{\alpha_{i}}\right)\right)^{2}$.

Corollary 2.3. [6, Corollary 2.3] For any two distinct primes p and $q,\left|G L\left(2, \mathbb{Z}_{p q}\right)\right|=p q(p+$ 1) $(q+1)(p-1)^{2}(q-1)^{2}$.

Corollary 2.4. [6, Corollary 2.3] $\left|S L\left(2, \mathbb{Z}_{n}\right)\right|=\frac{\left|G L\left(2, \mathbb{Z}_{n}\right)\right|}{\phi(n)}$.
Proposition 2.5. If L denotes the group of lower triangular matrices in $S L\left(2, \mathbb{Z}_{n}\right)$, then $|L|=$ $n \phi(n)$.
Proof. Any element in L is of the form $\left(\begin{array}{ll}a & 0 \\ c & b\end{array}\right)$, where $a, b, c \in \mathbb{Z}_{n}$ and $a b=1$. So $a \in \mathcal{U}\left(\mathbb{Z}_{n}\right)$ and $\left|\mathcal{U}\left(\mathbb{Z}_{n}\right)\right|=\phi(n)$. Also for each value of a, there are n choice for c, hence $|L|=n \phi(n)$.
Lemma 2.6. The elements $a=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right), b=\left(\begin{array}{cc}1 & 1 \\ 12 & 9\end{array}\right)$ and $c=\left(\begin{array}{ll}3 & 3 \\ 0 & 1\end{array}\right)$ are Jordan regular units in $M\left(2, \mathbb{Z}_{16}\right)$.
Proof. The proof is clear once we observe that $a=e_{1} u_{1}+u_{1} e_{1}, b=e_{2} u_{2}+u_{2} e_{2}$ and $c=$ $e_{3} u_{3}+u_{3} e_{3}$, where $e_{1}=\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right), e_{2}=\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right), e_{3}=\left(\begin{array}{cc}1 & 0 \\ 11 & 0\end{array}\right)$ are idempotents in $M\left(2, \mathbb{Z}_{16}\right)$ and $u_{1}=\left(\begin{array}{cc}1 & 15 \\ 1 & 0\end{array}\right), u_{2}=\left(\begin{array}{cc}3 & 1 \\ 5 & 4\end{array}\right), u_{3}=\left(\begin{array}{cc}1 & 3 \\ 5 & 0\end{array}\right)$ are units in $M\left(2, \mathbb{Z}_{16}\right)$.
Theorem 2.7. Presentation of $G L\left(2, \mathbb{Z}_{16}\right)$ is
$G L\left(2, Z_{16}\right)=\langle a, b, c| a^{16}, b^{16}, c^{8}, b^{8} c^{4}, c^{5} b a b^{4} c b^{15} a b^{15} c a^{15} c^{7} b^{15} a^{15}, b^{3} c\left(b^{15} a\right)^{2} b^{15}\left(c^{7} a\right)^{2} c$, $c^{5} b c b a c^{4} a^{7}, c^{5} b c b a b^{12} a b^{2} a^{2} b^{2}, a^{7} b c^{6} b^{8} c^{5} a^{15} c b^{15},\left(c^{7} a^{15} b^{15} c b a\right)^{3}, a b^{15} c a c b^{15} a c^{6} b^{10} a^{7}, a^{14} b^{8} a^{2} b^{8}$, $\left.a^{12} b^{12} a^{4} b^{4}, a^{14} b^{2} a^{4} b^{10} a^{14} b^{4}, a^{12} c^{6} a^{4} c^{2}\right\rangle$,
where $a=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right), b=\left(\begin{array}{cc}1 & 1 \\ 12 & 9\end{array}\right)$ and $c=\left(\begin{array}{ll}3 & 3 \\ 0 & 1\end{array}\right)$ are Jordan regular units.
Proof. Let G be a group having the above presentation. Since $a, b, c \in G L\left(2, Z_{16}\right)$, so $G \leq$ $G L\left(2, \mathbb{Z}_{16}\right)$. Let $x=b c^{7} a c a^{15} b^{15}=\left(\begin{array}{cc}4 & 5 \\ 7 & 1\end{array}\right)$ and $y=a b^{15} a b a^{3}=\left(\begin{array}{cc}13 & 11 \\ 4 & 1\end{array}\right)$. Then $x, y \in G, o(x)=12$ and $o(y)=16$. Then $H=\langle x, y\rangle \leq S L\left(2, \mathbb{Z}_{16}\right)$. Let L be the group consisting of all lower triangular matrices in $S L\left(2, \mathbb{Z}_{16}\right)$. By Proposition $2.5,|L|=$ 128. Let $u=y^{12} x y^{3} x^{11}=\left(\begin{array}{cc}1 & 0 \\ 15 & 1\end{array}\right)$ and let $H_{1}=\langle u\rangle$. Then $\left|H_{1}\right|=16$. Let $v=$ $y^{4} x y^{15} x^{2}=\left(\begin{array}{cc}11 & 0 \\ 1 & 3\end{array}\right)$ and $w=y x^{11} y x^{5}=\left(\begin{array}{ll}7 & 0 \\ 0 & 7\end{array}\right)$. Then $o(v)=16, o(w)=2$ and $v w=w v$. Thus $H_{2}=\langle v, w\rangle$ is an abelian subgroup of H of order 32 and $H_{1} \cap H_{2}=$ $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 4 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 8 & 1\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 12 & 1\end{array}\right)\right\}$. So $\left|H_{1} H_{2}\right|=128=|L|$. Since $H_{1} H_{2} \subseteq$ L, so $H_{1} H_{2}=L \leq H \leq S L\left(2, \mathbb{Z}_{16}\right)$.

Let $k=x^{11} y^{5} x^{2}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and let $K=\langle k\rangle$. Then $|K|=16$. As $L \cap K=1$, so $|L K|=$ 2048. Both $K, L \leq H$, hence $K L \subseteq H \leq S L\left(2, \mathbb{Z}_{16}\right)$. By Corollary 2.4, $\left|S L\left(2, \mathbb{Z}_{16}\right)\right|=3072$. Thus $|H|>\frac{1}{2}\left|S L\left(2, \mathbb{Z}_{16}\right)\right|$ and we conclude that $H=S L\left(2, \mathbb{Z}_{16}\right)$.

Let $r=b^{-1} a c^{-1} b^{-2} a c^{-1} a=\left(\begin{array}{cc}5 & 0 \\ 0 & 1\end{array}\right)$ and $s=c a c^{2} a^{-1} b^{-1}=\left(\begin{array}{cc}11 & 0 \\ 0 & 5\end{array}\right)$. Then $o(r)=$ $o(s)=4$ and if $P=\langle r, s\rangle$, then $|P|=16$. Elements of P are listed below:
$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 9\end{array}\right),\left(\begin{array}{ll}3 & 0 \\ 0 & 5\end{array}\right), \quad\left(\begin{array}{cc}3 & 0 \\ 0 & 13\end{array}\right), \quad\left(\begin{array}{ll}5 & 0 \\ 0 & 1\end{array}\right), \quad\left(\begin{array}{ll}5 & 0 \\ 0 & 9\end{array}\right), \quad\left(\begin{array}{ll}7 & 0 \\ 0 & 5\end{array}\right)$,
$\left(\begin{array}{cc}7 & 0 \\ 0 & 13\end{array}\right),\left(\begin{array}{ll}9 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}9 & 0 \\ 0 & 9\end{array}\right),\left(\begin{array}{cc}11 & 0 \\ 0 & 5\end{array}\right),\left(\begin{array}{cc}11 & 0 \\ 0 & 13\end{array}\right),\left(\begin{array}{cc}13 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}13 & 0 \\ 0 & 9\end{array}\right)$, $\left(\begin{array}{cc}15 & 0 \\ 0 & 5\end{array}\right)$ and $\left(\begin{array}{cc}15 & 0 \\ 0 & 13\end{array}\right)$.

Now $P \cap H=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}9 & 0 \\ 0 & 9\end{array}\right)\right\}$. Therefore $|P H|=24576$. Since $P H \subseteq G \leq$ $G L\left(2, \mathbb{Z}_{16}\right)$ and by Proposition 2.1, $\left|G L\left(2, \mathbb{Z}_{16}\right)\right|=24576=|P H|$, so $G=G L\left(2, \mathbb{Z}_{16}\right)$.

Lemma 2.8. The elements $a=\left(\begin{array}{cc}1 & 0 \\ 17 & 17\end{array}\right), b=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)$ and $c=\left(\begin{array}{cc}0 & 5 \\ 1 & 0\end{array}\right)$ are Jordan regular units in $M\left(2, \mathbb{Z}_{18}\right)$.

Proof. The proof is clear once we observe that $a=e u+u e, b=e^{\prime} b+b e^{\prime}$ and $c=e^{\prime} c+c e^{\prime}$, where $e=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right), e^{\prime}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ are idempotents in $M\left(2, \mathbb{Z}_{18}\right)$ and $u=\left(\begin{array}{ll}10 & 7 \\ 17 & 1\end{array}\right)$ is a unit in $M\left(2, \mathbb{Z}_{18}\right)$.

Theorem 2.9. Presentation of $G L\left(2, \mathbb{Z}_{18}\right)$ is
$G L\left(2, Z_{18}\right)=\langle a, \quad b, c| a^{2}, b^{2}, \quad c^{12}, \quad a c^{2} a c^{10}, \quad b c^{2} b c^{10}, \quad(c a)^{2}(b c)^{2}(a c)^{2} a(c b)^{3} c a c b c a b$, $\left.(b c)^{2} b(a c)^{2} b a c^{7} a b c b a(c a)^{2} a b(a c)^{2} b(c b)^{2},(a c)^{11} a c^{7}\right\rangle$,
where $a=\left(\begin{array}{cc}1 & 0 \\ 17 & 17\end{array}\right), b=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)$ and $c=\left(\begin{array}{ll}0 & 5 \\ 1 & 0\end{array}\right)$ are Jordan regular units.
Proof. Let G be a group having the above presentation. Since $a, b, c \in G L\left(2, \mathbb{Z}_{18}\right)$, so $G \leq$ $G L\left(2, \mathbb{Z}_{18}\right)$. Let $x=(c b)^{2} c a b=\left(\begin{array}{cc}1 & 1 \\ 0 & 1\end{array}\right)$ and $y=(c b)^{2} c=\left(\begin{array}{cc}0 & 17 \\ 1 & 0\end{array}\right)$. Then $x, y \in G$, $o(x)=18$ and $o(y)=4$. Let $H=\langle x, y\rangle$. Clearly $H \leq S L\left(2, \mathbb{Z}_{18}\right)$. Let L be the group consisting of all lower triangular matrices in $S L\left(2, \mathbb{Z}_{18}\right)$. Then by Proposition $2.5,|L|=108$. Let $u=x y x=\left(\begin{array}{cc}1 & 0 \\ 1 & 1\end{array}\right)$ and let $H_{1}=\langle u\rangle$. Then $\left|H_{1}\right|=18$. Let $v=x y x^{16} y x^{4} y x^{3}=\left(\begin{array}{cc}5 & 0 \\ 9 & 11\end{array}\right)$ and let $H_{2}=\langle v\rangle$. Then $\left|H_{2}\right|=6$. Both H_{1} and H_{2} are subgroups of L and $\left|H_{1} H_{2}\right|=108=|L|$ as $H_{1} \cap H_{2}=1$. Hence $H_{1} H_{2}=L \leq H \leq S L\left(2, \mathbb{Z}_{18}\right)$.

