
Palestine Journal of Mathematics

Vol. 11(1)(2022) , 191–202 © Palestine Polytechnic University-PPU 2022

CHROMATICALLY UNIQUE 6-BRIDGE GRAPHS
θ(r, r, r, s, t, u)

Syed Ahtsham Ul Haq Bokhary, Shehr Bano

Communicated by Kinkar Das

MSC 2010 Classifications: Primary 05C22,05C12.

Keywords and phrases: Chromatic polynomial, Chromatically unique graph, 6-bridge graph.

The authors like to thank the referee(s) for the useful suggestions.

Abstract Let G and H be two graph and P (G, x) and P (H,x) are their chromatic polyno-
mial, respectively. The two graphs G and H are said to be chromatic equivalent denoted by
G ∼ H if P (G, x) = P (H,x). A graph G is called chromatically unique graph if no other graph
has the chromatic polynomial as the graph G. In this paper, the chromatic uniqueness of a new
family of 6-bridge graph θ(r, r, r, s, t, u), where 2 ≤ r ≤ s ≤ t ≤ u is investigated.

1 Introduction

The graphs considered are finite and undirected graphs. For such a graphG, denote the chromatic
polynomial of G. Let G and H be two graph and P (G, x) and P (H,x) are their chromatic
polynomial, respectively. The two graphs G and H are said to be chromatic equivalent denoted
by G ∼ H if P (G, x) = P (H,x). A graph G is called chromatically unique graph if no other
graph has the chromatic polynomial as the graph G. For each integer k ≥ 2, let θk be the
multigraph with two vertices and k edges. Any subdivision of θk is called the multi-bridge graph
or k bridge graph. We denote θ(y1, y2, y3, . . . , yk), where y1, y2, . . . , yk ∈ N and y1 ≤ y2 ≤
· · · ≤ yk be a graph obtained by replacing the edges θk by paths of length y1, y2, y3, . . . , yk,
respectively, and the girth of a graph is the length of its shortest cycle.

2 Chromaticity Of k-bridge graphs

The study on the chromaticity of k-bridge graph have been studied by many researchers. A
2-bridge graph is simply a cycle graph is χ-unique. A 3-bridge graph of the form θ(1, y1, y2)
is called the theta graph. Chao and Whitehead [2] proved that every theta graph is χ-unique.
Loerinc [17] extended the above result to all 3-bridge graphs are χ-unique. Chen et al. [22] and
Xu et al. [3] solved the chromaticity of 4 bridge graph. The study on the chromaticity of 5-bridge
graph has been done by the several researchers in [1, 9, 11, 12, 13, 18]. A very useful survey of
the result about the chromatic uniqueness and chromatically equivalent graphs can be found in
[4]. Chromaticity for k-bridge hypergraphs was studied by Bokhary et al. in [19, 20, 21]

Theorem 2.1. (Xu et al. [22] ) For k ≥ 2, the graph θk(h) is χ unique.

Theorem 2.2. (Dong et al. [5] ) If 2 ≤ y1 ≤ y2 ≤ · · · ≤ yk < y1 + y2 where k ≥ 3, then the
graph θ(y1, y2, . . . , yk) is χ-unique.

Theorem 2.3. (Dong et al. [5] ) For any k, y1, y2, ..., yk ∈ N ,

Q(θ(y1, y2, ..., yk), x) = x

k∏
i=1

(xyi − 1)−
k∏

i=1

(xyi − x) (2.1)

Theorem 2.4. (Dong et al. [5] ) For any graph G and H,
1. If H ∼ G, then Q(H,x)= Q(G,x).
2. If Q(H,x)= Q(G,x) and v(H)= v(G), then H ∼ G.
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Theorem 2.5. (Dong et al. [5] ) Suppose that θ(y1, y2, . . . , yk) ∼ θ(y1, y2, ..., yk) where k ≥ 3,
2 ≤ y1 ≤ y2 ≤ · · · ≤ yk and 2 ≤ x1 ≤ x2 ≤ · · · ≤ xk, then yi = xi for all i= 1,2,3,...k.

Theorem 2.6. (Dong et al. [5] ) Let H ∼ θ(y1, y2, . . . , yk) where k ≥ 3 and yi ≥ 2 for all i, then
one of them is true:
1. H ∼= θ(y1, y2, . . . , yk)
2. H ∈ ge(θ(x1, x2, . . . , xk), Cxi+1 , . . . , Cxk+1), where 3 ≤ t ≤ k − 1 and xi ≥ 2, for all
i=1,2,3,..k.

Theorem 2.7. (Dong et al. [5] ) Let k, t, x1, x2, . . . , xk ∈ N where 3 ≤ t ≤ k− 1 and xi ≥ 2 for
all i = 1, 2, 3, . . . , k. If H ∈ ge(θ(x1, x2, ..., xt), Cxt+1+1, ..., Cxk+1), then

Q(H,x) = x

k∏
i=1

(xxi − 1)−
t∏

i=1

(xxi − x)
k∏

i=t+1

(xxi − 1). (2.2)

Theorem 2.8. (Koh & Teo [15]) If G ∼ H , then
1. v(G)= v(H),
2. e(G)= e(H),
3. g(G)= g(H),
4. G and H have the same number of shortest cycle.
where v(G), v(H), e(G), e(H), g(G) and g(H) denote the number of vertices, the number of edges
and the girth of G and H, respectively.

The chromaticity on several families of 6-bridge graph has been done by several authors
which are given below.

Lemma 2.9. [14] A 6-bridge graph θ(y1, y2, . . . , y6) is χ unique if the positive integer y1, y2, . . . , y6
assume exactly two distinct values.

Lemma 2.10. [6] The graph 6-bridge θ(3, 3, 3, s, s, t), where r ≤ s ≤ t, is χ-unique.

Lemma 2.11. [8] The 6-bridge graph θ(r, r, r, s, s, t), where r ≤ s ≤ t, is χ-unique.

Lemma 2.12. [7] The 6-bridge graph θ(3, 3, 3, s, t, u), where 3 ≤ s ≤ t, is χ-unique.

Lemma 2.13. [9] The 6-bridge graph θ(r, r, s, s, t, t), where r ≤ s ≤ t, is χ-unique.

Lemma 2.14. [10] The 6-bridge graph θ(r, r, s, s, s, t), where r ≤ s ≤ t, is χ-unique.

In this paper, we have extended this study to a new family of 6-bridge graph θ(r, r, r, s, t, u)
where 2 ≤ r ≤ s ≤ t ≤ u and showed that this family of 6-bridge graph is chromatically unique.

3 Chromatically unique 6-bridge graph θ(r, r, r, s, t, u)

In this section we present our main result on the chromaticity of 6- bridge graph.

Theorem 3.1. The 6-bridge graph θ(r, r, r, s, t, u) where r ≤ s ≤ t ≤ u is chromatically unique.

