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Abstract This paper introduce and investigate the notion of F'/ — M —principally injective and
FI-semi-injective (fully invariant-semi injective) modules. Clearly F'I—semi-injective module
does not satisfy the (C) condition, so we provide several sufficient conditions under which
FI-semi-injective modules will be continuous. Apart from this we obtain more results re-
lated with uniform, weakly co-Hopfian and square free modules. We also prove that F'I—semi-
injective module satisfies summand intersection property(SIP), summand sum property(SSP).
Furthermore, we characterize several rings in terms of F'/—semi-injective modules.

Introduction: In recent years structure of principally injective rings, principally injective
modules and their various properties have been extensively studied by many authors ([8], [10]).
Recall that a ring R is principally injective, if every homomorphism from a principal right ideal
to R is given by a left multiplication by an element of R. A module M is called principally
injective if every homomorphism f : aR — M, a € R, extends to R; for example every injec-
tive modules are principally injective, and every right R-module is principally injective if and
only if R is (von Neumann) regular ring. Sanh et.al.[11], extend this notion to module and gen-
eralize the idea of principal injectivity to M —principal injectivity for a given right R—module
M. Recall that a right R—module N is called M —principally injective, if every homomorphism
from an M—-cyclic submodule s(M) of M to N can be extended to a homomorphism from
M to N. A module M is called semi injective if it is M —principally injective (see [9], [11],
[14]). The modules we are interested in are those where this is required only for fully invari-
ant M—cyclic submodule s(M) of M, which extend the notion of semi-injective modules to
FI-semi-injective modules. In a similar fashion motivated by the above defined notions, we
introduce the concepts of F'I — M —principally injective ('] —semi-injective) module as a proper
generalizations of M —principally injective (semi-injective) module. Thus the class of F'I-semi-
injective modules is bigger than the class of semi injective modules, as we have the following
implication:

Injective = Quasi-injective = Semi-injective = F'I—-semi-injective module.

In this paper, we show that the structure of F'I — M —principally injective module is closed
under the direct summand, finite direct sum and finite direct product. Further it is observed
that the direct sum of F'/—semi-injective module need not be F'I—semi-injective, it holds only if
modules in direct sum are reletively F'I — M;—principally injective. In Proposition 1.17, we show
that F'J-semi-injective module satisfies conditions (C,) and (C3) but not (Cy). This raised the
following question: Do there exist F'/—semi-injective modules which are continuous, or when
will FI-semi-injective module satisfy (C;) ? We provided several sufficient conditions un-
der which F'I-semi-injective modules to be continuous. Further, we relate F'/—semi-injective
module with uniform, weakly co-Hopfian and square free modules. We also prove that F'T—semi-
injective module satisfiy summand intersection property(SIP), summand sum property(SSP) and
characterize several rings as pp—ring, semi simple Artinian ring and von-Neumann regular ring
in terms of F'/-semi-injective modules.

Throughout this paper, by a ring R we always mean an associative ring with identity and
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every R-module M is an unitary right R-module. Let M be a right R—module, the notation
N < M mean that N is a submodule of M. A submodule N of an R-module M is called es-
sential submodule if N n L # 0, for each nonzero submodule L of M. A nonzero module M
is called uniform if every nonzero submodule of M is essential in M, for example M = Zy is
a uniform module. A module N is called M —generated, if for some index set I, there exists an
epimorphism M (I) — N. If index set [ is finite, then N is called finitely M-generated. In
particular, a submodule N of M is called an M-cyclic submodule of M if N = s(M) for some
s € End(Mg) or if there exist an epimorphism from M to N, equivalently it is isomorphic to
M /L for some submodule L of M. A submodule K of M is called fully invariant if s(K) ¢ K
for all s € End(Mg). Clearly 0 and M are fully invariant submodule of M. Many distinguished
submodules of a module are fully invariant for example, the socle, the Jacobson radical, the sin-
gular submodule, the torsion submodule etc.. Observe that the fully invariant submodule of Ry
are exactly the two sided ideals of R and the (S — R)—submodules of (S — R)-bimodule M are
fully invariant submodule of M, where S = End(Mpg). Furthermore, the fully invariant submod-
ules of an injective module are quasi-injective and fully invariant submodules of quasi-injective
modules are again quasi-injective. An R—module M is called duo if all of its submodules are
fully invariant, for example, if M is a simple R—module, then M is a duo but M & M is not duo.
A ring R is called a duo ring if Ry is a duo module. Clearly commutative rings and division
rings are example of duo rings but any matrix ring of order 2 over such a ring is not a duo ring.
A module M is called self generator if it generates all its submodule.