Let $m=x^{9}=\left(\begin{array}{cc}1 & 9 \\ 0 & 1\end{array}\right)$ and $n=x^{5} y x^{3} y x^{2} y=\left(\begin{array}{cc}5 & 4 \\ 5 & 15\end{array}\right)$. Then $o(m)=2$ and $o(n)=18$. Let $K=\langle m, n\rangle$. Then $|K|=54$. Now K contains following elements and their inverses:
$\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}0 & 17 \\ 1 & 2\end{array}\right),\left(\begin{array}{cc}0 & 17 \\ 1 & 11\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 9 & 1\end{array}\right),\left(\begin{array}{ll}1 & 9 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}1 & 9 \\ 9 & 10\end{array}\right),\left(\begin{array}{cc}2 & 1 \\ 17 & 9\end{array}\right)$,
$\left(\begin{array}{cc}3 & 2 \\ 7 & 17\end{array}\right), \quad\left(\begin{array}{cc}3 & 2 \\ 16 & 17\end{array}\right), \quad\left(\begin{array}{cc}3 & 11 \\ 7 & 8\end{array}\right), \quad\left(\begin{array}{cc}3 & 11 \\ 16 & 17\end{array}\right), \quad\left(\begin{array}{cc}4 & 3 \\ 15 & 7\end{array}\right), \quad\left(\begin{array}{cc}4 & 3 \\ 15 & 16\end{array}\right)$, $\left(\begin{array}{cc}5 & 4 \\ 5 & 15\end{array}\right), \quad\left(\begin{array}{cc}5 & 4 \\ 14 & 15\end{array}\right), \quad\left(\begin{array}{cc}5 & 13 \\ 5 & 6\end{array}\right), \quad\left(\begin{array}{cc}5 & 13 \\ 14 & 15\end{array}\right), \quad\left(\begin{array}{cc}6 & 5 \\ 13 & 14\end{array}\right), \quad\left(\begin{array}{cc}7 & 6 \\ 3 & 13\end{array}\right)$, $\left(\begin{array}{cc}7 & 6 \\ 12 & 13\end{array}\right), \quad\left(\begin{array}{cc}7 & 15 \\ 12 & 13\end{array}\right), \quad\left(\begin{array}{cc}8 & 7 \\ 11 & 12\end{array}\right), \quad\left(\begin{array}{cc}9 & 8 \\ 1 & 11\end{array}\right), \quad\left(\begin{array}{cc}9 & 8 \\ 10 & 11\end{array}\right), \quad\left(\begin{array}{cc}9 & 17 \\ 10 & 11\end{array}\right)$, $\left(\begin{array}{cc}10 & 9 \\ 9 & 10\end{array}\right),\left(\begin{array}{cc}12 & 11 \\ 7 & 17\end{array}\right),\left(\begin{array}{cc}13 & 3 \\ 15 & 16\end{array}\right)$ and $\left(\begin{array}{cc}14 & 13 \\ 5 & 15\end{array}\right)$.
Also $L \cap K=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 9 & 1\end{array}\right)\right\}$. Hence $|L K|=2916$. As $K, L \leq H$, so $K L \subseteq$ $H \leq S L\left(2, \mathbb{Z}_{18}\right)$ and by Corollary $2.4,\left|S L\left(2, \mathbb{Z}_{18}\right)\right|=3888$. Thus $|H|>\frac{1}{2}\left|S L\left(2, \mathbb{Z}_{18}\right)\right|$ and so $H=S L\left(2, \mathbb{Z}_{18}\right)$.

Let $p=b c=\left(\begin{array}{ll}1 & 0 \\ 0 & 5\end{array}\right)$ and let $P=\langle p\rangle$. Clearly $p \notin H$. Now $|P|=6$ and $|P H|=23328$ as $P \cap H=1$. Also $P H \subseteq G \leq G L\left(2, \mathbb{Z}_{18}\right)$. By Corollary $2.2,\left|G L\left(2, \mathbb{Z}_{18}\right)\right|=23328=|P H|$. Thus $G=G L\left(2, \mathbb{Z}_{18}\right)$.

Lemma 2.10. The elements $a=\left(\begin{array}{cc}1 & 0 \\ 19 & 19\end{array}\right), b=\left(\begin{array}{ll}0 & 3 \\ 1 & 0\end{array}\right)$ and $c=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ are Jordan regular units in $M\left(2, \mathbb{Z}_{20}\right)$.

Proof. The proof is clear once we observe that $a=e_{1} u_{1}+u_{1} e_{1}, b=e_{2} u_{2}+u_{2} e_{2}$ and $c=$ $e_{3} u_{3}+u_{3} e_{3}$, where $e_{1}=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right), e_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), e_{3}=\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right)$ are idempotents in $M\left(2, \mathbb{Z}_{20}\right)$ and $u_{1}=\left(\begin{array}{ll}11 & 8 \\ 19 & 1\end{array}\right), u_{2}=b, u_{3}=\left(\begin{array}{cc}1 & 1 \\ 19 & 0\end{array}\right)$ are units in $M\left(2, \mathbb{Z}_{20}\right)$.

Theorem 2.11. Presentation of $G L\left(2, \mathbb{Z}_{20}\right)$ is
$G L\left(2, Z_{20}\right)=\langle a, b, c| a^{2}, b^{8}, c^{20}, a b^{2} a b^{6}, c b^{2} c^{19} b^{6}, a c^{19} b a c b c^{2} a b c^{5} b a b^{7} c a c^{2} a b c^{4}, b^{6} a\left(c^{19} b\right)^{2} c a c^{7}$, $\left.\left(a c^{17} a b^{7} a c^{3} a\right)^{8}, b^{3} c^{3} a b^{5} c^{19} a c^{18},\left(a c^{17}\right)^{2} b^{5}\left(a c^{3}\right)^{2} a b^{2} c^{2} a c^{18} b, c^{2} b c^{19} b(c a)^{2} c b c^{2} b\right\rangle$,
where $a=\left(\begin{array}{cc}1 & 0 \\ 19 & 19\end{array}\right), b=\left(\begin{array}{cc}0 & 3 \\ 1 & 0\end{array}\right)$ and $c=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ are Jordan regular units.
Proof. Let G be a group having the above presentation. Since $a, b, c \in G L\left(2, \mathbb{Z}_{20}\right)$, so $G \leq$ $G L\left(2, \mathbb{Z}_{20}\right)$. Let $x=c, y=c a c^{-1} b c b^{2} a b=\left(\begin{array}{ll}3 & 0 \\ 9 & 7\end{array}\right)$ and $z=c b a c b c^{-1} b c a b=\left(\begin{array}{cc}16 & 5 \\ 15 & 11\end{array}\right)$. Then $x, y, z \in G, o(x)=20, o(y)=4$ and $o(z)=3$. Let $H=\langle x, y, z\rangle$. Clearly $H \leq$ $S L\left(2, \mathbb{Z}_{20}\right)$. Let L be the group consisting of all lower triangular matrices in $S L\left(2, \mathbb{Z}_{20}\right)$. By Proposition 2.5, $|L|=160$. Let $u=x^{-1} y^{-1} x^{3} z^{-1}=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ and let $H_{1}=\langle u\rangle$. Then $\left|H_{1}\right|=20$. Let $v=y$ and $w=z^{-1} x z^{-1} x^{9}=\left(\begin{array}{cc}11 & 0 \\ 0 & 11\end{array}\right)$. Then $o(w)=2$ and $w v=v w$. Let $H_{2}=\langle v, w\rangle$. Now H_{2} is an abelian subgroup of H of order 8. Also $H_{1} \cap H_{2}=1$. Hence $\left|H_{1} H_{2}\right|=160$. Since $H_{1} H_{2} \subseteq L$, so $H_{1} H_{2}=L \leq H \leq S L\left(2, \mathbb{Z}_{20}\right)$.

Let $K=\langle x\rangle$, then $|K|=20, L \cap K=1$ and $|L K|=3200$. Both $K, L \leq H$, so $K L \subseteq$ $H \leq S L\left(2, \mathbb{Z}_{20}\right)$. Thus $|H| \geq 3200$. Since by Corollary 2.4, $\left|S L\left(2, \mathbb{Z}_{20}\right)\right|=5760$ and $|H|>$ $\frac{1}{2}\left|S L\left(2, \mathbb{Z}_{20}\right)\right|$, so $H=S L\left(2, \mathbb{Z}_{20}\right)$.

Let $r=c^{2} a c^{-1} a b=\left(\begin{array}{cc}1 & 0 \\ 0 & 17\end{array}\right)$ and $s=c a c^{-1} b^{-1}=\left(\begin{array}{cc}13 & 0 \\ 0 & 19\end{array}\right)$. Then $o(r)=o(s)=4$. If $P=\langle r, s\rangle$, then $|P|=16$. Elements of P are listed below:
$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 9\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 0 & 13\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 0 & 17\end{array}\right),\left(\begin{array}{ll}9 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}9 & 0 \\ 0 & 9\end{array}\right),\left(\begin{array}{cc}9 & 0 \\ 0 & 13\end{array}\right)$,
$\left(\begin{array}{cc}9 & 0 \\ 0 & 17\end{array}\right),\left(\begin{array}{cc}13 & 0 \\ 0 & 3\end{array}\right),\left(\begin{array}{cc}13 & 0 \\ 0 & 7\end{array}\right),\left(\begin{array}{cc}13 & 0 \\ 0 & 11\end{array}\right),\left(\begin{array}{cc}13 & 0 \\ 0 & 19\end{array}\right),\left(\begin{array}{cc}17 & 0 \\ 0 & 3\end{array}\right),\left(\begin{array}{cc}17 & 0 \\ 0 & 7\end{array}\right)$, $\left(\begin{array}{cc}17 & 0 \\ 0 & 11\end{array}\right)$ and $\left(\begin{array}{cc}17 & 0 \\ 0 & 19\end{array}\right)$.
Now $P \cap H=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \quad\left(\begin{array}{ll}9 & 0 \\ 0 & 9\end{array}\right)\right\}$ and so $|P H|=46080$. Also $P H \subseteq G \leq$ $G L\left(2, \mathbb{Z}_{20}\right)$ and by Corollary 2.2, $\left|G L\left(2, \mathbb{Z}_{20}\right)\right|=46080=|P H|$. Thus $G=G L\left(2, \mathbb{Z}_{20}\right)$.

Lemma 2.12. The elements $a=\left(\begin{array}{cc}1 & 5 \\ 12 & 1\end{array}\right), b=\left(\begin{array}{cc}3 & 2 \\ 17 & 17\end{array}\right), c=\left(\begin{array}{cc}19 & 3 \\ 14 & 11\end{array}\right)$ and $d=$ $\left(\begin{array}{cc}3 & 1 \\ 16 & 7\end{array}\right)$ are Jordan regular units in $M\left(2, \mathbb{Z}_{24}\right)$.

Proof. The proof is clear once we observe that $a=e_{1} u_{1}+u_{1} e_{1}, b=e_{2} u_{2}+u_{2} e_{2}, c=e_{3} u_{3}+$ $u_{3} e_{3}$ and $d=e_{4} u_{4}+u_{4} e_{4}$, where $e_{1}=\left(\begin{array}{ll}0 & 0 \\ 5 & 1\end{array}\right), e_{2}=\left(\begin{array}{ll}0 & 3 \\ 0 & 1\end{array}\right), e_{3}=\left(\begin{array}{cc}9 & 8 \\ 9 & 16\end{array}\right)$,
$e_{4}=\left(\begin{array}{ll}0 & 0 \\ 3 & 1\end{array}\right)$ are idempotents in $M\left(2, \mathbb{Z}_{24}\right)$ and $u_{1}=\left(\begin{array}{ll}1 & 5 \\ 7 & 0\end{array}\right), u_{2}=\left(\begin{array}{cc}0 & 5 \\ 17 & 7\end{array}\right), u_{3}=$ $\left(\begin{array}{ll}16 & 3 \\ 17 & 5\end{array}\right), u_{4}=\left(\begin{array}{ll}1 & 1 \\ 7 & 2\end{array}\right)$ are units in $M\left(2, \mathbb{Z}_{24}\right)$.