Proof. Let G be the 6-bridge graph of the form θ(r, r, r, s, t, u) and 2 ≤ r ≤ s ≤ t ≤ u. By
Theorem 2.2, G is χ unique if u < 2r. Suppose r ≥ 2 and H ∼ G, we shall solve Q(G) = Q(H)
to get all the solutions. Let the lowest remaining power and the highest remaining power be
denoted by l.r.p and h.r.p, respectively. By Theorem 2.8, g(G) = g(H) = 2r and H has the
same number of shortest cycles as G. Thus, we have

3r + s+ t+ u = x1 + x2 + x3 + x4 + x5 + x6. (3.1)

By Theorem 2.6 and 2.7, there are three cases to consider, that are
H ∈ ge(θ(x1, x2, x3), Cx4+1, Cx5+1, Cx6+1), where 2 ≤ x1 ≤ x2 ≤ x3 and 2 ≤ x4, x5, x6, or
H ∈ ge(θ(x1, x2, x3, x4), Cx5+1, Cx6+1), where 2 ≤ x1 ≤ x2 ≤ x3 ≤ x4 and 2 ≤ x5, x6, or
H ∈ ge(θ(x1, x2, x3, x4, x5), Cx6+1), where 2 ≤ x1 ≤ x2 ≤ x3 ≤ x4 ≤ x5 and 2 ≤ x6.
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CaseA
H ∈ ge(θ(x1, x2, x3), Cx4+1, Cx5+1, Cx6+1), where 2 ≤ x1 ≤ x2 ≤ x3 and 2 ≤ x4, x5, x6. As
G ∼= θ(r, r, r, s, t, u) and H ∈ ge(θ(x1, x2, x3), Cx4+1, Cx5+1, Cx6+1), then by Theorem 2.7, we
have
Q(G) = x(xr − 1)3(xs − 1)(xt − 1)(xu − 1)− (xr − x)3(xs − x)(xt − x)(xu − x).
Q(H) = x(xx1 − 1)(xx2 − 1)(xx3 − 1)(xx4 − 1)(xx5 − 1)(xx6 − 1)− (xx1 − x)(xx2 − x)(xx3 −
x)(xx4 − 1)(xx5 − 1)(xx6 − 1).
By using Equation 3, Q(G) = Q(H) yields
Q1(G) = x3r+s+1+x3r+t+1+x3r+u+1+xs+t+1+xs+u+1+xt+u+1+3x2r+s+t+1+3x2r+s+u+1+
3x2r+t+u+1+3x2r+1+3xr+s+t+u+1+3xr+s+1+3xr+t+1+3xr+u+1+x3r+3+xs+t+u+3+xs+5+
xt+5+xu+5+3x2r+s+3+3x2r+t+3+3x2r+u+3+3xr+s+t+3+3xr+s+u+3+3xs+t+u+3+3xr+5−
(x3r+1 + xs+t+u+1 + xs+1 + xt+1 + xu+1 + 3x2r+s+1 + 3x2r+t+1 + 3x2r+u+1 + 3xr+s+t+1 +
3xr+s+u+1 + 3xr+t+u+1 + 3xr+1 + x3r+s+2 + x3r+t+2 + x3r+u+2 + xs+t+4 + xs+u+4 + xs+t+4 +
xt+u+4+3x2r+s+t+2+3x2r+s+u+2+3x2r+t+u+2+3xr+s+t+u+2+3xr+s+4+3xr+t+4+3xr+u+4+
3x2r+4 + x6).
Q1(H) = xx1+x2+x3+x4+x5+xx1+x2+x3+x4+x6+xx1+x2+x3+x4+1+xx1+x2+x3+x5+x6+xx1+x2+x3+x5+1+
xx1+x2+x3+x6+1 + xx1+x2+x3 + xx1+x4+x5+x6+1 + xx1+x4+x5+2 + xx1+x4+x6+2 + xx1+x5+x6+2 +
xx1+x4+1+xx1+x5+1+xx1+x6+1+xx1+2+xx2+x4+x5+x6+1+xx2+x4+x5+2+xx2+x4+x6+2+xx2+x4+1+
xx2+x5+x6+2 + xx2+x5+1 + xx2+x6+1 + xx2+2 + xx3+x4+x5+x6+1 + xx3+x4+x5+2 + xx3+x4+x6+2 +
xx3+x4+1 + xx3+x5+x6+2 + xx3+x5+1 + xx3+x6+1 + xx3+2 + xx4+x5+x6+3 + xx4+x5+1 + xx4+x6+1 +
xx4+3 + xx5+x6+1 + xx5+3 + xx6+3 − (xx1+x2+x3+x4+x5+1 + xx1+x2+x3+x4+x6+1 + xx1+x2+x3+x4 +
xx1+x2+x3+x5+x6+1+xx1+x2+x3+x5+xx1+x2+x3+x6+xx1+x2+x3+1+xx1+x4+x5+x6+2+xx1+x4+x5+1+
xx1+x4+x6+1 + xx1+x5+x6+1 + xx1+x4+2 + xx1+x5+2 + xx1+x6+2 + xx1+1 + xx2+x4+x5+x6+2 +
xx2+x4+x5+1+xx2+x4+x6+1+xx2+x4+2+xx2+x5+x6+2+xx2+x5+2+xx2+x6+2+xx2+1+xx3+x4+x5+x6+2+
xx3+x4+x5+1+xx3+x4+x6+1+xx3+x4+2+xx3+x5+x6+1+xx3+x5+2+xx3+x6+2+xx3+1+xx4+x5+x6+1+
xx4+x5+3 + xx4+x6+3 + xx4+1 + xx5+x6+3 + xx5+1 + xx6+1 + x3).
By comparing the l.r.p of Q1(G) and the l.r.p of Q1(H), we get r = 2. Thus, g(G) = g(H) =
2r = 4. Since G has 3 cycles of length four, therefore H also has three cycles of length 4.
Without loss of generality, we have four cases to consider,
1. x4 = x5 = x6 = 3, or
2. x4 = x5 = 3, x6 6= 3, or
3. x4 = 3, x5 6= 3, x6 6= 3, or
4. x4 6= 3, x5 6= 3, x6 6= 3.
Case1 :
x4 = x5 = x6 = 3.
Note that, for r = 2, the l.r.p in Q1(G) is −3x3 and l.r.p in Q1(H) is −x3. Thus, we have either
x1 = x2 = 2, or x1 = x3 = 2, or x2 = x3 = 2.
Case1.1 :
If x1 = x2 = 2 then H has four cycles of length 4, a contradiction.
Case1.2 :
If x1 = x3 = 2 then so is x2 = 2. This implies that, H has six cycles of length 4, a contradiction.