For usual definitions and standerd notations, we refer [1], [7] and [13].

1 F'I - M -Principal Injectivity

Let M be a right R—module. A right R—module N is called fully invariant — M —principally
injective (in short, F'I — M —principally injective), if every homomorphism from a fully invariant
M-cyclic submodule s(M) of M to N can be extended to a homomorphism from M to N.
%
0—s(M)— M
flovyg
N

Equivalently every homomorphism f from fully invariant M-cyclic submodule s(M) of M
to NV, factors in the form f = g o 4, for some homomorphism g from M to N and inclusion map 4
from s(M) to M. N is called F'I-principally injective if it is ' — R—principally injective. For
example we can consider Z be the ring of integers and N = Z4 and M = Z¢ are additive abelian
groups, which forms a module over Z, then we can easily verify that N is F'I — M —principally
injective and M is F'I — N —principally injective but Z is not F'I — Z—principally injective module
over Z.

We begin with some basic properties of fully invariant M -cyclic submodules as,

Lemma 1.1. Let M be a right R—module.

(1) For any fully invariant M -cyclic submodule N of M, there exists a maximal submodule K
of M such that Kn N = 0.

(2) Any sum and intersection of fully invariant M-cyclic submodules of M is again a fully
invariant M-cyclic submodule of M, (in fact the fully invariant M-cyclic submodules form a
complete modular sublattice of the lattice of submodules of M ).

(3) Transitivity : If K is fully invariant N-cyclic submodule of N and N is fully invariant M-
cyclic submodule of M, then K is fully invariant M-cyclic submodules of M.

(4) If M = ®;c; M; be a direct sum of fully invariant M —cyclic submodule M;(i € I) and N be
a fully invariant M-cyclic submodule of M, then N = @;c;(M; " N) = @;cym;(N), where ; is
the i-th projection of M.

Proof: Proof is routine.
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In the following results we have to prove that F'I — M —principally injective modules are
closed under finite direct sums, direct product and summands.

Proposition 1.2. Two modules N\ and N, are FI — M—principally injective if and only if
N @ N, is F'I — M —principally injective.

Proof: Let N be the fully invariant M -cyclic submodules of M and ¢ : N — M be the
inclusion map, then for any homomorphism f : N — N; @ N,. Since Ny and N, are F'I —
M —principally injective, there exist g; from M to N; and g, from M to N, such that gjoi = w0 f
and g, o i = m o f, where 7| and 7, be the natural epimorphism from N; @ N, to N; and N,
respectively. Take g = i} o g; + i o g, from M to N; @ N,, where 7, and i, be the inclusion map
from N; and N, to N; @ N, respectively. Thus it is clear that g extend f from M to Ny @ N;.
Converse is obvious.

Corollary 1.3. @1 N, is F1-M —principally injective, if each component N; is F' 1-M —principally
injective for finite index set I.

Corollary 1.4. [1,.; N; is F'I-M—principally injective, if each component N; is F'[—-M —principally
injective for finite index set I.

Proposition 1.5. If fully invariant M-cyclic submodule N of M is F I — M—principally injective,
then it is a direct summand of M.

Proof: Assume that N is F'I — M —principally injective and f : N — M be a monomor-
phism. Then by F'I — M —principally injectivity of N, there exist split homomorphism g : M —
N such that go f = Iy. Thus we have M = f(N) @ ker(g), hence f(N) is a direct summand of
M, since N is fully invariant so f(N) € N is a direct summand of M.

Proposition 1.6. Let K be a fully invariant M -cyclic submodule of M and N be F'I—M —principally
injective. Then N is both (FI — K)- and FI — M| K -principally injective.