Theorem 2.13. Presentation of $G L\left(2, \mathbb{Z}_{24}\right)$ is
$G L\left(2, Z_{24}\right)=\langle a, b, c, d| a^{24}, b^{8}, c^{8}, d^{8},(b c)^{12},(b d)^{12},(c d)^{6}, a b^{4} a^{23} b^{4}, c b^{4} c^{7} b^{4}, d b^{4} d^{7} b^{4}, c^{4} a^{12}$, $a^{18} b^{6} a^{6} b^{2}, \quad a^{16} b^{4} a^{8} b^{4}, \quad a^{12} b^{6} a^{12} b^{2}, \quad a^{22} c^{6} a^{2} c^{2}, \quad a^{12} c^{7} a^{4} c b^{7} a^{8} b, \quad a^{19} c^{7} a^{6} c^{7} a^{23} c^{2}, \quad c^{7} a^{8} c b^{7} a^{16} b$, $a^{6} c^{5} a c^{2} a^{17} c, \quad a^{6} c^{5} a^{3} c^{2} a^{15} c, \quad a^{12} c^{5} a^{4} c^{3} b^{7} a^{8} b, \quad c^{5} a^{8} c^{3} b^{7} a^{16} b, \quad c^{6} a^{10} c^{2} a^{14}, \quad a^{18} c^{5} a^{15} c^{2} a^{15} c$, $a^{3} d^{7} a^{3} d c^{7} a^{18} c, \quad a^{12} d^{7} a^{4} d b^{7} a^{8} b, \quad a^{3} d^{5} a^{3} d^{3} c^{7} a^{18} c, \quad b^{6} c^{6} b^{2} c^{2}, \quad c^{6} b^{2} c^{2} b^{6}, \quad b^{6} d^{6} b^{2} d^{2}, \quad c^{6} d^{7} c^{2} b^{6} d b^{2}$, $c^{5} d^{7} c^{3} d c^{7} a^{13} c a^{11}, \quad c^{6} d^{6} c^{2} d^{2}, \quad c^{6} d^{5} c^{2} d^{3} c^{7} a^{18} c a^{6}, \quad\left(a d^{7}\right)^{2}(c d)^{2} a^{22} c^{7} b^{6} c^{7}, \quad(c d)^{2} c b^{2} c a^{22}$, $b a^{23} b c^{7} b a c a^{23} b^{7} c^{7} b^{7} c b^{7} c a c^{7}, \quad c^{7} a(d b)^{2} b^{3} a^{13} d c^{7} b d, \quad b d a^{23} b^{7} a^{23} b d^{7} b d c^{7} d c a^{22}\left(b^{7} c^{7}\right)^{2} d^{2}$, $\left.b^{7} a d a^{23} b\left(a b^{7}\right)^{2} a^{23} b d b a b^{7} c^{7} d^{7} b c d\right\rangle$,
where $a=\left(\begin{array}{cc}1 & 5 \\ 12 & 1\end{array}\right), b=\left(\begin{array}{cc}3 & 2 \\ 17 & 17\end{array}\right), c=\left(\begin{array}{cc}19 & 3 \\ 14 & 11\end{array}\right)$ and $d=\left(\begin{array}{cc}3 & 1 \\ 16 & 7\end{array}\right)$ are Jordan regular units.

Proof. : Let G be a group having the above presentation. Since $a, b, c, d \in G L\left(2, \mathbb{Z}_{24}\right)$, so $G \leq G L\left(2, \mathbb{Z}_{24}\right)$. Let $x=b^{-1} d^{-1} b^{-1} c^{-1} b c^{-1} a=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $y=c^{-1} b c^{-1} d^{-1} a=$ $\left(\begin{array}{ll}12 & 1 \\ 23 & 0\end{array}\right)$. Then $x, y \in G, o(x)=24$ and $o(y)=4$. Let $H=\langle x, y\rangle$. Clearly $H \leq$ $S L\left(2, \mathbb{Z}_{24}\right)$. Let L be the group of all lower triangular matrices in $S L\left(2, \mathbb{Z}_{24}\right)$. By Proposition $2.5,|L|=192$. Let $h=y^{-1} x^{-1} y=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ and let $H_{1}=\langle h\rangle$. Then $\left|H_{1}\right|=$ 24. Let $u=y^{-1} x y x^{-1} y^{2} x=\left(\begin{array}{cc}11 & 0 \\ 1 & 11\end{array}\right)$ and $v=y x^{-2} y x^{3} y^{-1} x^{2} y x^{3}=\left(\begin{array}{cc}5 & 0 \\ 0 & 5\end{array}\right)$. Now $o(u)=24, o(v)=2$ and $u v=v u$. Hence $H_{2}=\langle u, v\rangle$ is a group of order 48. Let $w=y x^{-1} y^{-1}=\left(\begin{array}{cc}13 & 0 \\ 1 & 13\end{array}\right)$ and let $H_{3}=\langle w\rangle$. Then $\left|H_{3}\right|=24$. Also $H_{2} \cap H_{3}=$ $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ \pm 2 & 1\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ \pm 4 & 1\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ \pm 6 & 1\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ \pm 8 & 1\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ \pm 10 & 1\end{array}\right)\right.$, $\left.\left(\begin{array}{cc}1 & 0 \\ 12 & 1\end{array}\right)\right\}$. Therefore $\left|H_{2} H_{3}\right|=96$. Now if $T=\langle u, v, w\rangle$, then $H_{2} H_{3} \subseteq T \leq L$. Thus $\left|H_{2} H_{3}\right| \leq|T| \leq|L|$, which implies that either $|T|=96$ or $|T|=192$. But $k=y^{-1} x^{-3} y=$ $\left(\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right) \notin T$, so $|T|=96$ and $H_{2} H_{3}=T$. Now $H_{1} \cap T=\left\{\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right), \quad\left(\begin{array}{cc}1 & 0 \\ \pm 2 & 1\end{array}\right)\right.$, $\left.\left(\begin{array}{cc}1 & 0 \\ \pm 4 & 1\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ \pm 6 & 1\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ \pm 8 & 1\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ \pm 10 & 1\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 12 & 1\end{array}\right)\right\}$. Hence $\left|H_{1} T\right|=192$ $=|L|$ and $H_{1} T=L \leq H \leq S L\left(2, \mathbb{Z}_{24}\right)$.

Let D be the derived subgroup of $S L\left(2, \mathbb{Z}_{24}\right)$. Then $D=\langle l, m\rangle$, where $l=x y^{-1} x y x^{-2}=$ $\left(\begin{array}{cc}0 & 1 \\ 23 & 3\end{array}\right), m=x^{2} y^{-1} x=\left(\begin{array}{cc}2 & 1 \\ 1 & 13\end{array}\right)$ and $|D|=768$. Since $l, m \in H$, so $D \leq H$. Now $L, D \subseteq H$ and $L \cap D=\left\{\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 12 & 1\end{array}\right),\left(\begin{array}{cc}5 & 0 \\ 0 & 5\end{array}\right),\left(\begin{array}{cc}5 & 0 \\ 12 & 5\end{array}\right),\left(\begin{array}{ll}7 & 0 \\ 6 & 7\end{array}\right)\right.$, $\left(\begin{array}{cc}7 & 0 \\ 18 & 7\end{array}\right), \quad\left(\begin{array}{cc}11 & 0 \\ 6 & 11\end{array}\right), \quad\left(\begin{array}{cc}11 & 0 \\ 18 & 11\end{array}\right), \quad\left(\begin{array}{cc}13 & 0 \\ 0 & 13\end{array}\right), \quad\left(\begin{array}{cc}13 & 0 \\ 12 & 13\end{array}\right), \quad\left(\begin{array}{cc}17 & 0 \\ 0 & 17\end{array}\right)$, $\left.\left(\begin{array}{cc}17 & 0 \\ 12 & 17\end{array}\right),\left(\begin{array}{cc}19 & 0 \\ 6 & 19\end{array}\right),\left(\begin{array}{cc}19 & 0 \\ 18 & 19\end{array}\right),\left(\begin{array}{cc}23 & 0 \\ 6 & 23\end{array}\right),\left(\begin{array}{cc}23 & 0 \\ 18 & 23\end{array}\right)\right\}$. Thus $|L D|=9216$.

Now $L D \subseteq H \leq S L\left(2, \mathbb{Z}_{24}\right)$ and by Corollary 2.4, $\left|S L\left(2, \mathbb{Z}_{24}\right)\right|=$ 9216. So $L D=H=$ $S L\left(2, \mathbb{Z}_{24}\right)$.

Let $n=c b^{-1} a^{-1} b^{-1} c b=\left(\begin{array}{cc}5 & 0 \\ 0 & 1\end{array}\right), p=a b c^{-1} b^{-1} c^{-1} b=\left(\begin{array}{cc}17 & 0 \\ 0 & 13\end{array}\right), q=d c b d a^{-1} b a^{2}=$
$\left(\begin{array}{cc}13 & 0 \\ 0 & 23\end{array}\right), r=c^{-1} a^{-1} b^{-1} d^{2} b=\left(\begin{array}{cc}11 & 0 \\ 0 & 1\end{array}\right), s=b d a^{2} c^{-1} b=\left(\begin{array}{cc}19 & 0 \\ 0 & 1\end{array}\right)$ and $t=$ $b^{-1} a^{-1} c^{-1} b c a=\left(\begin{array}{cc}7 & 0 \\ 0 & 7\end{array}\right)$. Then $o(n)=o(p)=o(q)=o(r)=o(s)=o(t)=2$. Let $P=$ $\langle n, p, q, r, s, t\rangle$. Then $P \leq G$ and $|P|=64$. P consists of the diagonal matrices having diagonal elements in $\mathcal{U}\left(\mathbb{Z}_{24}\right)$. Also $P \cap H=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right),\left(\begin{array}{ll}7 & 0 \\ 0 & 7\end{array}\right),\left(\begin{array}{cc}11 & 0 \\ 0 & 11\end{array}\right)\right.$, $\left.\left(\begin{array}{cc}13 & 0 \\ 0 & 13\end{array}\right),\left(\begin{array}{cc}17 & 0 \\ 0 & 17\end{array}\right),\left(\begin{array}{cc}19 & 0 \\ 0 & 19\end{array}\right),\left(\begin{array}{cc}23 & 0 \\ 0 & 23\end{array}\right)\right\}$ and so $|P H|=73728$. Now $P H \subseteq$ $G \leq G L\left(2, \mathbb{Z}_{24}\right)$ and by Corollary $2.2,\left|G L\left(2, \mathbb{Z}_{24}\right)\right|=73728=|P H|$. Thus $G=G L\left(2, \mathbb{Z}_{24}\right)$.

Lemma 2.14. The elements $a=\left(\begin{array}{cc}1 & 0 \\ 27 & 27\end{array}\right), b=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right), c=\left(\begin{array}{ll}0 & 5 \\ 1 & 0\end{array}\right)$ and $d=$ $\left(\begin{array}{cc}0 & 27 \\ 1 & 0\end{array}\right)$ are Jordan regular units in $M\left(2, \mathbb{Z}_{28}\right)$.

Proof. The proof is clear once we observe that $a=e u+u e, b=e^{\prime} b+b e^{\prime}, c=e^{\prime} c+c e^{\prime}$ and $d=e^{\prime} d+d e^{\prime}$, where $e=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right), e^{\prime}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ are idempotents in $M\left(2, \mathbb{Z}_{28}\right)$ and $u=\left(\begin{array}{cc}15 & 13 \\ 27 & 0\end{array}\right)$ is a unit in $M\left(2, \mathbb{Z}_{28}\right)$.

Theorem 2.15. Presentation of $G L\left(2, \mathbb{Z}_{28}\right)$ is
$G L\left(2, Z_{28}\right)=\langle a, b, c, d| a^{2}, b^{2}, c^{12}, d^{4}, a c^{2} a c^{10}, b c^{2} b c^{10},\left(a d^{2}\right)^{2},\left(b d^{2}\right)^{2}, c^{2} d c^{10} d^{3}, c d^{2} c^{11} d^{2}$, $(c d)^{4}(a d)^{7} a b\left(a c^{11}\right)^{2} d^{3}\left(c^{11} a\right)^{2} b,\left(a c^{11}\right)^{2} b c^{3}(a c)^{3} b^{3} c a c, c d b c^{11} b d, c d a d b a(c b)^{2} a d a c d b a d a c b c^{5} a c d c a b$, $\left.c^{7}(d b)^{2} a(c b)^{2}(d c)^{2} a c, d c^{11} d(c a)^{2} b c b a d b d\left((c a)^{2} b\right)^{2}\right\rangle$,
where $a=\left(\begin{array}{cc}1 & 0 \\ 27 & 27\end{array}\right), b=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right), c=\left(\begin{array}{cc}0 & 5 \\ 1 & 0\end{array}\right)$ and $d=\left(\begin{array}{cc}0 & 27 \\ 1 & 0\end{array}\right)$ are Jordan regular units.