Case1.3 :
If x2 = x3 = 2 then x1 = 2. This implies that, H has six cycles of length 4, a contradiction.
Case2 :
x4 = x5 = 3, x6 6= 3.
Since the girth of H is 4 therefore x6 ≥ 4. Given that H has three cycles of length 4, so
x1 + x2 = 4, implies that x1 = x2 = 2. Thus, Equation 3 becomes s+ t+ u = x3 + x6 + 4. By
using this, we have
Q2(G) = 4xs+7 +4xt+7 +4xu+7 +xs+t+1 +xs+u+1 +xt+u+1 +6xs+t+5 +6xs+u+5 +6xt+u+5 +
3xs+3 + 3xt+3 + 3xu+3 + xs+5 + xt+5 + xu+5 + x9 + 2x7 + 3x5 − (xs+t+u+1 + xs+1 + xt+1 +
xu+1 +3xs+5 +3xt+5 +3xu+5 +3xs+t+3 +3xs+u+3 +3xt+u+3 +xs+8 +xt+8 +xu+8 +xs+t+4 +
xs+u+4 + xt+u+4 + 3xs+t+6 + 3xs+u+6 + 3xt+u+6 + 3xs+6 + 3xt+6 + 3xu+6 + 3x8 + x6)
Q2(H) = 3xx3+8 + 3xx3+10 + 3xx3+4 + 3xx3+2 + 3xx6+9 + 3xx6+7 + 3xx6+3 + 3xx3+x6+5 +
xx3+x6+1 + 2x10 + 6x6 − (3xx3+7 + 3xx3+5 + xx3+11 + xx3+1 + 2xx6+10 + 6xx6+6 + xx6+1 +
3xx3+x6+4 + xx3+x6+2 + 3x9 + 3x7).
Considering the l.r.p in Q2(G) and the l.r.p in Q2(H), we have s = t = u = 4. Thus,
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G ∼= (2, 2, 2, 4, 4, 4) and is χ-unique by Lemma 2.9.
Case3 :
x4 = 3, x5 6= 3, x6 6= 3.
Since the girth of H is 4, therefore x5 ≥ 4 and x6 ≥ 4. It is given that H has three cycles of
length 4, so x1 + x2 = 4, x1 + x3 = 4, implying that x1 = x2 = x3 = 2. But, in this case H has
four cycles of length 4, a contradiction.
Case4 :
x4 6= 3, x5 6= 3, x6 6= 3
Since the girth of H is 4, therefore x4, x5, x6 ≥ 4. It is given that H has three cycles of length 4,
so x1 + x2 = 4, x1 + x3 = 4 and x2 + x3 = 4 implying that x1 = x2 = x3 = 2. Thus, Equation
3 becomes s+ t+ u = x4 + x5 + x6. By using this, we have
Q3(G) = 4xs+7 +4xt+7 +4xu+7 +xs+t+1 +xs+u+1 +xt+u+1 +6xs+t+5 +6xs+u+5 +6xt+u+5 +
3xs+3 + 3xt+3 + 3xu+3 + xs+5 + xt+5 + xu+5 + x9 + 2x7 + 3x5 − (xs+t+u+1 + xs+1 + xt+1 +
xu+1 +3xs+5 +3xt+5 +3xu+5 +3xs+t+3 +3xs+u+3 +3xt+u+3 +xs+8 +xt+8 +xu+8 +xs+t+4 +
xs+u+4 + xt+u+4 + 3xs+t+6 + 3xs+u+6 + 3xt+u+6 + 3xs+6 + 3xt+6 + 3xu+6 + 3x8 + x6).
Q3(H) = xx4+x5+6 + xx4+x6+6 + xx5+x6+6 + xx4+7 + xx5+7 + xx6+7 + 3xx4+x5+4 + 3xx4+x6+4 +
3xx5+x6+4+4xx4+3+4xx5+3+4xx6+3+xx4+x5+1+xx4+x6+1+xx5+x6+1+x6+3x4−(xx4+x5+7+
xx4+x6+7 + xx5+x6+7 + xx4+6 + xx5+6 + xx6+6 + 4xx4+x5+3 + 4xx4+x6+3 + 4xx5+x6+3 + 3xx4+4 +
3xx5+4 + 3xx6+4 + xx4+1 + xx5+1 + xx6+1 + x7 + x3).
By comparing the l.r.p in Q3(G) and Q3(H), we have s = 2, or t = 2, or u = 2.
If s = 2, then G ∼= θ(2, 2, 2, 2, t, u) and is χ-unique.
If t = 2, then G ∼= θ(2, 2, 2, 2, 2, u) and is χ-unique by Lemma 2.9.
If u = 2, then G ∼= θ(2, 2, 2, 2, 2, 2) and is χ-unique by Theorem 2.1.
CaseH :
In this case, H ∈ ge(θ(x1, x2, x3, x4), Cx5+1, Cx6+1), where 2 ≤ x1 ≤ x2 ≤ x3 ≤ x4 and
2 ≤ x5, x6. Since, G ∼= θ(r, r, r, s, t, u) and H ∈ ge(θ(x1, x2, x3, x4), Cx5+1, Cx6+1), therefore by
Theorem 2.2, we have
Q4(G)= x(xr − 1)3(xs − 1)(xt − 1)(xu − 1)− (xr − x)3(xs − x)(xt − x)(xu − x)
Q4(H)= x(xx1 − 1)(xx2 − 1)(xx3 − 1)(xx4 − 1)(xx5 − 1)(xx6 − 1)− (xx1 − x)(xx2 − x)(xx3 −
x)(xx4 − x)(xx5 − 1)(xx6 − 1)
By using Equation 3, we have
Q5(G) = x3r+s+1+x3r+t+1+x3r+u+1+xs+t+1+xs+u+1+xt+u+1+3x2r+s+t+1+3x2r+s+u+1+
3x2r+t+u+1+3x2r+1+3xr+s+t+u+1+3xr+s+1+3xr+t+1+3xr+u+1+x3r+3+xs+t+u+3+xs+5+
xt+5+xu+5+3x2r+s+3+3x2r+t+3+3x2r+u+3+3xr+s+t+3+3xr+s+u+3+3xs+t+u+3+3xr+5−
(x3r+1 + xs+t+u+1 + xs+1 + xt+1 + xu+1 + 3x2r+s+1 + 3x2r+t+1 + 3x2r+u+1 + 3xr+s+t+1 +
3xr+s+u+1 + 3xr+t+u+1 + 3xr+1 + x3r+s+2 + x3r+t+2 + x3r+u+2 + xs+t+4 + xs+u+4 + xs+t+4 +
xt+u+4+3x2r+s+t+2+3x2r+s+u+2+3x2r+t+u+2+3xr+s+t+u+2+3xr+s+4+3xr+t+4+3xr+u+4+
3x2r+4 + x6).
Q5(H) = xx1+x2+x3+x4+x5+xx1+x2+x3+x4+x6+xx1+x2+x3+x4+1+xx1+x2+x5+x6+1+xx1+x2+x5+2+
xx1+x2+x6+2+xx1+x2+1+xx1+x3+x5+x6+1+xx1+x3+x5+2+xx1+x3+x6+2+xx1+x3+1+xx1+x4+x5+x6+1+
xx1+x4+x5+2+xx1+x4+x6+2+xx1+x4+1+xx1+x5+x6+3+xx1+x5+1+xx1+x6+1+xx1+3+xx2+x3+x5+x6+1+
xx2+x3+x5+2+xx2+x3+x6+2+xx2+x3+1+xx2+x4+x5+x6+1+xx2+x4+x5+2+xx2+x4+x6+2+xx2+x4+1+
xx2+x5+x6+3 + xx2+x5+1 + xx2+x6+1 + xx2+3 + xx3+x4+x5+x6+1 + xx3+x4+x5+2 + xx3+x4+x6+2 +
xx3+x4+1 + xx3+x5+x6+2 + xx3+x5+1 + xx3+x6+1 + xx3+3 + xx4+x5+x6+3 + xx4+x5+1 + xx4+x6+1 +
xx4+3 + xx5+x6+1 + xx5+4 + xx6+4 − (xx1+x2+x3+x4+x5+1 + xx1+x2+x3+x4+x6+1 + xx1+x2+x3+x4 +
xx1+x2+x3+x5+x6+2 + xx1+x2+x5+1 + xx1+x2+x6+1 + xx1+x2+2 + xx1+x3+x5+x6+2 + xx1+x3+x5+1 +