Proof: Assume that L is fully invariant K-cyclic submodule of K, then by Lemma 1.1(344),
L is fully invariant M-cyclic submodule of M. Take f : L — N is a homomorphism, by
FI — M—principally injectivity of N, there exists a homomorphism g : M — N. Then the
restriction map g|x : K — N extend f. Thus N is F'T — K—principally injective.
Now for the second part assume that f' : K'/K —> N be a homomorphism, where K' is fully
invariant M -cyclic submodule of M containing K. By FI — M—principally injectivity of N,
f'om: K" — N can be extended to a homomorphism ¢’ : M — N, where 7 : K’ — K'|K
be a natural epimorphism. Now we define ¢ : M/K — N by ¢"(m + K) = ¢'(m)Vm € M,
which is well defined. Then it is clear to see that ¢' extend f’ ie N is F'I — M /K —principally
injective.

Proposition 1.7. If an R—module M is F' I — N—-principally injective, then every direct summand
My of M is F'I — Ny—principally injective, where Ny is fully invariant N—cyclic submodule of
N.

Proof: Let N, be fully invariant N —cyclic submodule of N, then by Lemma 1.1(iii), IV, is
fully invariant N—cyclic submodule of N. Take i : N, — N; and i; : Ny — N are injective
map, then ¢; o ¢ : N — N is injective. Let f : N — M) be any homomorphism, then
ip0 f: Ny — M is a homomorphism, where i, : M; — M be the injective homomorphism.
Now by F'I — N-principally injectivity of M, there exists a homomorphism g : N — M such
that goijoi=ipo f =>mogoijoi=moiyo f, where 7 : M — M, be a natural projection,
which gives hoi = Iy, o f, where h =mogoid;: Nj — M. Thus hoi = f which shows that
M is FI — N—principally injective.

Corollary 1.8. Let Ny be a direct summand of N and M be a direct summand of M. If N is
FI — M—principally injective, then Ny is F'I — M, —principally injective.

Proposition 1.9. Let M be a duo and N be right R—modules. Then N is FI — M—principally
injective if and only if Homp(M,N) o g = {f € Homg(M,N)|ker(g) < ker(f)}, for g €
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Proof: Assume that N is F'I — M —principally injective and f € Hompg(M, N) such that

ker(g) € ker(f). Then using the Factor Theorem [1], there exist a unique homomorphism
h:g(M) — N such that f = hog. Now by FI — M-principally injectivity of N, there
exist homomorphism f’ : M — N such that f’ oi = h, where i is the inclusion map from
g(M) to M. Hence f = f'oiog = f' og, which implies that f € Homr(M,N) o g, i.e.
{f € Homgr(M,N)|ker(g) € ker(f)} € Homgr(M,N) o g. Other part clearly holds, i.e.
Homp(M,N)og<{feHomr(M,N)|ker(g) € ker(f)}. Thus we have Homgr(M,N) o g =
{f e Homr(M, N)|ker(g) € ker(f)}.
Conversely, let Homgp(M,N) o g = {f € Homr(M,N)|ker(g) € ker(f)}. Let g(M) be
fully invariant M—cyclic submodule of M and h : g(M) — N be a homomorphism for
g € End(Mg), then ho g € Homgr(M,N) and ker(g) S ker(h o g). So by assumption we
have ho g = f o g for some f € Homg(M, N), which shows that N is FI — M—principally
injective.

Proposition 1.10. Let M be a duo module and N be an right R—module. Then M is N —projective
and every submodule of N is F'I- M —principally injective if and only if N is F'I - M —principally
injective and every M —cyclic submodule of M is N —projective.

Proof: Assume that, M is N—projective and every submodule N’ € N is F'T— M —principally
injective. Let s(M) be an M —cyclic submodule of M for any s € End(Mg), as M is duo, so
s(M) be fully invariant M —cyclic submodule of M and f : s(M) — N’ be a homomorphism.
Then by F'I — M —principally injectivity of N’, there exists a homomorphism g : M — N’, such
that goi = f, where i : s(M) — M be the inclusion map. Now the N —projectivity of M implies
that g can be lifted to a homomorphism ~ : M — N, such that 7 o h = g, where 7 is an epimor-
phism from N to N’. thus the composition map hoi: s(M) — N lifted f: s(M) — N', i.e.
s(M) is N—projective. Since N is submodule of itself so N is F'T — M —principally injective.
Conversely, N is F'I — M —principally injective and every fully invariant M —cyclic submodule
s(M) of M is N—projective. Let f : s(M) — N’, then by N—projectivity of s(M ), there exists
homomorphism g : s(M) — N, such that 7 o g = f, where 7 is an epimorphism from N to N’.
Now FI — M—principally injectivity of N implies that g can be extended to a homomorphism
h: M — N, such that h o4 = g. Thus it is clear that the composition map 7o h : M — N’ is
an extension of f, i.e. every submodule of NV is F'I — M —principally injective. Since M is fully
invariant M —cyclic submodule of itself, so M is N—projective by assumption.