Proof. Let G be a group having the above presentation. Since $a, b, c, d \in G L\left(2, \mathbb{Z}_{28}\right)$, so $G \leq$ $G L\left(2, \mathbb{Z}_{28}\right)$. Let $x=d a b=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $y=d b a c^{-1} a(d b a)^{2} c a=\left(\begin{array}{ll}14 & 13 \\ 15 & 14\end{array}\right)$. Then both $x, y \in G, o(x)=28$ and $o(y)=4$. Let $H=\langle x, y\rangle$. Clearly $H \leq S L\left(2, \mathbb{Z}_{28}\right)$. Let L be the group consisting of all lower triangular matrices in $S L\left(2, \mathbb{Z}_{28}\right)$. By Proposition 2.5, $|L|=336$. Let $u=$ $y x^{-2} y x^{4} y x^{-3} y x^{4}=\left(\begin{array}{cc}27 & 0 \\ 1 & 27\end{array}\right)$ and $v=(y x)^{3}=\left(\begin{array}{cc}13 & 0 \\ 0 & 13\end{array}\right)$. Now $o(u)=28, o(v)=2$ and $u v=v u$. If $H_{1}=\langle u, v\rangle$, then $\left|H_{1}\right|=56$. Let $w=x^{-5} y^{-1} x y x^{-1} y x^{2}=\left(\begin{array}{cc}3 & 0 \\ 2 & 19\end{array}\right)$ and let $H_{2}=\langle w\rangle$. Then $\left|H_{2}\right|=6$. Also $H_{1} \cap H_{2}=1$, so $\left|H_{1} H_{2}\right|=336$. Now $H_{1}, H_{2} \leq L$, hence $H_{1} H_{2}=L \leq H \leq S L\left(2, \mathbb{Z}_{28}\right)$.

Let $K=\langle x\rangle$, then $|K|=28$ and $L \cap K=1$. Thus $|L K|=$ 9408. Now $K L \subseteq$ $H \leq S L\left(2, \mathbb{Z}_{28}\right)$. By Corollary 2.4, $\left|S L\left(2, \mathbb{Z}_{28}\right)\right|=16128$. As $|H|>\frac{1}{2}\left|S L\left(2, \mathbb{Z}_{28}\right)\right|$, so $H=S L\left(2, \mathbb{Z}_{28}\right)$.

Let $p=c d^{-1} c b=\left(\begin{array}{cc}3 & 0 \\ 0 & 1\end{array}\right), q=c^{-3} d=\left(\begin{array}{cc}17 & 0 \\ 0 & 19\end{array}\right), r=c d c^{3} b=\left(\begin{array}{cc}13 & 0 \\ 0 & 23\end{array}\right)$
and $s=d c^{6} b=\left(\begin{array}{cc}15 & 0 \\ 0 & 13\end{array}\right)$. Then $o(p)=o(q)=o(r)=6$, whereas $o(s)=2$. Let $P=$ $\langle p, q, r, s\rangle$. Then $|P|=144 . P$ consists of the diagonal matrices having diagonal elements in $\mathcal{U}\left(\mathbb{Z}_{28}\right)$. Also $P \cap H=\left\{\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}3 & 0 \\ 0 & 19\end{array}\right),\left(\begin{array}{cc}5 & 0 \\ 0 & 17\end{array}\right),\left(\begin{array}{cc}9 & 0 \\ 0 & 25\end{array}\right),\left(\begin{array}{cc}11 & 0 \\ 0 & 23\end{array}\right)\right.$, $\left(\begin{array}{cc}13 & 0 \\ 0 & 13\end{array}\right), \quad\left(\begin{array}{cc}15 & 0 \\ 0 & 15\end{array}\right), \quad\left(\begin{array}{cc}17 & 0 \\ 0 & 5\end{array}\right), \quad\left(\begin{array}{cc}19 & 0 \\ 0 & 3\end{array}\right), \quad\left(\begin{array}{cc}23 & 0 \\ 0 & 11\end{array}\right), \quad\left(\begin{array}{cc}25 & 0 \\ 0 & 9\end{array}\right)$,
$\left.\left(\begin{array}{cc}27 & 0 \\ 0 & 27\end{array}\right)\right\}$. Thus $|P H|=$ 193536. Now $P H \subseteq G \leq G L\left(2, \mathbb{Z}_{28}\right)$ and by Corollary 2.2, $\left|G L\left(2, \mathbb{Z}_{28}\right)\right|=193536=|P H|$. Thus $G=G L\left(2, \mathbb{Z}_{28}\right)$.

Lemma 2.16. The elements $a=\left(\begin{array}{cc}1 & 0 \\ 29 & 29\end{array}\right), b=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right), c=\left(\begin{array}{ll}0 & 7 \\ 1 & 0\end{array}\right)$ and $d=$ $\left(\begin{array}{cc}0 & 29 \\ 1 & 0\end{array}\right)$ are Jordan regular units in $M\left(2, \mathbb{Z}_{30}\right)$.

Proof. The proof is clear once we observe that $a=e u+u e, b=e^{\prime} b+b e^{\prime}, c=e^{\prime} c+c e^{\prime}$ and $d=e^{\prime} d+d e^{\prime}$, where $e=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right), e^{\prime}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ are idempotents in $M\left(2, \mathbb{Z}_{30}\right)$ and $u=\left(\begin{array}{cc}16 & 13 \\ 29 & 1\end{array}\right)$ is a unit in $M\left(2, \mathbb{Z}_{30}\right)$.

Theorem 2.17. Presentation of $G L\left(2, \mathbb{Z}_{30}\right)$ is
$G L\left(2, Z_{30}\right)=\langle a, b, c, d| a^{2}, b^{2}, c^{8}, d^{4},(b c)^{4},(b d)^{2},(c d)^{4}, a c^{2} a c^{6}, b c^{2} b c^{6},\left(a d^{2}\right)^{2},\left(b d^{2}\right)^{2}, c^{2} d c^{6} d^{3}$, $c d^{2} c^{7} d^{2}, a d^{3} b c a c b a d\left(c^{7} a\right)^{2} b, a d a c^{3}(d a)^{2} \operatorname{cacb}(d a)^{2} c a d c a c, d b(a c)^{2} a d c b\left(c(a d)^{2}\right)^{2} b c d(a d)^{2} c^{5} a d a c$, $\left.c^{5} a d^{3} a d b a c a d a c\left(b d c^{3} a\right)^{7}, a b c d a c b c a b a d a c a b\right\rangle$,
where $a=\left(\begin{array}{cc}1 & 0 \\ 29 & 29\end{array}\right), b=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right), c=\left(\begin{array}{cc}0 & 7 \\ 1 & 0\end{array}\right)$ and $d=\left(\begin{array}{cc}0 & 29 \\ 1 & 0\end{array}\right)$ are Jordan regular units.

Proof. Let G be a group having the above presentation. Since $a, b, c, d \in G L\left(2, \mathbb{Z}_{30}\right)$, so $G \leq G L\left(2, \mathbb{Z}_{30}\right)$. Let $x=d a b=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $y=b a=\left(\begin{array}{cc}29 & 29 \\ 1 & 0\end{array}\right)$. Then $x, y \in G$, $o(x)=30$ and $o(y)=3$. Let $H=\langle x, y\rangle$. Clearly $H \leq S L\left(2, \mathbb{Z}_{30}\right)$. Let L be the group consisting of all lower triangular matrices in $S L\left(2, \mathbb{Z}_{30}\right)$. By Proposition 2.5, $|L|=240$. Let $u=\left(x^{-1} y\right)^{2} x^{3} y^{-1} x^{2}=\left(\begin{array}{cc}19 & 0 \\ 7 & 19\end{array}\right)$ and $v=y x^{-3} y^{-1} x^{6} y x^{-2} y x^{7}=\left(\begin{array}{cc}11 & 0 \\ 0 & 11\end{array}\right)$. Then $o(u)=30, o(v)=2$ and $u v=v u$. Let $H_{1}=\langle u, v\rangle$. Then $\left|H_{1}\right|=60$. Let $w=$ $y^{-1} x y^{-1} x^{4} y x^{-2} y x^{2}=\left(\begin{array}{cc}13 & 0 \\ 7 & 7\end{array}\right)$ and let $H_{2}=\langle w\rangle$. Then $\left|H_{2}\right|=12$ and $H_{1} \cap H_{2}=$ $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 10 & 1\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 20 & 1\end{array}\right)\right\}$, so $\left|H_{1} H_{2}\right|=240$. Now $H_{1}, H_{2} \leq L$, hence $H_{1} H_{2}=$ $L \leq H \leq S L\left(2, \mathbb{Z}_{30}\right)$.

Let $r=y x^{-2} y x^{-5} y^{-1} x^{2} y^{-1} x=\left(\begin{array}{cc}1 & 11 \\ 15 & 16\end{array}\right)$ and $s=x^{-4} y x y=\left(\begin{array}{cc}29 & 5 \\ 0 & 29\end{array}\right)$. Then $o(r)=15, o(s)=6$ and $r^{i} \neq s^{j}$ for $0 \leq i \leq 14,0 \leq j \leq 5$. Also $r s^{3}=s r^{11}$. Let $K=\langle r, s\rangle$. The canonical form of K is $\left\{r^{i} s^{j} \mid 0 \leq i \leq 14,0 \leq j \leq 5\right\}$ and $|K|=90$. Also $L \cap K=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}29 & 0 \\ 15 & 29\end{array}\right)\right\}$ and $|L K|=10800$. Both $K, L \leq H$, so $|K L| \leq$
$|H| \leq\left|S L\left(2, \mathbb{Z}_{30}\right)\right|$. By Corollary $2.4,\left|S L\left(2, \mathbb{Z}_{30}\right)\right|=17280$. As $|H|>\frac{1}{2}\left|S L\left(2, \mathbb{Z}_{30}\right)\right|$, therefore $H=S L\left(2, \mathbb{Z}_{30}\right)$.

Let $p=d^{-1} c^{2} b=\left(\begin{array}{cc}7 & 0 \\ 0 & 23\end{array}\right), q=d^{-1} c^{-1} d b=\left(\begin{array}{cc}17 & 0 \\ 0 & 29\end{array}\right), l=d^{2} c^{4}=\left(\begin{array}{cc}11 & 0 \\ 0 & 11\end{array}\right)$ and $m=c^{-1} b=\left(\begin{array}{cc}1 & 0 \\ 0 & 13\end{array}\right)$. Then $o(p)=o(q)=o(m)=4$, whereas $o(l)=2$. Let $P=\langle p, q, l, m\rangle$. Then $|P|=64 . P$ consists of the diagonal matrix having diagonal elements in $\mathcal{U}\left(\mathbb{Z}_{30}\right)$. Also $P \cap H=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}7 & 0 \\ 0 & 13\end{array}\right),\left(\begin{array}{cc}11 & 0 \\ 0 & 11\end{array}\right),\left(\begin{array}{cc}13 & 0 \\ 0 & 7\end{array}\right),\left(\begin{array}{cc}17 & 0 \\ 0 & 23\end{array}\right)\right.$, $\left.\left(\begin{array}{cc}19 & 0 \\ 0 & 19\end{array}\right), \quad\left(\begin{array}{cc}23 & 0 \\ 0 & 17\end{array}\right), \quad\left(\begin{array}{cc}29 & 0 \\ 0 & 29\end{array}\right)\right\}$ and $|P H|=138240$. Now $P H \subseteq G \leq$ $G L\left(2, \mathbb{Z}_{30}\right)$ and by Corollary 2.2, $\left|G L\left(2, \mathbb{Z}_{30}\right)\right|=138240=|P H|$. Thus $G=G L\left(2, \mathbb{Z}_{30}\right)$.

Lemma 2.18. The elements $a=\left(\begin{array}{cc}1 & 0 \\ 31 & 31\end{array}\right), b=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right), c=\left(\begin{array}{ll}0 & 3 \\ 1 & 0\end{array}\right)$ and $d=$ $\left(\begin{array}{cc}0 & 31 \\ 1 & 0\end{array}\right)$ are Jordan regular units in $M\left(2, \mathbb{Z}_{32}\right)$.

Proof. The proof is clear once we observe that $a=e u+u e, b=e^{\prime} b+b e^{\prime}, c=e^{\prime} c+c e^{\prime}$ and $d=e^{\prime} d+d e^{\prime}$, where $e=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right), e^{\prime}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ are idempotents in $M\left(2, \mathbb{Z}_{32}\right)$ and $u=\left(\begin{array}{cc}17 & 15 \\ 31 & 0\end{array}\right)$ is a unit in $M\left(2, \mathbb{Z}_{32}\right)$.