xx1+x3+x6+1++xx1+x3+2+xx1+x4+x5+x6+2+xx1+x4+x5+1+xx1+x4+x6+1+xx1+x5+x6+1+xx1+x4+2+
xx1+x5+3 + xx1+x6+3 + xx1+1 + xx2+x3+x5+x6+2 + xx2+x3+x5+1 + xx2+x3+x6+1 + xx2+x3+2 +
xx2+x4+x5+x6+2 +xx2+x4+x5+1 +xx2+x4+x6+1 +xx2+x4+2 +xx2+x5+x6+1 +xx2+x5+3 +xx2+x6+3 +
xx2+1 + xx3+x4+x5+x6+2 + xx3+x4+x5+1 + xx3+x4+x6+1 + xx3+x4+2 + xx3+x5+x6+1 + xx3+x5+3 +
xx3+x6+3+xx3+1+xx4+x5+x6+1+xx4+x5+3+xx4+x6+3+xx4+1+xx5+x6+4+xx5+1+xx6+1+x4).
since 2 ≤ r ≤ s ≤ t ≤ u, therefore by comparing the l.r.p in Q5(G) and the l.r.p in Q5(H), we
have r = 2, or r = 3.
Case1 :
If r = 2, then g(G) = g(H) = 2r = 4. Since, G has three cycles of length 4, therefore H also
has three cycles of length 4. Without loss of generality, we have the following three cases:
1. x5 = x6 = 3, or
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2. x5 = 3, x6 6= 3, or
3. x5 6= 3, x6 6= 3.
Case1.1 :
x5 = x6 = 3.
Since, H has three cycles of length 4 therefore x1 + x2 = 4 implying that x1 = x2 = 2.
Note that, for r = 2, the l.r.p in Q1(G) is −3x3 and l.r.p in Q1(H) is −x3. Thus, either x3 = 2
or x4 = 2.
If x3 = 2 then H has five cycles of length 4, a contradiction.
If x4 = 2, then x3 = 2 implying that H has eight cycles of length 4, a contradiction.
Case1.2 :
x5 = 3, x6 6= 3.
Since the girth of H is 4 therefore x6 ≥ 4. It is given that H has three cycles of length 4, so
x1 + x2 = 4 , x1 + x3 = 4 implying that x1 = x2 = x3 = 2. But, then H has four cycles of
length 4, a contradiction.
Case1.3 :
x5 6= 3, x6 6= 3.
Since the girth of H is 4 therefore x5, x6 ≥ 4. It is given that H has three cycles of length 4, so
x1 + x2 = 4 , x1 + x3 = 4 and ( x1 + x4 = 4 or x2 + x3 = 4) implying that x1 = x2 = x3 = 2.
We have two cases to consider.
Case1.3.1 :
If x1 + x4 = 4 then x1 = x2 = 2 implying that x1 = x2 = x3 = x4 = 2. But, then H has six
cycles of length 4, a contradiction.
Case1.3.2 :
If x2+x3 = 4 then x1 = x2 = x3 = 2. In this case, Equation 3 becomes s+ t+u = x4+x5+x6
and we obtain the following after simplification,
Q6(G) = 4xs+7 +4xt+7 +4xu+7 +xs+t+1 +xs+u+1 +xt+u+1 +6xs+t+5 +6xs+u+5 +6xt+u+5 +
3xs+3 + 3xt+3 + 3xu+3 + xs+5 + xt+5 + xu+5 + x9 + 2x7 − (xs+1 + xt+1 + xu+1 + 3xs+5 +
3xt+5 + 3xu+5 + 3xs+t+3 + 3xs+u+3 + 3xt+u+3 + xs+8 + xt+8 + xu+8 + xs+t+4 + xs+u+4 +
xt+u+4 + 3xs+t+6 + 3xs+u+6 + 3xt+u+6 + 3xs+6 + 3xt+6 + 3xu+6 + 3x8).
Q6(H) = xx4+x5+6+xx4+x6+6+3xx4+x5+4+3xx4+x6+4+xx4+7+6xx5+x6+5+3xx5+6+3xx6+6+
4xx4+3+3xx5+3+3xx6+3+xx4+x5+1+xx4+x6+1+xx5+x6+1+xx5+4+xx6+4+3x5−(xx4+x5+7+
xx4+x6+7+xx4+6+3xx5+x6+6+6xx5+5+6xx6+5+4xx4+x5+3+4xx4+x6+3+3xx5+x6+3+3xx4+4+
xx5+x6+4 + xx4+1 + xx5+1 + xx6+1 + 2x6 + x4).
By comparing the l.r.p in Q6(G) and the l.r.p in Q6(H), we have s = 3, or t = 3, or u = 3.
If s = 3, then
Q7(G) = 3xt+7 +3xu+7 +xt+4 +xu+4 +xt+u+1 +5xt+8 +5xu+8 +6xt+u+5 +3xt+3 +3xu+3 +
4x10 +x9 + 2x7 + 3x6− (xt+1 +xu+1 + 2xt+5 + 2xu+5 + 6xt+6 + 6xu+6 + 3xt+u+3 +xt+u+4 +
3xt+u+6 + 3xt+9 + 3xu+9 + x11 + 3x9 + 5x8)
Q7(H) = xx4+x5+6+xx4+x6+6+3xx4+x5+4+3xx4+x6+4+xx4+7+6xx5+x6+5+3xx5+6+3xx6+6+
4xx4+3+3xx5+3+3xx6+3+xx4+x5+1+xx4+x6+1+xx5+x6+1+xx5+4++xx6+4+3x5−(xx4+x5+7+
xx4+x6+7+xx4+6+3xx5+x6+6+6xx5+5+6xx5+5+4xx4+x5+3+4xx4+x6+3+3xx5+x6+3+3xx4+4+
xx5+x6+4 + xx4+1 + xx5+1 + xx6+1 + 2x6).
By comparing the l.r.p in Q7(G) and the l.r.p in Q7(H), we have x4 = x5 = x6 = 4. Replace
these values in Q7(G) and Q7(H), we get
Q8(G) = 3xt+7 +3xu+7 +xt+4 +xu+4 +xt+u+1 +5xt+8 +5xu+8 +6xt+u+5 +3xt+3 +3xu+3 +
4x10 +x9 + 2x7 + 3x6− (xt+1 +xu+1 + 2xt+5 + 2xu+5 + 6xt+6 + 6xu+6 + 3xt+u+3 +xt+u+4 +
3xt+u+6 + 3xt+9 + 3xu+9 + x11 + 3x9 + 5x8)
Q8(H) = 6x13 + 5x10 + 5x12 + 10x7 − (2x15 + x14 + 9x9 + 10x11 + x8 + 2x6).
But, Q8(G) 6= Q8(H), a contradiction. Similarly, we can get contradiction for the case when
t = 3 and u = 3.
Case2 :
If r = 3, then g(G) = g(H) = 2r = 6. Since, G has three cycles of length 6 therefore H also
has three cycles of length 6. Without loss of generality, we have three cases to consider:
1. x5 = x6 = 5 or
2. x5 = 5, x6 6= 5 or
3. x5 6= 5, x6 6= 5
Case2.1 :
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x5 = x6 = 5
It follows that x1 + x2 = 6. Thus, we have either x1 = 2, x2 = 4 or x1 = x2 = 3
Case2.1.1 :
x1 = 2, x2 = 4
It follows from Equation 3 that s+ t+ u = x3 + x4 + 7. Since 3 ≤ s ≤ t ≤ u and 4 ≤ x3 ≤ x4