A ring R is called right pp—ring, if each of its principal right ideal is projective. In the
following proposition we have extended the exercise of Wisbauer [13].

Proposition 1.11. The following statements are equivalent for a projective module M :

(1) Every homomorphic image of any F I- M -principally injective module is F I- M -principally
injective;

(i1) Every homomorphic image of any M —injective module is F'I — M —principally injective;
(i13) Every homomorphic image of any injective R—-module is F'I — M —principally injective.
(iv) Every fully invariant M —cyclic submodule of M is projective.

Proof: (i) = (ii) = (#ii) are obvious.

(#13) = (iv) let M be fully invariant M —cyclic submodule of M. Now we claim that M is pro-
jective. By [3] (Chapter 1, Proposition 5.1), M is projective if and only if for any two R—module
N and Ny, where N is injective and 77 : N — N is an epimorphism, then any homomorphism
f : M; — Ny can be lifted to a homomorphism from AM; — N. By assumption (i) i.e.
homomorphic image N; of an injective module N is F'I — M —principally injective, therefore
homomorphism f can be extended to a homomorphism g : M — N. Then clearly g|p, lifts f,
and hence M is projective.

(iv) = (i) Let My be fully invariant M —cyclic submodule of M and N be FT — M —principally
injective module. Take N; to be submodule of N and 7 : N — N/Nj be the natural epimor-
phism. By assumption (iv) i.e. fully invariant M —cyclic submodule M of M is projective, then
any homomorphism f : M; — N /N, can be lifted to a homomorphism g : M; — N. Since N
is F'I — M —principally injective, therefore g can be extended to a homomorphism ~ : M — N.
Clearly homomorphism 7w o h : M — N/Nj extends f, i.e. N/N; is FI - M—principally
injective module.
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Corollary 1.12. (Wisbauer, Exercises 39.17(4)[13])The following statements are equivalent for
aring R:

(i) R is right pp-ring;

(i1) Every factor module of a principally injective module is principally injective;

(i13) Every factor module of an injective module is principally injective.

An R—module M is called FI-semi injective, if it is F'I — M —principally injective. A ring
R is right F'I—self-p-injective, if Ry is F'1 — R—principally injective. For example Z4 and Zg are
FI-semi injective module over Z. Every simple, semi simple, quasi-injective, semi-injective
modules, F'I-self-p-injective ring and their direct summands are all F'/-semi injective module.

Corollary 1.13. Any direct summand of FI-semi injective module is again F'I—-semi injective.

Corollary 1.14. Let M be a FI-semi injective module and f,g € S = End(MEg), then f € Sq if
and only if ker(g) € ker(f).

Proof: Prove is obvious in the light of Proposition 1.9.

Two modules M; and M, are called relatively (or mutually)F'I—principally injective, if M,
is F'I — M,—principally injective and M, is F'I — M, —principally injective.

Proposition 1.15. Two modules M, and M, are relatively F'I—principally injective, if My @ M,
is F'I-semi injective.

Proof: It is enough to prove that M, is F'I — M,—principally injective. Let K be fully
invariant M,—cyclic submodule of M, with inclusion map i : K — M, and ¢ : K — M,
be a homomorphism. Define a homomorphism g : K — M; @ M, by g(a) = (¢(a),a) for
all a € K. Then by F'I-semi injectivity of M @ M, and Proposition 1.6, we get M @ M, is
FI — Mj,—principally injective. Then g can be extended to f from M, to M; @ M>, so 7 o f
is a homomorphism extending ¢, where ; is a natural epimorphism from M; @ M, to M, i.e.
g=foi=mog=(mof)oi, hence ¢ = 1 o4, where ¢ = m o f. Therefore M; is
FI — M,—principally injective.

Corollary 1.16. If @,y M; is F'I—-semi injective for finite index set I, then M, is F'1-M;—principally
injective for all distinct i, j € I.