Theorem 2.19. Presentation of $G L\left(2, \mathbb{Z}_{32}\right)$ is
$G L\left(2, Z_{32}\right)=\langle a, b, c, d| a^{2}, b^{2}, c^{16}, d^{4},(a b)^{3},(b d)^{2}, a c^{2} a c^{14}, b c^{2} b c^{14},\left(a d^{2}\right)^{2},\left(b d^{2}\right)^{2}, c d^{2} c^{15} d^{2}$, $c^{2} d c^{14} d^{3}, \quad b(a d)^{3} c^{2} b d^{3} a\left(c^{15} a\right)^{2}, \quad c^{3} b d a(d c b a)^{2} d c(a c)^{2}(d a)^{2}, \quad c b a(d a d c)^{5} b a b(d a)^{2} c a b c a d^{3} a d$, $\left.c(b a c a)^{3} d a c d^{3}(c a)^{2} b c b,(c d)^{5} a c d(c a c)^{3} b c a d c a c b c^{9} a d a\right\rangle$,
where $a=\left(\begin{array}{cc}1 & 0 \\ 31 & 31\end{array}\right), b=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right), c=\left(\begin{array}{cc}0 & 3 \\ 1 & 0\end{array}\right)$ and $d=\left(\begin{array}{cc}0 & 31 \\ 1 & 0\end{array}\right)$ are Jordan regular units.

Proof. Let G be a group having the above presentation. Since $a, b, c, d \in G L\left(2, \mathbb{Z}_{32}\right)$, so $G \leq G L\left(2, \mathbb{Z}_{32}\right)$. Let $x=d a b=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $y=c^{-1} a c^{-1} d a c a b c a d a=\left(\begin{array}{cc}1 & 13 \\ 5 & 2\end{array}\right)$. Then $x, y \in G, o(x)=32$ and $o(y)=24$. Let $H=\langle x, y\rangle$. Clearly $H \leq S L\left(2, \mathbb{Z}_{32}\right)$. Let L be the group consisting of all lower triangular matrices in $S L\left(2, \mathbb{Z}_{32}\right)$. By Proposition 2.5, $|L|=$ 512. Let $u=x^{-4} y x^{-1} y^{3}=\left(\begin{array}{cc}1 & 0 \\ 1 & 1\end{array}\right)$ and let $H_{1}=\langle u\rangle$. Then $\left|H_{1}\right|=32$. Let $v=y x y^{-1} x^{3} y x y^{-1} x^{2}=\left(\begin{array}{cc}3 & 0 \\ 1 & 11\end{array}\right)$ and $w=y x^{-1} y^{-1}\left(x y^{-1}\right)^{2} x^{-1} y x^{2}=\left(\begin{array}{cc}15 & 0 \\ 0 & 15\end{array}\right)$. Then $o(v)=32, o(w)=2$ and $v w=w v$. Thus $H_{2}=\langle v, w\rangle$ is an abelian subgroup of H of order 64. Also $H_{1} \cap H_{2}=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 8 & 1\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 16 & 1\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 24 & 1\end{array}\right)\right\}$. So $\left|H_{1} H_{2}\right|=512$. Now $H_{1}, H_{2} \leq L$ and hence $H_{1} H_{2}=L \leq H \leq S L\left(2, \mathbb{Z}_{32}\right)$.

Let $k=x^{3}=\left(\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right)$ and let $K=\langle k\rangle$. Then $|K|=32$. Also $L \cap K=1$, so $|L K|=$ 16384. Now $L K \subseteq H \leq S L\left(2, \mathbb{Z}_{32}\right)$. By Corollary $2.4,\left|S L\left(2, \mathbb{Z}_{32}\right)\right|=24576$. Since $|H|>$ $\frac{1}{2}\left|S L\left(2, \mathbb{Z}_{32}\right)\right|$, so $H=S L\left(2, \mathbb{Z}_{32}\right)$.

Let $p=d^{-1} c^{3} b c=\left(\begin{array}{cc}3 & 0 \\ 0 & 5\end{array}\right), q=c^{-1} d^{-1} c^{-4}=\left(\begin{array}{cc}7 & 0 \\ 0 & 19\end{array}\right), r=d^{-1} c^{5} b c=\left(\begin{array}{cc}9 & 0 \\ 0 & 15\end{array}\right)$ and $s=c^{-1} d^{-1} c^{-1}\left(b c^{-1}\right)^{2} b=\left(\begin{array}{cc}31 & 0 \\ 0 & 17\end{array}\right)$. Now $o(p)=o(q)=8, o(r)=4$ and $o(s)=2$. Let $P=\langle p, q, r, s\rangle$. Then $|P|=256 . P$ consists of the diagonal matrices having diagonal elements in $\mathcal{U}\left(\mathbb{Z}_{32}\right)$. Also $P \cap H=\left\{\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}3 & 0 \\ 0 & 11\end{array}\right),\left(\begin{array}{cc}5 & 0 \\ 0 & 13\end{array}\right),\left(\begin{array}{cc}7 & 0 \\ 0 & 23\end{array}\right),\left(\begin{array}{cc}9 & 0 \\ 0 & 25\end{array}\right)\right.$, $\left(\begin{array}{cc}11 & 0 \\ 0 & 3\end{array}\right), \quad\left(\begin{array}{cc}13 & 0 \\ 0 & 5\end{array}\right), \quad\left(\begin{array}{cc}15 & 0 \\ 0 & 15\end{array}\right), \quad\left(\begin{array}{cc}17 & 0 \\ 0 & 17\end{array}\right), \quad\left(\begin{array}{cc}19 & 0 \\ 0 & 27\end{array}\right), \quad\left(\begin{array}{cc}21 & 0 \\ 0 & 29\end{array}\right)$, $\left.\left(\begin{array}{cc}23 & 0 \\ 0 & 7\end{array}\right), \quad\left(\begin{array}{cc}25 & 0 \\ 0 & 9\end{array}\right), \quad\left(\begin{array}{cc}27 & 0 \\ 0 & 19\end{array}\right), \quad\left(\begin{array}{cc}29 & 0 \\ 0 & 21\end{array}\right),\left(\begin{array}{cc}31 & 0 \\ 0 & 31\end{array}\right)\right\}$ and so $|P H|=$
393216. Now $P H \subseteq G \leq G L\left(2, Z_{32}\right)$ and by Proposition 2.1, $\left|G L\left(2, \mathbb{Z}_{32}\right)\right|=393216$, which implies that $G=G L\left(2, \mathbb{Z}_{32}\right)$.

Lemma 2.20. The elements $a=\left(\begin{array}{cc}1 & 0 \\ 35 & 35\end{array}\right), b=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right), c=\left(\begin{array}{ll}0 & 5 \\ 1 & 0\end{array}\right)$ and $d=$ $\left(\begin{array}{cc}0 & 35 \\ 1 & 0\end{array}\right)$ are Jordan regular units in $M\left(2, \mathbb{Z}_{36}\right)$.

Proof. The proof is clear once we observe that $a=e u+u e, b=e^{\prime} b+b e^{\prime}, c=e^{\prime} c+c e^{\prime}$ and $d=e^{\prime} d+d e^{\prime}$, where $e=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right), e^{\prime}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ are idempotents in $M\left(2, \mathbb{Z}_{36}\right)$ and $u=\left(\begin{array}{cc}19 & 16 \\ 35 & 1\end{array}\right)$ is a unit in $M\left(2, \mathbb{Z}_{36}\right)$.
Theorem 2.21. Presentation of $G L\left(2, \mathbb{Z}_{36}\right)$ is
$G L\left(2, Z_{36}\right)=\langle a, b, c, d| a^{2}, b^{2}, c^{12}, d^{4},(a b)^{3},(a c)^{24},(b d)^{2}, a c^{2} a c^{10}, b c^{2} b c^{10}, d c^{2} d^{3} c^{10},\left(a d^{2}\right)^{2}$, $\left(b d^{2}\right)^{2}, \quad(a d)^{2} a b c b a c b(d a)^{2} b(c a b c a)^{2}, \quad c^{5} d c a c(b a c a)^{5}(a b c)^{3} a c b a c a b c a b a d, \quad d c d(c a b)^{2} c b c a b c a$, $\left.c d^{2} c^{11} d^{2}, c^{3}(b c)^{2}(a c)^{2} a b c b c d(c a)^{3} d^{3}, a b c d b c^{11} d^{3} a\right\rangle$,
where $a=\left(\begin{array}{cc}1 & 0 \\ 35 & 35\end{array}\right), b=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right), c=\left(\begin{array}{cc}0 & 5 \\ 1 & 0\end{array}\right)$ and $d=\left(\begin{array}{cc}0 & 35 \\ 1 & 0\end{array}\right)$ are Jordan regular units.
Proof. Let G be a group having the above presentation. Since $a, b, c, d \in G L\left(2, \mathbb{Z}_{36}\right)$, so $G \leq$ $G L\left(2, \mathbb{Z}_{36}\right)$. Let $x=d a b=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $y=d^{-1}=\left(\begin{array}{cc}0 & 1 \\ 35 & 0\end{array}\right)$. Then $x, y \in G, o(x)=$ 36 and $o(y)=4$ and $H=\langle x, y\rangle \leq S L\left(2, \mathbb{Z}_{36}\right)$. Let L be the group consisting of all lower triangular matrices in $S L\left(2, \mathbb{Z}_{36}\right)$. By Proposition $2.5,|L|=432$. Let $u=x y^{-1} x=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$. Then $H_{1}=\langle u\rangle$ has order 36. Let $v=x^{7} y^{-1} x^{-5}=\left(\begin{array}{cc}7 & 0 \\ 1 & 31\end{array}\right)$ and $w=\left(y x^{-4} y x^{4}\right)^{2}=$ $\left(\begin{array}{cc}17 & 0 \\ 0 & 17\end{array}\right)$. Now $o(v)=36, o(w)=2$ and $v w=w v$. So $H_{2}=\langle v, w\rangle$, has order 72. Also $H_{1} \cap H_{2}=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 6 & 1\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 12 & 1\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 18 & 1\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 24 & 1\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 30 & 1\end{array}\right)\right\}$ and so $\left|H_{1} H_{2}\right|=432$. Now $H_{1}, H_{2} \leq L$, therefore $H_{1} H_{2}=L \leq H \leq S L\left(2, \mathbb{Z}_{36}\right)$.

Let $l=y^{-1} x^{8}=\left(\begin{array}{cc}0 & 35 \\ 1 & 8\end{array}\right), m=x^{-6} y^{-1} x y x^{-3} y x y x^{-2} y=\left(\begin{array}{cc}13 & 2 \\ 14 & 5\end{array}\right)$ and $K=\langle l, m\rangle$.
Then $|K|=192 . K$ consists of following matrices:

$$
\begin{aligned}
& \pm\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), \pm\left(\begin{array}{cc}
0 & 1 \\
35 & 28
\end{array}\right), \pm\left(\begin{array}{cc}
0 & 17 \\
19 & 8
\end{array}\right), \pm\left(\begin{array}{cc}
1 & 4 \\
4 & 17
\end{array}\right), \pm\left(\begin{array}{cc}
1 & 8 \\
28 & 9
\end{array}\right), \pm\left(\begin{array}{cc}
1 & 12 \\
32 & 25
\end{array}\right), \\
& \pm\left(\begin{array}{cc}
1 & 18 \\
18 & 1
\end{array}\right), \quad \pm\left(\begin{array}{cc}
1 & 22 \\
22 & 17
\end{array}\right), \quad \pm\left(\begin{array}{cc}
1 & 26 \\
10 & 9
\end{array}\right), \quad \pm\left(\begin{array}{cc}
1 & 30 \\
14 & 25
\end{array}\right), \quad \pm\left(\begin{array}{cc}
2 & 3 \\
5 & 26
\end{array}\right) \text {, } \\
& \pm\left(\begin{array}{cc}
2 & 21 \\
23 & 26
\end{array}\right), \quad \pm\left(\begin{array}{cc}
3 & 4 \\
8 & 23
\end{array}\right), \quad \pm\left(\begin{array}{cc}
3 & 14 \\
34 & 15
\end{array}\right), \quad \pm\left(\begin{array}{cc}
3 & 22 \\
26 & 23
\end{array}\right), \quad \pm\left(\begin{array}{cc}
3 & 32 \\
16 & 15
\end{array}\right) \text {, } \\
& \pm\left(\begin{array}{cc}
4 & 1 \\
15 & 4
\end{array}\right), \quad \pm\left(\begin{array}{cc}
4 & 11 \\
5 & 32
\end{array}\right), \quad \pm\left(\begin{array}{cc}
4 & 13 \\
35 & 24
\end{array}\right), \quad \pm\left(\begin{array}{cc}
4 & 17 \\
3 & 4
\end{array}\right), \quad \pm\left(\begin{array}{cc}
4 & 19 \\
33 & 4
\end{array}\right), \\
& \pm\left(\begin{array}{cc}
4 & 29 \\
23 & 32
\end{array}\right), \quad \pm\left(\begin{array}{cc}
4 & 31 \\
17 & 24
\end{array}\right), \quad \pm\left(\begin{array}{cc}
4 & 35 \\
21 & 4
\end{array}\right), \quad \pm\left(\begin{array}{cc}
5 & 8 \\
12 & 5
\end{array}\right), \quad \pm\left(\begin{array}{cc}
5 & 10 \\
6 & 5
\end{array}\right) \text {, } \\
& \pm\left(\begin{array}{cc}
5 & 14 \\
10 & 21
\end{array}\right), \quad \pm\left(\begin{array}{cc}
5 & 16 \\
4 & 13
\end{array}\right), \quad \pm\left(\begin{array}{cc}
5 & 26 \\
30 & 5
\end{array}\right), \quad \pm\left(\begin{array}{cc}
5 & 28 \\
24 & 5
\end{array}\right), \quad \pm\left(\begin{array}{cc}
5 & 32 \\
28 & 21
\end{array}\right), \\
& \pm\left(\begin{array}{cc}
5 & 34 \\
22 & 13
\end{array}\right), \quad \pm\left(\begin{array}{cc}
6 & 5 \\
19 & 22
\end{array}\right), \quad \pm\left(\begin{array}{cc}
6 & 13 \\
11 & 30
\end{array}\right), \quad \pm\left(\begin{array}{cc}
6 & 23 \\
1 & 22
\end{array}\right), \quad \pm\left(\begin{array}{cc}
6 & 31 \\
29 & 30
\end{array}\right) \text {, } \\
& \pm\left(\begin{array}{cc}
7 & 6 \\
22 & 19
\end{array}\right), \quad \pm\left(\begin{array}{cc}
7 & 24 \\
4 & 19
\end{array}\right), \quad \pm\left(\begin{array}{cc}
8 & 1 \\
35 & 0
\end{array}\right), \quad \pm\left(\begin{array}{cc}
8 & 5 \\
23 & 28
\end{array}\right), \quad \pm\left(\begin{array}{cc}
8 & 9 \\
27 & 8
\end{array}\right) \text {, } \\
& \pm\left(\begin{array}{cc}
8 & 15 \\
13 & 20
\end{array}\right), \quad \pm\left(\begin{array}{cc}
8 & 19 \\
17 & 0
\end{array}\right), \quad \pm\left(\begin{array}{cc}
8 & 23 \\
5 & 28
\end{array}\right), \quad \pm\left(\begin{array}{cc}
8 & 27 \\
9 & 8
\end{array}\right), \quad \pm\left(\begin{array}{cc}
8 & 33 \\
31 & 20
\end{array}\right) \text {, } \\
& \pm\left(\begin{array}{cc}
9 & 8 \\
28 & 17
\end{array}\right), \quad \pm\left(\begin{array}{cc}
9 & 10 \\
26 & 1
\end{array}\right), \quad \pm\left(\begin{array}{cc}
9 & 26 \\
10 & 17
\end{array}\right), \quad \pm\left(\begin{array}{cc}
9 & 28 \\
8 & 1
\end{array}\right), \quad \pm\left(\begin{array}{cc}
10 & 3 \\
5 & 34
\end{array}\right) \text {, } \\
& \pm\left(\begin{array}{cc}
10 & 9 \\
27 & 10
\end{array}\right), \quad \pm\left(\begin{array}{cc}
10 & 13 \\
31 & 26
\end{array}\right), \quad \pm\left(\begin{array}{cc}
10 & 17 \\
19 & 18
\end{array}\right), \quad \pm\left(\begin{array}{cc}
10 & 21 \\
23 & 34
\end{array}\right), \quad \pm\left(\begin{array}{cc}
10 & 27 \\
9 & 10
\end{array}\right), \\
& \pm\left(\begin{array}{ll}
10 & 31 \\
13 & 26
\end{array}\right), \quad \pm\left(\begin{array}{cc}
10 & 35 \\
1 & 18
\end{array}\right), \quad \pm\left(\begin{array}{cc}
11 & 12 \\
32 & 35
\end{array}\right), \quad \pm\left(\begin{array}{cc}
11 & 30 \\
14 & 35
\end{array}\right), \quad \pm\left(\begin{array}{cc}
12 & 5 \\
7 & 24
\end{array}\right), \\
& \pm\left(\begin{array}{ll}
12 & 13 \\
35 & 32
\end{array}\right), \quad \pm\left(\begin{array}{cc}
12 & 23 \\
25 & 24
\end{array}\right), \quad \pm\left(\begin{array}{cc}
12 & 31 \\
17 & 32
\end{array}\right), \quad \pm\left(\begin{array}{cc}
13 & 2 \\
14 & 5
\end{array}\right), \quad \pm\left(\begin{array}{cc}
13 & 4 \\
8 & 33
\end{array}\right), \\
& \pm\left(\begin{array}{cc}
13 & 8 \\
12 & 13
\end{array}\right), \quad \pm\left(\begin{array}{cc}
13 & 10 \\
6 & 13
\end{array}\right), \quad \pm\left(\begin{array}{cc}
13 & 20 \\
32 & 5
\end{array}\right), \quad \pm\left(\begin{array}{cc}
13 & 22 \\
26 & 33
\end{array}\right), \quad \pm\left(\begin{array}{ll}
13 & 26 \\
30 & 13
\end{array}\right), \\
& \pm\left(\begin{array}{cc}
13 & 28 \\
24 & 13
\end{array}\right), \quad \pm\left(\begin{array}{cc}
14 & 1 \\
15 & 14
\end{array}\right), \quad \pm\left(\begin{array}{cc}
14 & 5 \\
19 & 30
\end{array}\right), \quad \pm\left(\begin{array}{cc}
14 & 7 \\
13 & 22
\end{array}\right), \quad \pm\left(\begin{array}{cc}
14 & 17 \\
3 & 14
\end{array}\right), \\
& \pm\left(\begin{array}{cc}
14 & 19 \\
33 & 14
\end{array}\right), \quad \pm\left(\begin{array}{cc}
14 & 23 \\
1 & 30
\end{array}\right), \quad \pm\left(\begin{array}{cc}
14 & 25 \\
31 & 22
\end{array}\right), \quad \pm\left(\begin{array}{cc}
14 & 35 \\
21 & 14
\end{array}\right), \quad \pm\left(\begin{array}{cc}
15 & 4 \\
20 & 3
\end{array}\right), \\
& \pm\left(\begin{array}{ll}
15 & 14 \\
10 & 31
\end{array}\right), \quad \pm\left(\begin{array}{cc}
15 & 22 \\
2 & 3
\end{array}\right), \quad \pm\left(\begin{array}{cc}
15 & 32 \\
28 & 31
\end{array}\right), \quad \pm\left(\begin{array}{cc}
16 & 15 \\
13 & 28
\end{array}\right), \quad \pm\left(\begin{array}{ll}
16 & 33 \\
31 & 28
\end{array}\right), \\
& \pm\left(\begin{array}{cc}
17 & 0 \\
0 & 17
\end{array}\right), \quad \pm\left(\begin{array}{cc}
17 & 6 \\
22 & 29
\end{array}\right), \quad \pm\left(\begin{array}{cc}
17 & 10 \\
26 & 9
\end{array}\right), \quad \pm\left(\begin{array}{cc}
17 & 14 \\
14 & 1
\end{array}\right), \quad \pm\left(\begin{array}{cc}
17 & 18 \\
18 & 17
\end{array}\right), \\
& \pm\left(\begin{array}{cc}
17 & 24 \\
4 & 29
\end{array}\right) \pm\left(\begin{array}{cc}
17 & 28 \\
8 & 9
\end{array}\right), \quad \pm\left(\begin{array}{cc}
17 & 32 \\
32 & 1
\end{array}\right), \quad \pm\left(\begin{array}{cc}
18 & 1 \\
35 & 10
\end{array}\right), \text { and } \pm\left(\begin{array}{cc}
18 & 17 \\
19 & 26
\end{array}\right) \text {. }
\end{aligned}
$$

Also $L \cap K=\left\{ \pm\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right), \pm\left(\begin{array}{cc}17 & 0 \\ 0 & 17\end{array}\right)\right\}$ and so $|L K|=20736$. Now $L K \subseteq H \leq$ $S L\left(2, \mathbb{Z}_{36}\right)$ and by Corollary $2.4,\left|S L\left(2, \mathbb{Z}_{36}\right)\right|=31104$. Thus $|H|>\frac{1}{2}\left|S L\left(2, \mathbb{Z}_{36}\right)\right|$, which implies that $H=S L\left(2, \mathbb{Z}_{36}\right)$.

$$
\text { Let } p=d^{-1} c^{3}=\left(\begin{array}{cc}
5 & 0 \\
0 & 11
\end{array}\right), q=c^{-1} d^{-1} c^{-2}=\left(\begin{array}{cc}
7 & 0 \\
0 & 13
\end{array}\right), r=c^{-1} d^{-1} c^{-1} d c b=
$$

$\left(\begin{array}{cc}31 & 0 \\ 0 & 23\end{array}\right)$ and $s=d^{-1} c^{6} b=\left(\begin{array}{cc}17 & 0 \\ 0 & 19\end{array}\right)$. Then $o(p)=o(q)=o(r)=6$ and $o(s)=2$. Hence $P=\langle p, q, r, s\rangle$ has order 144. P consists of the diagonal matrices having diagonal elements in $\mathcal{U}\left(\mathbb{Z}_{36}\right)$. Also $P \cap H=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}5 & 0 \\ 0 & 29\end{array}\right), \quad\left(\begin{array}{cc}7 & 0 \\ 0 & 31\end{array}\right), \quad\left(\begin{array}{cc}11 & 0 \\ 0 & 23\end{array}\right)\right.$, $\left(\begin{array}{cc}13 & 0 \\ 0 & 25\end{array}\right),\left(\begin{array}{cc}17 & 0 \\ 0 & 17\end{array}\right),\left(\begin{array}{cc}19 & 0 \\ 0 & 19\end{array}\right),\left(\begin{array}{cc}23 & 0 \\ 0 & 11\end{array}\right),\left(\begin{array}{cc}25 & 0 \\ 0 & 13\end{array}\right),\left(\begin{array}{cc}29 & 0 \\ 0 & 5\end{array}\right)$, $\left.\left(\begin{array}{cc}31 & 0 \\ 0 & 7\end{array}\right), \quad\left(\begin{array}{cc}35 & 0 \\ 0 & 35\end{array}\right)\right\}$ and so $|P H|=373248$. Now $P H \subseteq G \leq G L\left(2, \mathbb{Z}_{36}\right)$ and by Corollary 2.2, $\left|G L\left(2, \mathbb{Z}_{36}\right)\right|=373248$. Therefore $G=G L\left(2, \mathbb{Z}_{36}\right)$.
Lemma 2.22. The elements $a=\left(\begin{array}{cc}1 & 0 \\ 37 & 37\end{array}\right), b=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)$ and $c=\left(\begin{array}{ll}0 & 3 \\ 1 & 0\end{array}\right)$ are Jordan regular units in $M\left(2, \mathbb{Z}_{38}\right)$.