therefore by canceling the equal terms of Q8(H) and Q8(G), we can get a term −x3 in Q8(H)
but not in Q8(G), a contradiction.
Case2.1.2 :
x1 = x2 = 3
It follows from Equation 3 that s+ t+ u = x3 + x4 + 7 and we have
Q9(G) = xs+10 +xt+10 +xu+10 +xs+t+1 +xs+u+1 +xt+u+1 + 3xs+t+7 + 3xs+u+7 + 3xt+u+7 +
xs+4 + xt+4 + xu+4 + xs+t+u + xs+5 + xt+5 + xu+5 ++3xs+9 + 3xt+9 + 3xu+9 + 3xs+t+6 +
3xs+u+6+3xt+u+6+x12+x8+2x7−(xs+t+u+1+xs+1+xt+1+xu+1+6xs+7+6xt+7+6xu+7+
4xs+t+4+4xs+u+4+4xt+u+4+xs+11+xt+11+xu+11+3xs+t+8+3xs+u+8+3xt+u+8+4x10+x6).
Q9(H) = 3xx3+x4+7+xx3+x4+1+xx3+13+xx3+3+4xx3+10+xx4+13+xx4+3+4xx4+10+2xx3+14+
2xx3+4+2xx4+4+2xx4+14+2xx3+6+2xx4+6+x17+2x16+2x13+6x9−(3xx3+x4+6+2xx3+15+
4xx3+9 + 2xx3+5 + xx4+15 + 4xx4+9 + 2xx4+5 + 2xx3+8 + 2xx4+8 + xx3+x4+2 + xx3+11 + xx3+1 +
xx4+11 + xx4+1 + x18 + 3x14 + 3x11 + 2x12 + x8). By comparing the l.r.p in Q9(G) and the l.r.p
in Q9(H), we have x3 = 5 or x4 = 5.
Case2.1.2.1 :
If x3 = 5 then we obtain the following after simplification,
Q10(G) = xs+10 +xt+10 +xu+10 +xs+t+1 +xs+u+1 +xt+u+1 +3xs+t+7 +3xs+u+7 +3xt+u+7 +
xs+4 + xt+4 + xu+4 + xs+t+u + xs+5 + xt+5 + xu+5 ++3xs+9 + 3xt+9 + 3xu+9 + 3xs+t+6 +
3xs+u+6+3xt+u+6+x12+x8+2x7−(xs+t+u+1+xs+1+xt+1+xu+1+6xs+7+6xt+7+6xu+7+
4xs+t+4 +4xs+u+4 +4xt+u+4 +xs+11 +xt+11 +xu+11 +3xs+t+8 +3xs+u+8 +3xt+u+8 +4x10).
Q10(H) = 2xx4+14 +xx4+13 +3xx4+12 +4xx4+10 +3xx4+6 +2xx4+4 +xx4+3 +2x19 +x17 +x16 +
4x15+8x9−(2xx4+15+2xx4+8+4xx4+11+4xx4+9+xx4+7+xx4+1+2xx4+52x20+7x14+2x12+x11).
But, Q10(G) 6= Q10(H), a contradiction.
Case2.1.2.2 :
If x4 = 5 then we have either x3 = 3 or x3 = 4 or x3 = 5.
Case2.1.2.2(a) :
If x3 = 3 then H has five cycles of length 6, a contradiction.
Case2.1.2.2(b) :
If x3 = 4 then by simplifying Q10(H), we get −x5 as l.r.p in Q12(H). Which implies that either
s = 4 or t = 4 or u = 4.
• If s = 4 then Equation 3 becomes t + u = 12. Since 3 ≤ 4 ≤ t ≤ u, we have following
possibilities:
(i) If t = 4 and u = 8 then G ∼= θ(3, 3, 3, 4, 4, 8) and is χ-unique by Lemma 2.10.
(ii) If t = 5, u = 7 then
Q11(G) = 2x16 + 5x18 + 3x8 + 4x9 + 2x7 − (6x11 + 2x12 + 2x14 + x15 + 3x20 + 2x10 + x6).
Q11(H)= 5x16 + 4x15 + 3x18 + 3x8 + 6x9 + 3x10 + 2x11 + 2x17 + x7 − (4x15 + 2x9 + 2x20 +
2x10 + 4x11 + 4x12 + x16 + x18 + 3x14 + x8).
Q11(G) 6= Q11(H), a contradiction.
(iii) If t = u = 6 then again we get Q11(G) 6= Q11(H), a contradiction.
• If t = 4 then Equation 3 becomes s + u = 12. Since 3 ≤ s ≤ 4 ≤ u, we have following
possibilities:
(i) if s = 3 and u = 9 then G ∼= θ(3, 3, 3, 3, 4, 9) and is χ-unique by Lemma 2.10.
(ii) If s = 4 and u = 8 then G ∼= θ(3, 3, 3, 4, 4, 8) and is χ-unique by Lemma 2.10.
• If u = 4 then Equation 3 becomes s+ t = 12. But 3 ≤ s ≤ t ≤ 4, a contradiction.
Case2.1.2.2(c) :
If x3 = 5 then Equation 3 becomes s+ t+ u = 17 and we get,
Q12(G) = xs+10 +xt+10 +xu+10 +xs+t+1 +xs+u+1 +xt+u+1 +3xs+t+7 +3xs+u+7 +3xt+u+7 +
xs+4 + xt+4 + xu+4 + xs+t+u + xs+5 + xt+5 + xu+5 ++3xs+9 + 3xt+9 + 3xu+9 + 3xs+t+6 +
3xs+u+6 + 3xt+u+6 + x12 + 2x7− (xs+t+u+1 + xs+1 + xt+1 + xu+1 + 6xs+7 + 6xt+7 + 6xu+7 +
4xs+t+4 + 4xs+u+4 + 4xt+u+4 + xs+11 + xt+11 + xu+11 + 3xs+t+8 + 3xs+u+8 + 3xt+u+8).
Q12(H) = 4x17 + 8x15 + 4x19 + 10x9 + 2x11 + x18− (3x16 + 4x20 + 11x14 + x6 + 3x12 + 3x13).
By comparing the l.r.p in Q12(G) and the l.r.p in Q12(H), we get s = 5 or t = 5 or u = 5
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(i) If s = 5 then G ∼= θ(3, 3, 3, 5, t, u) and is χ-unique by Lemma 2.12.
(ii) If t = 5 then either s = 3 or s = 4 or s = 5.
(a) If s = 3 then G ∼= θ(3, 3, 3, 3, 5, u) and is χ-unique by Lemma 2.12.
(b) If s = 4 then G ∼= θ(3, 3, 3, 4, 5, u) and is χ-unique by Lemma 2.12.
(c) If s = 5 then G ∼= θ(3, 3, 3, 5, 5, u) and is χ-unique by Lemma 2.10.
(iii) If u = 5 then we have the following possibilities, either s = t = 3 or s = 3, t = 4 or
s = t = 4 or s = t = 5:
(a) If s = t = 3 then G ∼= θ(3, 3, 3, 3, 3, 5) and is χ-unique by Lemma 2.9.
(b) If s = 3, t = 4 then G ∼= θ(3, 3, 3, 3, 4, 5) and is χ-unique by Lemma 2.10.
(c) If s = t = 4 then G ∼= θ(3, 3, 3, 4, 4, 5) and is χ-unique by Lemma 2.10.
(d) If s = t = 5 then G ∼= θ(3, 3, 3, 5, 5, 5) and is χ-unique by Lemma 2.9.
Case2.2 :
x5 = 5, x6 6= 5
In this case x1 + x2 = 6 and x1 + x3 = 6 implying that x2 = x3. Hence, we have either