Proof: Applying induction on Proposition 1.15.

From [7], recall that the following conditions for an R—module M :
(C1) Every submodule of M is essential in a direct summand of M.
(C,) Every submodule isomorphic to a direct summand of M, is a direct summand of M.
(C3) Direct sum of two direct summands, whose intersection is zero is a direct summand of M.

An R—module M is called extending (or CS) if and only if every closed submodule is a direct
summand of M or it satisfies (C), continuous if it satisfies (C} ) with (C;) and quasi-continuous
if it satisfies (C) with (C5).

Proposition 1.17. Any F I-semi injective module satisfies the condition (C>) and (C3).

Proof: For (C,) let M is a direct summand of M and M; ~ M, then we have to show that
M, c® M. Using Corollary 1.13, M, is FI — M —principally injective, since M; ~ M, then M,
is also F'I — M —principally injective. Then by Proposition 1.5, M is a direct summand of M.
(C3) is obtained from (Proposition 2.2, [7]).

Remark 1.18. Any F'7-semi injective module does not satisfy the conditions (C}). Therefore
by above proposition we have every extending, F'/—semi injective modules are continuous.

Corollary 1.19. Any directly finite, extending, FI—-semi injective module have the cancellation
property.
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Proof: Proof is done with the help of above remark and (Corollary 3.25, [7]).

Thus we have the following implication as:
Injective = Quasi-injective = Semi-injective = F'I—semi-injective module #+ Continuous.

Now we investigate the conditions under which F'I-semi-injective modules are continuous:

Proposition 1.20. An indecomposable FI-semi injective module is continuous if and only if M
is uniform.

Proof: Suppose M is continuous, it satisfies (C;) and (C) conditions. Let M = M,; &
M,, by (Cy) condition every submodule is essential in a direct summand of M. Since M is
indecomposable, implies that, either M| = 0 or M, = 0. Thus every submodule is essential in M,
so M is uniform. Conversely, assume that F'/—semi injective module is uniform. Since uniform
module has (C}) condition, then by Proposition 1.17, M satisfies the (C,) condition. Therefore
M is continuous.

Proposition 1.21. If M = @,.; M; is duo FI1-semi injective module, where M;s are uniform, then
M is continuous.

Proof: Since M is F'I-semi injective module, it satisfies the (C,) condition. So it is enough
to prove that M is uniform or M satisfies the (C}) condition. By Lemma 1.1(iv), every submod-
ule N of M can be written as N = @,;(M;NN), where (M;NN) # 0. Since each M; is uniform
and (M; N N) c M;, so (M; n N) is essential in M; i.e. M satisfies the (C}) condition. Thus
we see that IV is essential in @,.; M; = M i.e. M is uniform, so the proof follows by Proposition
1.20.

Proposition 1.22. Let M be FI-semi injective module. If S = End(Mg) is local, then for any
non zero fully invariant M —cyclic submodules My and M, of M, My n M, # 0.

Proof: Let 0 + s(M) = My and 0 + ¢(M) = M, for s,t € S and My n M, = 0, then we have
the well defined map f : (s+¢)(M) — M as (s+t)(m) — s(m). By FI-semi injectivity,
there exists g € S such that g|(,.i)(m) = fie. forany m e M, f(s+1t)(m) = g(s+t)(m).
It follows that s = g(s +t). Then(1 — g) o s = got. Since M; and M, are fully invariant, we
have (1 -g)os(M) c My and go t(M) c M. It follows that (1 —g)os=0and got =0 as
M n M, =0. Since S is local, g or (1 - g) is invertible and this would imply that s =0 or ¢t =0
a contradiction.

Proposition 1.23. If M is duo F'I-semi injective which is self generator module with local en-
domorphism ring. Then M is uniform, hence it is continuous.

Proof: For any 0 # m € M, mR contains a non zero M —cyclic submodule. Since M is self
generator, using Proposition 1.22, M is uniform and we know that uniform F'/-semi injective
module is continuous by Proposition 1.20.

Proposition 1.24. Let a module M is projective, semi perfect, duo and self generator. If M is
FI-semi injective module, then it is continuous.