Proof. The proof is clear once we observe that $a=e u+u e, b=e^{\prime} b+b e^{\prime}$ and $c=e^{\prime} c+c e^{\prime}$, where $e=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right), e^{\prime}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ are idempotents in $M\left(2, \mathbb{Z}_{38}\right)$ and $u=\left(\begin{array}{cc}20 & 17 \\ 37 & 1\end{array}\right)$ is a unit in $M\left(2, \mathbb{Z}_{38}\right)$.
Theorem 2.23. Presentation of $G L\left(2, \mathbb{Z}_{38}\right)$ is
$G L\left(2, Z_{38}\right)=\langle a, \quad b, c| a^{2}, b^{2}, c^{36}, \quad c^{2} a c^{34} a, c^{2} b c^{34} b, \quad a(b c a b c)^{2} a c^{29} b a c b a(c b)^{2}$, $\left.(c b)^{6} c a b(c b)^{2} c^{3}(a c)^{2} b(c a)^{3} b c a,(a b c)^{4}(a c b)^{4} a b c a c^{27} b,(b c a)^{2}\left(c(b c a)^{2}\right)^{11} c b c^{11} a b c b(c b a)^{2} c(b c)^{3} a\right\rangle$, where $a=\left(\begin{array}{cc}1 & 0 \\ 37 & 37\end{array}\right), b=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)$ and $c=\left(\begin{array}{ll}0 & 3 \\ 1 & 0\end{array}\right)$ are Jordan regular units.
Proof. Let G be a group having the above presentation. Since $a, b, c \in G L\left(2, \mathbb{Z}_{38}\right)$, so $G \leq$ $G L\left(2, \mathbb{Z}_{38}\right)$. Let $x=(c b)^{8} c a b=\left(\begin{array}{cc}1 & 1 \\ 0 & 1\end{array}\right)$ and $y=(c b)^{8} c=\left(\begin{array}{cc}0 & 37 \\ 1 & 0\end{array}\right)$. Then $x, y \in G$, $o(x)=38$ and $o(y)=4$. Thus $H=\langle x, y\rangle \leq S L\left(2, \mathbb{Z}_{38}\right)$. Let L be the group consisting of all lower triangular matrices in $S L\left(2, \mathbb{Z}_{38}\right)$. By Proposition $2.5,|L|=684$. Let $H_{1}=\langle u\rangle$, where $u=x y x=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$. Then $\left|H_{1}\right|=38$. Let $v=x^{3} y x^{13}=\left(\begin{array}{cc}3 & 0 \\ 1 & 13\end{array}\right)$ and $H_{2}=\langle v\rangle$. Then $\left|H_{2}\right|=18$. Also $H_{1} \cap H_{2}=1$, so $\left|H_{1} H_{2}\right|=684$. Now $H_{1}, H_{2} \leq L$ and hence $H_{1} H_{2}=L \leq$ $H \leq S L\left(2, \mathbb{Z}_{38}\right)$.

Let $k=x^{3}=\left(\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right)$ and $K=\langle k\rangle$. Then $|K|=38$. Also $L \cap K=1$. Thus $|L K|=$ 25992. Now $L K \subseteq H \leq S L\left(2, \mathbb{Z}_{38}\right)$ and by Corollary $2.4,\left|S L\left(2, \mathbb{Z}_{38}\right)\right|=41040$. But then $|H|>\frac{1}{2}\left|S L\left(2, \mathbb{Z}_{38}\right)\right|$, which implies that $H=S L\left(2, \mathbb{Z}_{38}\right)$.

Let $p=b c=\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)$. Then $o(p)=18$ and $p \notin H$. If $P=\langle p\rangle$, then $|P H|=738720$ as $P \cap H=1$. Now $P H \subseteq G \leq G L\left(2, \mathbb{Z}_{38}\right)$ and by Corollary $2.3,\left|G L\left(2, \mathbb{Z}_{38}\right)\right|=738720$, which implies that $G=G L\left(2, \mathbb{Z}_{38}\right)$.
Lemma 2.24. The elements $a=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right), b=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), c=\left(\begin{array}{ll}0 & 3 \\ 1 & 0\end{array}\right)$ and $d=\left(\begin{array}{ll}26 & 1 \\ 33 & 0\end{array}\right)$ are Jordan regular units in $M\left(2, \mathbb{Z}_{40}\right)$.
Proof. The proof is clear once we observe that $a=e_{1} u_{1}+u_{1} e_{1}, b=e_{2} u_{2}+u_{2} e_{2}, c=e_{2} u_{3}+u_{3} e_{2}$, $d=e_{2} u_{4}+u_{4} e_{2}$ where $e_{1}=\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right), e_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ are idempotents in $M\left(2, \mathbb{Z}_{40}\right)$ and $u_{1}=\left(\begin{array}{cc}1 & 39 \\ 1 & 0\end{array}\right), u_{2}=b, u_{3}=c, u_{4}=\left(\begin{array}{ll}13 & 1 \\ 33 & 0\end{array}\right)$ are units in $M\left(2, \mathbb{Z}_{40}\right)$.

Theorem 2.25. Presentation of $G L\left(2, \mathbb{Z}_{40}\right)$ is
$G L\left(2, Z_{40}\right)=\langle a, b, c, d| a^{40}, b^{2}, c^{8}, d^{24},(c d)^{2}, c^{2} a c^{6} a^{39}, c^{2} b c^{6} b, c^{2} d c^{6} d^{23},(b d)^{2}(c b a)^{2}, c d^{4} c^{7} d^{4}$, $a^{3} b c a^{39} c^{7} b, \quad\left(a^{3} b c^{2} d^{2}\right)^{60}, a^{3} b d(a b d)^{4} a d^{23} b, \quad b a^{3} b c^{7} a^{39} c, \quad a^{21} b a^{19} b a^{38} c^{7} d^{23}(b a)^{2} c^{7} d^{23}, \quad(a b c d)^{30}$, $a^{37} d^{22} a^{3} d^{2} b a^{39} c b c d^{23} a d^{23}, b a^{2} b a^{39} d^{2} a^{3} c a c d^{21} a^{38} d c^{7} a c^{7},\left(b d^{2}\right)^{2} c^{7} a^{36} c a^{4}, a^{36} d b a c d^{23} a^{39} d^{23} b c^{7} d$, $d^{23} a^{2} d^{23} a c^{3} a^{2} b a c d^{23} a^{2} d^{15} b, a^{13} c b a b c^{7}, \quad(d a)^{2} d^{2} b c a b a^{2} c^{7} a^{39} c\left(d^{23} a\right)^{2} c, \quad\left(d a^{39} d^{23} b a b\right)^{5},(b c d)^{24}$, $b d b a^{38} c b d a b d^{23} a d a^{38} d b a^{39} c^{7} b a^{39} d, \quad b a^{39} d^{2} a c d^{23} a^{39} b a c^{7} a^{39} d^{23} a d^{23} b d b\left(a^{39} c^{7} a d^{23}\right)^{2}, \quad(a b c)^{4}$, $b d^{6} a^{39} d^{2} b d^{23} a d, a b d^{7} a^{39} d^{23} a^{39} d b a d^{21}, b d^{3} b c a^{39} c d^{11} a^{25}, a^{2} b d^{7} b d^{23} a^{39} c^{7} d^{23} a^{39} c d^{23},(a b d)^{8}(a c d)^{4}$, $a^{39} c^{7} b a^{39} d b a^{39} c a b d a^{38} d^{2} a c^{7} a b c, \quad a^{10} b c d^{10} a^{15} c b a^{38} d^{22} a\left(b c^{7}\right)^{2}, \quad d a^{39} b a c d^{23} a d a d^{23} c^{5} a^{10} d^{14} b$, $b a^{39} d^{23} a^{39} d b c d a^{2} d^{23}(a b)^{2} c^{7} a^{39} d^{23}\left(a d^{23}\right)^{3},\left(a^{2} d^{2}\right)^{20}, a c^{7} a d^{23} a d a^{36} c b a b\left(a^{39} b d^{2}\right)^{2} d^{20}, d c a^{7} c b d b a$, $d^{22} b a b d^{23} b a^{39} c(b a)^{2} c a d b a^{39}, \quad\left(a^{38} c\right)^{2}(d a)^{2} c b a d^{23} a b d^{23} c, \quad a^{36} d^{21} c a^{3} d c^{7} b d^{22} b a d a d^{22} a^{39} d$, $d^{3} a^{2} d^{2} b c a^{37} c d^{3} a^{3} d^{23} a^{39} c^{3} b c d^{23} a, \quad d a^{37} d^{2} b a^{2} d^{23} b a b d^{23} a c^{7} a b d^{23} c, \quad d^{23} a c^{7} b a d a^{39} c b a^{7}\left(d^{2} a^{2}\right)^{2}$, $c a d b a^{39}(d c)^{2} a b d b a^{38} c^{5} a^{39} d^{2} b d^{22}, \quad b d^{7} c b d^{23} a d^{23} a^{38} d a^{39} c, \quad a d a^{2} d^{2} b d b c b d b a^{2} b c a^{39} d^{22} a^{38} d^{23} b$, $b c a d b a^{37} c a b d^{2} b a b a^{39} c^{5} d a^{39} b c, a^{38}(d c a)^{2} d^{22} a^{39}(d a)^{2} b c^{7} b a b a^{39} c a^{39} b, b d b a^{2} b c b d a^{2} d^{2} a b d^{22} b a^{39} c a^{2}$, $\left.b c a b a^{39} d b a c^{7} d^{23} a^{34} b a^{37}, d(a b d)^{2}(c a d)^{5}(c d b)^{20} d c^{7} d^{23} a^{39}, a b c d a^{3} b c d^{3} a^{5} b c d^{5} a^{7} b c d^{7} c d a^{39} c d b a b\right\rangle$, where $a=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right), b=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), c=\left(\begin{array}{ll}0 & 3 \\ 1 & 0\end{array}\right)$ and $d=\left(\begin{array}{ll}26 & 1 \\ 33 & 0\end{array}\right)$ are Jordan regular units.

Proof. Let G be a group having the above presentation. Since $a, b, c, d \in G L\left(2, \mathbb{Z}_{40}\right)$, so $G \leq$ $G L\left(2, \mathbb{Z}_{40}\right)$. Let $x=b a b=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $y=a b a^{-1} b a=\left(\begin{array}{cc}0 & 39 \\ 1 & 0\end{array}\right)$. Then $x, y \in G, o(x)=$ 40 and $o(y)=4$. Thus $H=\langle x, y\rangle \leq S L\left(2, \mathbb{Z}_{40}\right)$. Let L be the group consisting of all lower triangular matrices in $S L\left(2, \mathbb{Z}_{40}\right)$. By Proposition $2.5,|L|=640$. Let $H_{1}=\langle u\rangle$, where $u=x y x=$ $\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$. Then $\left|H_{1}\right|=40$. Now $y^{-1} x^{-2} y x^{6} y x^{-6} y x^{2}=\left(\begin{array}{cc}3 & 0 \\ 0 & 27\end{array}\right), x y x^{6} y x^{3} y x^{-2} y x^{2}=$ $\left(\begin{array}{cc}7 & 0 \\ 0 & 23\end{array}\right),\left(y x^{4} y x^{8}\right)^{2}=\left(\begin{array}{cc}9 & 0 \\ 0 & 9\end{array}\right), y x^{-3}\left(y x^{2}\right)^{2} y x^{-3} y x^{7}=\left(\begin{array}{cc}11 & 0 \\ 0 & 11\end{array}\right), x^{-2} y x^{6} y x^{-6} y x^{2} y$ $=\left(\begin{array}{cc}13 & 0 \\ 0 & 37\end{array}\right), \quad x^{2} y^{-1} x^{-2} y x^{3} y x^{6} y x=\left(\begin{array}{cc}17 & 0 \\ 0 & 33\end{array}\right), \quad y x^{2} y x^{-9} y x^{2} y x^{11}=\left(\begin{array}{cc}19 & 0 \\ 0 & 19\end{array}\right)$, $y^{-1} x^{2} y x^{-9} y x^{2} y x^{11}=\left(\begin{array}{cc}21 & 0 \\ 0 & 21\end{array}\right), x^{2} y x^{-2} y x^{3} y x^{6} y x=\left(\begin{array}{cc}23 & 0 \\ 0 & 7\end{array}\right), x^{-2} y^{-1} x^{6} y x^{-6} y x^{2} y=$ $\left(\begin{array}{cc}27 & 0 \\ 0 & 3\end{array}\right), y^{-1} x^{-3}\left(y x^{2}\right)^{2} y x^{-3} y x^{7}=\left(\begin{array}{cc}29 & 0 \\ 0 & 29\end{array}\right), \quad y^{-1} x^{4} y x^{8} y x^{4} y x^{8}=\left(\begin{array}{cc}31 & 0 \\ 0 & 31\end{array}\right)$, $x y^{-1} x^{6} y x^{3} y x^{-2} y x^{2}=\left(\begin{array}{cc}33 & 0 \\ 0 & 17\end{array}\right), y x^{-2} y x^{6} y x^{-6} y x^{2}=\left(\begin{array}{cc}37 & 0 \\ 0 & 13\end{array}\right), y^{2}=\left(\begin{array}{cc}39 & 0 \\ 0 & 39\end{array}\right)$
and $y^{4}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. All these matrices form a subgroup H_{2} in $S L\left(2, \mathbb{Z}_{40}\right)$ and $\left|H_{2}\right|=16$. Then $\left|H_{1} H_{2}\right|=640$ as $H_{1} \cap H_{2}=1$. Now $H_{1}, H_{2} \leq L$, so $H_{1} H_{2}=L \leq H \leq S L\left(2, \mathbb{Z}_{40}\right)$.