x1 = 2, x2 = x3 = 4 or x1 = x2 = x3 = 3.
Case2.2.1 : If x1 = 2, x2 = x3 = 4 then Equation 3 becomes s+t+u = x2+x3+6. By replac-
ing these values inQ9(G) andQ9(H) and canceling the equal terms, we obtainQ9(G) 6= Q9(H),
a contradiction.
Case2.2.2 : If x1 = x2 = x3 = 3 then H has four cycles of length 6, a contradiction.
Case2.3 :
x5 6= 5, x6 6= 5
Since the girth of H is 6 therefore x5, x6 ≥ 6. It is given that H has three cycles of length 6, so
x1 + x2 = 6 x1 + x3 = 6 and ( x1 + x4 = 6 or x2 + x3 = 6). Therefore, we have two cases to
consider.
Case2.3.1 :
If x1 + x4 = 6 then by considering x1 + x2 = 6 we get x1 + x3 = 6 and then x2 = x3 = x4.
Hence, either x1 = 2 or x2 = x3 = x4 = 4 or x1 = x2 = x3 = x4 = 3.
Case2.3.1.1 :
If x1 = 2 then x3 = x4 = 4 and by canceling the equal terms, we obtain Q9(G) 6= Q9(H), a
contradiction.
Case2.3.1.2 :
If x1 = x2 = x3 = x4 = 3 then H has six cycles of length 6, a contradiction.
Case2.3.2 :
If x2 + x3 = 6 then by considering x1 + x2 = 6 we get x1 + x3 = 6 and then x1 = x2 = x3.
Thus Equation 3 becomes 9 + s + t + u = x4 + x5 + x6. Replace these values in Q5(G) and
Q5(H) and compare the l.r.p of both, we get either s = 3 or t = 3 or u = 3
If s = 3 then G ∼= θ(3, 3, 3, 3, t, u) and is χ-unique.
If t = 3 then G ∼= θ(3, 3, 3, 3, 3, u) and is χ-unique by Lemma 2.9.
If u = 3 then G ∼= θ(3, 3, 3, 3, 3, 3) and is χ-unique by Theorem 2.1.
Case C :
H ∈ ge(θ(x1, x2, x3, x4, x5), Cx6+1), where 2 ≤ x1 ≤ x2 ≤ x3 ≤ x4 ≤ x5 and 2 ≤ x6 As
G ∼= θ(r, r, r, s, t, u) and H ∈ ge(θ(x1, x2, x3, x4, x5), Cx6+1), we have
Q13(G)= x(xr − 1)3(xs − 1)(xt − 1)(xu − 1)− (xr − x)3(xs − x)(xt − x)(xu − x)
Q13(H)= x(xx1 − 1)(xx2 − 1)(xx3 − 1)(xx4 − 1)(xx5 − 1)(xx6 − 1)− (xx1 − x)(xx2 − x)(xx3 −
x)(xx4 − x)(xx5 − x)(xx6 − 1).
By using Equation 3, we get
Q14(G) = x3r+s+1+x3r+t+1+x3r+u+1+xs+t+1+xs+u+1+xt+u+1+3x2r+s+t+1+3x2r+s+u+1+
3x2r+t+u+1+3x2r+1+3xr+s+t+u+1+3xr+s+1+3xr+t+1+3xr+u+1+x3r+3+xs+t+u+3+xs+5+
xt+5+xu+5+3x2r+s+3+3x2r+t+3+3x2r+u+3+3xr+s+t+3+3xr+s+u+3+3xs+t+u+3+3xr+5−
(x3r+1 + xs+t+u+1 + xs+1 + xt+1 + xu+1 + 3x2r+s+1 + 3x2r+t+1 + 3x2r+u+1 + 3xr+s+t+1 +
3xr+s+u+1 + 3xr+t+u+1 + 3xr+1 + x3r+s+2 + x3r+t+2 + x3r+u+2 + xs+t+4 + xs+u+4 + xs+t+4 +
xt+u+4+3x2r+s+t+2+3x2r+s+u+2+3x2r+t+u+2+3xr+s+t+u+2+3xr+s+4+3xr+t+4+3xr+u+4+
3x2r+4 + x6).
Q14(H) = xx1+x2+x3+x4+x5 + xx1+x2+x3+x6+1 + xx1+x2+x3+2 + xx1+x2+x4+x6+1 + xx1+x2+x4+2 +
xx1+x2+x5+x6+1 + xx1+x2+x5+2 + xx1+x2+x6+3 + xx1+x2+1 + xx1+x3+x4+x6+1 + xx1+x3+x4+2 +
xx1+x3+x5+x6+1 + xx1+x3+x5+2 + xx1+x3+x6+3 + xx1+x3+1 + xx1+x4+x5+x6+1 + xx1+x4+x5+2 +
xx1+x4+x6+3 + xx1+x4+1 + xx1+x5+x6+3 + xx1+x5+1 + xx1+x6+1 + xx1+4 + +xx2+x3+x4+x6+1 +
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xx2+x3+x4+2 + xx2+x3+x5+x6+1 + xx2+x3+x5+2 + xx2+x3+x6+3 + xx2+x3+1 + xx2+x4+x5+x6+1 +
xx2+x4+x5+2+xx2+x4+x6+3+xx2+x4+1+xx2+x5+x6+3+xx2+x5+1+xx2+x6+1+xx2+4+xx3+x4+x5+x6+1+
xx3+x4+x5+2+xx3+x4+x6+3+xx3+x4+1+xx3+x5+x6+3+xx3+x5+1+xx3+x6+1+xx3+4+xx4+x5+x6+3+
xx4+x5+1+xx4+x6+1+xx4+4+xx5+x6+1+xx5+4+xx6+5−(xx1+x2+x3+x4+x5+1+xx1+x2+x3+x6+2+
xx1+x2+x3+1 + xx1+x2+x4+x6+2 + xx1+x2+x4+1 + xx1+x2+x5+x6+2 + xx1+x2+x5+1 + xx1+x2+x6+1 +
xx1+x2+3 + +xx1+x3+x4+x6+1 + xx1+x3+x4+1 + xx1+x3+x5+x6+2 + xx1+x3+x5+1 + xx1+x3+x6+1 +
+xx1+x3+3+xx1+x4+x5+x6+2+xx1+x4+x5+1+xx1+x4+x6+1+xx1+x5+x6+1+xx1+x4+3+xx1+x5+3+
xx1+x6+4+xx1+1++xx2+x3+x4+x6+2+xx2+x3+x4+1+xx2+x3+x5+x6+2+xx2+x3+x5+1+xx2+x3+x6+1+
xx2+x3+3 + +xx2+x4+x5+x6+2 + xx2+x4+x5+1 + xx2+x4+x5+x6+2 + xx2+x4+x5+1 + xx2+x4+x6+1 +
xx2+x4+3 + xx2+x5+x6+1 + xx2+x5+3 + xx2+x6+4 + xx2+1 + xx3+x4+x5+x6+2 + xx3+x4+x5+1 +
xx3+x4+x6+1+xx3+x4+3+xx3+x5+x6+1+xx3+x5+3+xx3+x6+4+xx3+1+xx4+x5+x6+1+xx4+x5+3+
xx4+x6+4 + xx4+1 + xx5+x6+4 + xx5+1 + xx6+1 + x5).
The l.r.p in Q14(G) is xr+1 and the l.r.p in Q14(H) is 5 implying that r = 4. Since r ≥ 2, we
have three cases to consider either 1) r = 2 or 2) r = 3 or 3) r = 4.
Case1 :
If r = 2 then g(G) = g(H) = 2r = 4. Since G has three cycles of length 4, therefore H has
three cycles of length 4. Without loss of generality, we have two cases to consider, either (i)
x6 = 3 or (ii). x6 6= 3
Case1.1 :
If x6 = 3 then either x1 + x2 = 4 or x1 + x3 = 4. Thus x1 = x2 = x3 = 2. But, H has four
cycles of length 4, a contradiction.