Proof: By Proposition 1.17, F'I-semi injective module satisfies (C,) condition, so it is
enough to prove that M satisfies (C) condition. Since M is projective and semi perfect, then by
Theorem 4.44, [7] and 42.3, [13], M can be written as M = @;c; M;, where M;/Rad(M;) are
simple for all 7 € I. Since each M; is projective and semi perfect, so Rad(M;) <« M;, and hence
M, is indecomposable. Also by Corollary 1.13, every direct summand of F'/—-semi injective
module is FT—semi injective, then by (19.9, [13]), End(M;) are local ring for all ¢ € I. Since
every direct summand of duo and self generator module is again a duo and self generator, then
by proposition 1.23, each M; is uniform. Now using Proposition 1.21, we get M is continuous.

Proposition 1.25. (Theorem 3.5, [10]) If a semi perfect ring R is right duo right principally
injective, then Ry is continuous.
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Proof: Prove is same as above proposition, taking Mz = Rpy.

In the next theorem we provide a characterization of semi simple rings in term of F'/—-semi
injective module.

Theorem 1.26. Following statements are equivalent for a commutative ring R:
(i) The direct sum of any two FI—semi injective module is F1—semi injective;
(i1) Every FI-semi injective module is injective;

(i13) R is semi simple Artinian.

Proof: (i) = (ii) let M be FI-semi injective module and E(M) be its injective hull.
Suppose N = M@ FE (M) is FI-semi injective by assumption (7). Then N is F'I— N —principally
injective, hence M is F'I — N—principally injective by Corollary 1.13. Consider the inclusion
mapi: M — E(M)and j: E(M) — M & E(M), by Proposition 1.5, the map j o 7 splits
and hence M is direct summand of E/(M ). Therefore M is injective.

(i1) = (4i1) assume every F'I—semi injective module is injective. Since every simple module is
FI-semi injective, it is injective and therefore R is V —ring and using the commutativity, thus R
is a von-Neumann regular ring. Furthermore, every completely reducible R—module is /'/-semi
injective, it is injective. By [5], it follows that R is Noetherian ring if the countable direct sum
of injective hulls of simple module is injective. Thus R being Noetherian and regular is semi
simple Artinian.

(i13) = (¢) it is obvious.

Corollary 1.27. Following statements are equivalent for a commutative ring R:
(i) The direct sum of any two semi injective module is semi injective;

(i1) Every semi injective module is injective;

(#i1) R is semi simple Artinian.

Note : Commutativity of the ring is used to prove only (i) = (74i) in the above Proposition
and Corollary.

Proposition 1.28. Let M be duo quasi projective, FI—semi injective module, then the following
statements are equivalent for any s € End(MEg):

(¢) Im(s) is FI — M —principally injective;

(i) Im(s) is a direct summand of M ;

(#14) Im(s) is M —projective.

Proof: (i) = (i) follows from proposition 1.5. (ii) = (iii) follows from the projectivity
of M. (ui) = (1) since the short exact sequence 0 — ker(s) — M — Im(s) — 0 splits,
so Im(s) is isomorphic to direct summand of M. Therefore it is a direct summand by (C,)
condition. Hence it is F'1 — M —principally injective.

Remark 1.29. If every fully invariant M —cyclic submodule of M is a direct summand of M,
then M is FI-semi injective module. Hence for any R—module M and S = End(Mg), if S is
von-Neumann regular, then M is F'1—semi injective.

A right R—-module M is called direct projective, if for any direct summand N of M, every
epimorphism f : M — N splits (i.e. ker(f) is a direct summand of M). Now combining
Proposition 1.5 and (37.7,[13]), we can state the following proposition;

Proposition 1.30. Let S = End(MRg) be the endomorphism ring of a module M ;

(2) If S is von-Neumann regular, then every fully invariant M —cyclic submodule of M is FI —
M —principally injective.

(i1) If M is direct projective and every fully invariant M—-cyclic submodule of M is FI —
M —principally injective, then S is von-Neumann regular.

Proof: It is obvious, based on the definitions.
A module M is said to have the summand intersection (summand sum) property, if the in-

tersection (sum) of two direct summand is again a direct summand. In short denoted by SIP
(SSP)..
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Proposition 1.31. Every duo F'I-semi injective module has the SIP and SSP.