Let $k=x^{3}=\left(\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right)$ and $K=\langle k\rangle$. Then $|K|=40$. Clearly $L \cap K=1$ and so $|L K|=25600$. Now $L K \subseteq H \leq S L\left(2, Z_{40}\right)$ and by Corollary $2.4,\left|S L\left(2, \mathbb{Z}_{40}\right)\right|=46080$, so $|H|>\frac{1}{2}\left|S L\left(2, \mathbb{Z}_{40}\right)\right|$, which implies that $H=S L\left(2, Z_{40}\right)$.

Let $r=c a^{-2} b d c=\left(\begin{array}{cc}3 & 0 \\ 0 & 19\end{array}\right), s=d c^{-1} a b\left(a^{-1} b\right)^{2}=\left(\begin{array}{cc}13 & 0 \\ 0 & 33\end{array}\right), t=a^{-1} b a b a^{-1} c^{-1} b c$ $=\left(\begin{array}{cc}27 & 0 \\ 0 & 37\end{array}\right), l=c^{-2} a^{-2} b d=\left(\begin{array}{cc}11 & 0 \\ 0 & 27\end{array}\right), m=b a^{-1} d^{-1} b d b a b a^{2}=\left(\begin{array}{cc}19 & 0 \\ 0 & 19\end{array}\right)$ and $n=c^{-1} a^{-2} b d b=\left(\begin{array}{cc}1 & 0 \\ 0 & 11\end{array}\right)$. Now $o(r)=o(s)=o(t)=o(l)=4$, whereas $o(m)=o(n)=$ 2. So $P=\langle r, s, t, l, m, n\rangle$ has order 256. P consists of the diagonal matrices having diagonal elements in $\mathcal{U}\left(\mathbb{Z}_{40}\right)$. Thus $|P H|=737280$ as $P \cap H=H_{2}$. Now $P H \subseteq G \leq G L\left(2, \mathbb{Z}_{40}\right)$ and
by Corollary $2.2,\left|G L\left(2, \mathbb{Z}_{40}\right)\right|=737280$. Thus $G=G L\left(2, \mathbb{Z}_{40}\right)$.
Lemma 2.26. The elements $a=\left(\begin{array}{cc}1 & 0 \\ 41 & 41\end{array}\right), b=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right), c=\left(\begin{array}{cc}0 & 11 \\ 1 & 0\end{array}\right)$ and $d=$ $\left(\begin{array}{cc}0 & 41 \\ 1 & 0\end{array}\right)$ are Jordan regular units in $M\left(2, \mathbb{Z}_{42}\right)$.
Proof. The proof is clear once we observe that $a=e u+u e, b=e^{\prime} b+b e^{\prime}, c=e^{\prime} c+c e^{\prime}$, $d=e^{\prime} d+d e^{\prime}$, where $e=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right), e^{\prime}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ are idempotents in $M\left(2, \mathbb{Z}_{42}\right)$ and $u=\left(\begin{array}{cc}22 & 19 \\ 41 & 1\end{array}\right)$ is a unit in $M\left(2, \mathbb{Z}_{42}\right)$.

Theorem 2.27. Presentation of $G L\left(2, \mathbb{Z}_{42}\right)$ is
$G L\left(2, Z_{42}\right)=\langle a, b, c, d| a^{2}, b^{2}, c^{12}, d^{4},(b d)^{2}, a c^{2} a c^{10}, b c^{2} b c^{10}, d c^{2} d^{3} c^{10},\left(a d^{2}\right)^{2},\left(b d^{2}\right)^{2}, c d^{2} c^{11} d^{2}$, $c a b c a c b a c d b(a d c)^{3} d c^{3} a b c b a d a b c(d a)^{2} b,(a c)^{2}\left(b(a d)^{2}\right)^{2} c a c b c^{11} d^{3} a(c b a)^{2} d a c, d a b c^{9} a b d c a b(a c)^{2}$, $\left.a b c^{11} a d^{3} a(c b)^{3} c a b a d a b d(c a)^{2} c d, c^{5}(a d)^{10} d c a d a, b c d b c^{11} d^{3}\right\rangle$,
where $a=\left(\begin{array}{cc}1 & 0 \\ 41 & 41\end{array}\right), b=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right), c=\left(\begin{array}{cc}0 & 11 \\ 1 & 0\end{array}\right)$ and $d=\left(\begin{array}{cc}0 & 41 \\ 1 & 0\end{array}\right)$ are Jordan regular units.
Proof. Let G be a group having the above presentation. Since $a, b, c, d \in G L\left(2, \mathbb{Z}_{42}\right)$, so $G \leq$ $G L\left(2, \mathbb{Z}_{42}\right)$. Let $x=d a b=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $y=d^{-1}=\left(\begin{array}{cc}0 & 1 \\ 41 & 0\end{array}\right)$. Then $x, y \in G, o(x)=42$ and $o(y)=4$. So $H=\langle x, y\rangle \leq S L\left(2, \mathbb{Z}_{42}\right)$. Let L be the group consisting of all lower triangular matrices in $S L\left(2, \mathbb{Z}_{42}\right)$. By Proposition $2.5,|L|=504$. Let $H_{1}=\langle u\rangle$, where $u=$ $x y^{-1} x=\left(\begin{array}{cc}1 & 0 \\ 1 & 1\end{array}\right)$. Then $\left|H_{1}\right|=42$. Let $v=x^{-1} y x^{2} y x^{-2} y x y x^{-3} y x^{3} y x=\left(\begin{array}{cc}5 & 0 \\ 1 & 17\end{array}\right)$ and $w=y x^{3} y x^{-4} y x^{3} y x^{10}=\left(\begin{array}{cc}13 & 0 \\ 0 & 13\end{array}\right)$. Now $o(v)=6, o(w)=2$ and $v w=w v$. Hence $H_{2}=\langle v, w\rangle$ has 12 elements. Also $H_{1} \cap H_{2}=1$, therefore $\left|H_{1} H_{2}\right|=504$. Now $H_{1}, H_{2} \leq L$ and so $H_{1} H_{2}=L \leq H \leq S L\left(2, \mathbb{Z}_{42}\right)$.

Let D be the derived subgroup of $S L\left(2, \mathbb{Z}_{42}\right)$. Then $D=\langle l, m, n\rangle$, where $l=x^{4} y^{-1} x^{-2} y x^{3} y x^{-2}$ $=\left(\begin{array}{ll}11 & 29 \\ 35 & 16\end{array}\right), m=x y x^{4} y x^{-2} y=\left(\begin{array}{ll}7 & 3 \\ 9 & 4\end{array}\right), n=x^{-6} y^{-1} x y x^{-2} y x^{6} y x=\left(\begin{array}{cc}41 & 19 \\ 19 & 16\end{array}\right)$ and $|D|=$ 8064. Since $l, m, n \in H$, so $D \leq H$. Also $L \cap D=\left\{\left(\begin{array}{cc}1 & 0 \\ i & 1\end{array}\right),\left(\begin{array}{cc}5 & 0 \\ i & 17\end{array}\right)\right.$, $\left(\begin{array}{cc}11 & 0 \\ i & 23\end{array}\right), \quad\left(\begin{array}{cc}13 & 0 \\ i & 13\end{array}\right), \quad\left(\begin{array}{cc}17 & 0 \\ i & 5\end{array}\right), \quad\left(\begin{array}{cc}19 & 0 \\ i & 31\end{array}\right), \quad\left(\begin{array}{cc}23 & 0 \\ i & 11\end{array}\right), \quad\left(\begin{array}{cc}25 & 0 \\ i & 37\end{array}\right)$, $\left.\left(\begin{array}{cc}29 & 0 \\ i & 29\end{array}\right),\left(\begin{array}{cc}31 & 0 \\ i & 19\end{array}\right),\left(\begin{array}{cc}37 & 0 \\ i & 25\end{array}\right),\left(\begin{array}{cc}41 & 0 \\ i & 41\end{array}\right)\right\}$. Here $i \in\{0,6,12,18,24,30,36\}$. Thus $|L D|=48384$. Now $L D \subseteq H \leq S L\left(2, \mathbb{Z}_{42}\right)$ and by Corollary $2.4,\left|S L\left(2, \mathbb{Z}_{42}\right)\right|=48384$. Thus $H=S L\left(2, \mathbb{Z}_{42}\right)$.

$$
\text { Let } p=c d^{-1} c^{2}=\left(\begin{array}{cc}
5 & 0 \\
0 & 11
\end{array}\right), q=c^{-4} d b=\left(\begin{array}{cc}
17 & 0 \\
0 & 25
\end{array}\right), r=c d^{-1} c d c^{2}=\left(\begin{array}{cc}
13 & 0 \\
0 & 31
\end{array}\right)
$$

and $s=c^{-2} d b=\left(\begin{array}{cc}19 & 0 \\ 0 & 23\end{array}\right)$. Now $o(p)=o(q)=o(r)=o(s)=6$. So $P=\langle p, q, r, s\rangle$ has order 144. P consists of the diagonal matrices having diagonal elements in $\mathcal{U}\left(\mathbb{Z}_{42}\right)$. Also $P \cap H=$ $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}5 & 0 \\ 0 & 17\end{array}\right), \quad\left(\begin{array}{cc}11 & 0 \\ 0 & 23\end{array}\right), \quad\left(\begin{array}{cc}13 & 0 \\ 0 & 13\end{array}\right), \quad\left(\begin{array}{cc}17 & 0 \\ 0 & 5\end{array}\right),\left(\begin{array}{cc}19 & 0 \\ 0 & 31\end{array}\right)\right.$,
$\left.\left(\begin{array}{cc}23 & 0 \\ 0 & 11\end{array}\right),\left(\begin{array}{cc}25 & 0 \\ 0 & 37\end{array}\right),\left(\begin{array}{cc}29 & 0 \\ 0 & 29\end{array}\right),\left(\begin{array}{cc}31 & 0 \\ 0 & 19\end{array}\right),\left(\begin{array}{cc}37 & 0 \\ 0 & 25\end{array}\right),\left(\begin{array}{cc}41 & 0 \\ 0 & 41\end{array}\right)\right\}$. Thus $|P H|=580608$. Now $P H \subseteq G \leq G L\left(2, \mathbb{Z}_{42}\right)$ and by Corollary $2.2,\left|G L\left(2, \mathbb{Z}_{42}\right)\right|=$ 580608, which implies that $G=G L\left(2, \mathbb{Z}_{42}\right)$.

References

[1] A. Karrass, D. Solitar and W. Magnus, Combinatorial Group Theory, Dover Publications, INC (1975).
[2] H. S. M. Coxeter and W. O. J. Mosser, Generators and Relations for Discrete Groups, Springer-Verlag (1980).
[3] P. Kumari, M. Sahai and R. K. Sharma, Jordan regular units in rings and group rings, Ukrains'kyi Matematychnyi Zhurnal, to appear.
[4] M. Sahai, P. Kumari and R.K. Sharma, Jordan regular generators of general linear groups, J. Indian Math Soc. 85, 422-433 (2018).
[5] R. K. Sharma, P. Yadav and P. Kanwar, Lie regular generators of general linear groups, Comm. Algebra 40, 1304-1315 (2012).
[6] P. Kanwar, R. K. Sharma and P. Yadav, Lie regular generators of general linear groups II, Int. Elect. J. Alg. 13, 91-108 (2013).

Author information

Meena Sahai, Department of Mathematics and Astronomy, Lucknow University, Lucknow, 226007, India.
E-mail: meena_sahai@hotmail.com
Parvesh Kumari, GPGCW, Rohtak, Haryana 124001, India.
E-mail: parvesh.21iitd@gmail.com
R. K. Sharma, Department of Mathematics, Indian Institute of Technology Delhi, New Delhi, 110016, India.

E-mail: rksharmaiitd@gmail.com
Received: May 7, 2020.
Accepted: November 20, 2020.