Case1.2 :
If x6 6= 3. Since the girth of H is 4 therefore x6 ≥ 4. It is given that H has three cycles of length
4, so x1 + x2 = 4 , x1 + x3 = 4 and ( x1 + x4 = 4 or x2 + x3 = 4). Therefore, we have two
cases to consider.
Case1.2.1 :
If x1 + x4 = 4.
Since x1 + x2 = 4, x1 + x3 = 4, therefore x1 = x2 = x3 = x4 = 2. But H has six cycles of
length 4, a contradiction.
Case1.2.2 :
if x2 + x3 = 4.
Since x1 + x2 = 4, x1 + x3 = 4, therefore x1 = x2 = x3 = 2. In this case Equation 3 becomes
s+ t+ u = x4 + x5 + x6 and we get
Q15(G) = 4xs+7+4xt+7+4xu+7+xs+t+1+xs+u+1+xt+u+1+6xs+t+5+6xs+u+5+6xt+u+5+
3xs+3 + 3xt+3 + 3xu+3 +xs+5 +xt+5 +xu+5 +x9 + 2x7 +x5− (xs+1 +xt+1 +xu+1 + 3xs+5 +
3xt+5 + 3xu+5 + 3xs+t+3 + 3xs+u+3 + 3xt+u+3 + xs+8 + xt+8 + xu+8 + xs+t+4 + xs+u+4 +
xt+u+4 + 3xs+t+6 + 3xs+u+6 + 3xt+u+6 + 3xs+6 + 3xt+6 + 3xu+6 + 3x8 + x6).
Q15(H) = xx4+x5+6+3xx4+x5+4+6xx5+x6+5+6xx4+x6+5+4xx6+7+3xx5+3+3xx6+3+3xx4+3+
xx4+x5+1 + xx4+x6+1 + xx5+x6+1 + xx5+4 + xx6+5 + 3x6 + xx4+4 + 4xx4+x5+x6+3 − (xx4+x5+7 +
2xx4+x6+6+6xx4+5+3xx5+x6+6+6xx5+5+3xx6+6+3xx6+5+4xx4+x5+3+4xx4+x6+3+3xx5+x6+3+
xx5+x6+4 + xx4+1 + xx5+1 + xx6+1 + 3xx4+x5+x6+4 + xx6+8 + 4x7).
By comparing the l.r.p inQ15(G) and the l.r.p inQ15(H), we have either s = 4 or t = 4 or u = 4.
Case1.2.2.1 :
If s = 4 then l.r.p of Q15(H) is 3x6 implying that x4 = x5 = x6 = 5. But in this case after
simplification we get Q15(G) 6= Q15(H), a contradiction.
Case1.2.2.2 :
If t = 4 then we get
Q16(G) = xs+7 + 6xs+9 + 3xs+3 + xu+7 + 6xu+9 + 3xu+3 + xs+u+1 + 5xs+u+5 + 4xs+u+7 +
4x11 + 5x7 − (xs+1 + xs+5 + 2xs+8 + xs+10 + xs+6 + xu+1 + xu+5 + 2xu+8 + xu+10 + xu+6 +
3xs+u+3 + 3xs+u+6 + x12 + 3x10 + x9 + 3x8)
Q16(H) = xx4+x5+6 + xx4+x5+1 + xx4+x6+1 + xx5+x6+1 + 3xx4+x5+4 + 6xx4+x6+5 + 6xx5+x6+5 +
4xx4+x5+x6+3 + 4xx6+7 + 3xx4+6 + 3xx5+6 + 3xx6+3 + xx4+4 + xx5+4 + x8 + 4x6 − (xx4+x5+7 +
xx6+8+3xx4+x6+6+3xx5+x6+6+3xx4+x5+3+4xx4+x6+3+3xx5+x6+3+3xx4+x6+3+xx4+x5+x6+1+
6xx4+5 + 6xx5+5 + 2xx6+5 + xx4+x6+4 + xx5+x6+4 + xx6+1 + xx4+1 + xx5+1 + 4x7)
By comparing the l.r.p in Q16(G) and the l.r.p in Q16(H), we have either s = 2 or s = 3 or
s = 4, where 2 ≤ s ≤ 4 ≤ u.
If s = 2 then G ∼= θ(2, 2, 2, 2, 4, u) and is χ-unique.
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If s = 4 then G ∼= θ(2, 2, 2, 4, 4, u) and is χ-unique by Lemma 2.11.
If s = 3 then compare the l.r.p in Q16(G) which is −x4 to the l.r.p in Q16(H), we get either
x4 = 3 or x5 = 3.
If x4 = 3 then Equation 3 becomes 4 + u = x5 + x6. Since 4 ≤ u and 3 ≤ x5, we obtain
Q16(G) 6= Q16(H), a contradiction.
If x5 = 3 then Equation 3 becomes 4 + u = x4 + x6. Since 4 ≤ u and 2 ≤ x4 ≤ 3, we obtain
Q16(G) 6= Q16(H), a contradiction.
Case2 :
If r = 3, then g(G) = g(H) = 2r = 6. Since G has three cycles of length 6, therefore H
has three cycles of length 6. Without loss of generality, we have two cases to consider either 1.
x6 = 5 or 2. x6 6= 5.
Case2.1 :
If x6 = 5 then x1 + x2 = 6 and x1 + x3 = 6 implying that x2 = x3. Thus we have
x1 = 2, x2 = x3 = 4 or x1 = x2 = x3 = 3.
Case2.1.1 :
if x1 = 2, x2 = x3 = 4 then Equation 3 becomes s+ t+ u = x4 + x5 + 6. But, in this case we
get after simplification that Q14(G) 6= Q14(H), a contradiction.
Case2.1.2 :
If x1 = x2 = x3 = 3 then H has four cycles of length 6, a contradiction.
Case2.2 :
If x6 6= 5. Since the girth of H is 6, therefore x6 ≥ 6. it is given that H has three cycles of length
6, so x1 +x2 = 6, x1 +x3 = 6 and ( x1 +x4 = 6 or x2 +x3 = 6). Therefore, we have two cases
to consider.
Case2.2.1 :
if x1 + x4 = 6.
since x1 + x2 = 6 therefore x1 + x3 = 6 and then x2 = x3 = x4. Hence we have either x1 = 2
and x2 = x3 = x4 = 4 or x1 = x2 = x3 = x4 = 3.
Case2.2.1.1 :
If x1 = 2 and x2 = x3 = x4 = 4 then by canceling the equal terms, we obtainQ14(G) 6= Q14(H),
a contradiction.
Case2.2.1.2 :
If x1 = x2 = x3 = x4 = 3 then H has six cycles of length 6, a contradiction.
Case2.2.2 :
If x2 + x3 = 6. Since x1 + x2 = 6 therefore x1 + x3 = 6 and then x1 = x2 = x3.
It follows from Equation 3 that s+ t+ u = x4 = x5 = x6 and we have
Q17(G) = xs+10 +xt+10 +xu+10 +xs+t+1 +xs+u+1 +xt+u+1 +3xs+t+7 +3xs+u+7 +3xt+u+7 +
3xs+4 + 3xt+4 + 3xu+4 +xs+t+u+xs+5 +xt+5 +xu+5 ++3xs+9 + 3xt+9 + 3xu+9 + 3xs+t+6 +