Proof: Let N and L are two direct summands of M. Take M = N & Ny = L & L;. Since

every direct summands of M is an M —cyclic submodule of M, so by using Lemma 1.1(iv),
L can be written as L n (N & N;) = (LN N) & (L n Ny). Hence M can be expressed as
M= (LnN)® (LnN;)® L, which shows that N n L is a direct summand of M, i.e. M has
the summand intersection property.
Now consider N+ L=N+(LnN)® (LnN;)=(N+(LnN))®(LnN;)=N@a (LnNy).
By Proposition 1.17, FI-semi injective module satisfies (C5) condition, so N & (L n Ny) is a
direct summand of M. Thus N + L is a direct summand of M, and hence M has the summand
sum property.

A module M is called Hopfian (resp., co-Hopfian), if every surjective (resp., injective) en-
domorphism of M is an automorphism. For example every Noetherian module is Hopfian and
every Artinian module is co-Hopfian. A module M is called weakly co-Hopfian if any injective
endomorphism f of M is essential in M i.e. f(M) is essential in M. A module is called directly
finite, if it has no proper isomorphic direct summand.

Lemma 1.32. (Proposition 1.25, [7]) An R—module M is directly finite if and only if fog =1
implies that go f =1 for any f,g € End(MRg).

In the following Propositions we relate F'I—semi injective module with weakly co-Hopfian,
uniform and square free modules.

Proposition 1.33. An F'I-semi injective module M is co-Hopfian if and only if it is directly
finite.

Proof: Let f be any injective endomorphism of M and I, : M — M be the identity
map on M. Then by FI-semi injectivity of M, there exists an endomorphism g of M such
that g o f = I;. Then by Lemma 1.32, we get f o g = I);, which implies that f is surjective
homomorphism. therefore M is co-Hopfian. Converse is obvious.

Corollary 1.34. If M be FI—-semi injective and Hopfian module, then it is co-Hopfian.

Proof: It is well know that Hopfian and co-Hopfian module are directly finite. Then the proof
can be obtained with the help of Proposition 1.33.

Corollary 1.35. If M is an indecomposable FI—semi injective module, then it is co-Hopfian.

Proof: Since every indecomposable module is directly finite, then the result follows from
Proposition 1.33.

Proposition 1.36. Every uniform module is weakly co-Hopfian. But the converse need not be
true.

Proof: Consider f : M —> M be any injective endomorphism, then f(M) is M—cyclic
submodule of M and hence essential in M because M is uniform. Therefore M is weakly
co-Hopfian. For the converse we consider QP = {a/p™|la € Z,n > 0} and p is prime, then
M = @p1QP, 1 is the set of prime natural numbers. Then we can easily verify that M is weakly
co-Hopfian but not uniform.

Note : Every co-Hopfian module is weakly co-Hopfian but converse need not be true, for ex-
ample Zy, is weakly co-Hopfian but not co-Hopfian.

Proposition 1.37. An F'I-semi injective module is weakly co-Hopfian if and only if it is co-
Hopfian.

Proof: Consider f : M — M be any injective endomorphism. Since M is F'I—-semi injec-
tive module, then the short exact sequence 0 — M — M splits, i.e. f(M) is a direct summand
of M. Also M is weakly co-Hopfian, then f(M) is essential in M, which gives f(M) = M i.e.
f is an epimorphism, and hence M is co-Hopfian. Converse is clearly true.

Recall from [7], A module M is said to be square free, if it does not contain a direct sum of
two isomorphic submodules.
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Proposition 1.38. Every square free module is uniform.

Proof: We claim that any monomorphism f : M — M is essential. Consider f(M)n N =
0 for some submodule N of M, since f is monomorphism so f(N) is isomorphic to N and
Ff(N)n N = 0. Since M is square free, which gives that N = 0. Hence f(M) is essential
submodule of M and so M is uniform.

Proposition 1.39. Every square free module is weakly co-Hopfian.
Proof: Proof follows from above Proposition 1.38 and Proposition 1.36.
Corollary 1.40. [f M is square free FI—-semi injective module. Then M is co-Hopfian.
Proof: Proof follows from above Propositions 1.39 and Proposition 1.37.

Proposition 1.41. Let M be a FI-semi injective module and N be a fully invariant M —cyclic
submodule which is essential in M. Then N is weakly co-Hopfian if and only if M is weakly
co-Hopfian.

Proof: Proof is similar to Proposition 2.6 [9].
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