3xs+u+6 + 3xt+u+6 + x12 + 3x8 − (xs+1 + xt+1 + xu+1 + 6xs+7 + 6xt+7 + 6xu+7 + 4xs+t+4 +
4xs+u+4 + 4xt+u+4 + xs+11 + xt+11 + xu+11 + 3xs+t+8 + 3xs+u+8 + 3xt+u+8 + 4x10).
Q17(H) = xx4+x5+9+3xx4+x6+7+3xx4+8+3xx5+x6+7+3xx5+8+3xx6+9+3xx4+x5+5+3xx4+x6+6+
3xx5+x6+6+4xx4+4+4xx5+4+3xx6+4+xx4+x5+x6+3+xx4+x5+1+xx4+x6+1+xx5+x6+1+xx6+5+
xx6+10+x11+3x7+−(xx4+x5+10+xx4+x6+7+3xx5+x6+8+3xx4+6+3xx5+6+xx6+11+3xx4+x5+4+
2xx4+x6+8 + 3xx4+7 + 3xx5+7 + 6xx6+7 + xx4+x5+3 + 4xx4+x6+4 + 4xx5+x6+4 + xx4+1 + xx5+1 +
xx6+1 + 3x9 + x5).
By comparing the l.r.p inQ17(G) and the l.r.p inQ17(H), we have either s = 4 or t = 4 or u = 4.
Case2.2.2.1 :
If s = 4 then after simplifying we have Q17(G) 6= Q17(H), a contradiction.
Case2.2.2.2 :
If t = 4 then either s = 3 or s = 4.
If s = 3 then G ∼= θ(3, 3, 3, 3, 4, u) and is χ-unique.
If s = 4 then G ∼= θ(3, 3, 3, 4, 4, u) and is χ-unique by Lemma 2.10.
Case2.2.2.3 :
If u = 4 then s = t = 3 or s = t = 4 or s = 3, t = 4
If s = t = 3 then G ∼= θ(3, 3, 3, 3, 3, 4) and is χ-unique by Lemma 2.9.
If s = 3, t = 4 then G ∼= θ(3, 3, 3, 3, 4, 4) and is χ-unique by Lemma 2.9.
If s = 4 then G ∼= θ(3, 3, 3, 4, 4, 4) and is χ-unique by Lemma 2.9.
Case3 :
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If r = 4 then g(G) = g(H) = 2r = 8. Since G has three cycles of length 8, therefore H has
three cycles of length 8. Without loss of generality, we have two cases to consider, either 1.
x6 = 7 or 2. x6 6= 7
Case3.1 :
If x6 = 7.
Since x1 + x2 = 8 and x1 + x3 = 8, therefore x2 = x3. Thus, we have either x1 = 2 and
x2 = x3 = 6 or x1 = 3 and x2 = x3 = 5 or x1 = x2 = x3 = 4
Case3.1.1 :
If x1 = 2 and x2 = x3 = 6. in this case Equation 3 becomes s+ t+ u = x4 + x5 + 9.
Since 4 ≤ s ≤ t ≤ u, after simplification we get the term −x3 in Q14 but not in Q14(H), a
contradiction.
Case3.1.2 :
If x1 = 3 and x2 = x3 = 5.
Since 4 ≤ s ≤ t ≤ u, after simplification we get the term −x4 in Q14 but not in Q14(H), a
contradiction.
Case3.1.3 :
If x1 = x2 = x3 = 4 then H has four cycles of length 8, a contradiction.
Case3.2 :
x6 6= 7.
Since the girth of H is 8, therefore x6 ≥ 8. It is given that H has three cycles of length 8, so
x1 + x2 = 8, x1 + x3 = 8 and ( x1 + x4 = 8 or x2 + x3 = 8). Therefore, we have two cases to
consider.
Case3.2.1 :
If x1 + x4 = 8.
Since x1 + x2 = 8 therefore x1 + x3 = 8 and then x2 = x3 = x4. Hence, we have either x1 = 2
and x2 = x3 = x4 = 6 or x1 = 3, x2 = x3 = 5 or x1 = x2 = x3 = x4 = 4.
Case3.2.1.1 :
If x1 = 2 and x3 = x4 = 6 then Q14(G) 6= Q14(H) because l.r.p in Q14 is −x5 and the l.r.p in
Q14(H) is −x3, a contradiction.
Case3.2.1.2 :
If x1 = 3 and x2 = x3 = 5 then Q14(G) 6= Q14(H) because l.r.p in Q14 is −x5 and the l.r.p in
Q14(H) is −x4, a contradiction.
Case3.2.1.2 :
If x1 = x2 = x3 = x4 = 4 then H has six cycles of length 6, a contradiction.
Case3.2.2 :
x2 + x3 = 8.
Since x1 + x2 = 8 therefore we obtain x1 = x2 = x3 and hence x1 = x2 = x3 = 4. In this case
Equation 3 becomes s+ t+ u = x4 + x5 + x6 and we obtain
Q18(G) = xs+13+xt+13+xu+13+4xs+5+4xt+5+4xu+5+3xs+11+3xt+11+3xu+11+xs+t+u+3+
xs+t+1 + xs+u+1 + xt+u+1 + 3xs+t+9 + 3xs+u+9 + 3xt+u+9 + 3xs+t+7 + 3xs+u+7 + 3xt+u+7 +
6x9 + x15 − (xs+t+u+1 + xs+1 + xt+1 + xu+1 + 3xs+9 + 3xt+9 + 3xu+9 + 3xs+t+5 + 3xs+u+5 +
3xt+u+5 + 3xs+14 + 3xt+14 + 3xu+14 ++xs+t+4 + xs+u+4 + xt+u+4 + 3xs+t+10 + 3xs+u+10 +
3xt+u+10 ++3xs+8 + 3xt+8 + 3xu+8 + x13 + 3x12 + x6).
Q18(H) = xx4+x5+12 + 2xx4+x6+9 + 3xx4+5 + 3xx5+x6+9 + 3xx5+10 + 3xx6+11 + 3xx4+x5+6 +
3xx4+x6+7+3xx5+5+3xx5+x6+7+xx4+4+xx5+4+4xx6+5+xx4+x5+x6+3+xx4+x5+1+xx4+x6+1+
xx5+x6+1+3xx4+10+xx6+13+3x9+x14+3x8+−(xx4+x5+13+xx5+x6+4+3xx5+x6+10+3xx4+9+
3xx5+9 + 3xx6+9 + 3xx4+x5+5 + 3xx4+x6+5 + 3xx4+7 + 3xx5+7 + 3xx6+8 +xx4+x5+3 +xx4+x6+4 +
2xx4+x6+10 + xx6+14 + xx4+x5+x6+1 + 3xx5+x6+5 + xx4+1 + xx5+1 + xx6+1 + 3x11 + x13 + x5).
By comparing the l.r.p inQ18(G) and the l.r.p inQ18(H), we have either s = 4 or t = 4 or u = 4.
If s = 4 then G ∼= θ(4, 4, 4, 4, t, u) and is χ-unique.
If t = 4 then G ∼= θ(4, 4, 4, 4, 4, u) and is χ-unique by Lemma 2.9.
If u = 4 then G ∼= θ(4, 4, 4, 4, 4, 4) and is χ-unique by Theorem 2.1.
This completes the proof of theorem.
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4 Conclusion

The coloring of graphs and hypergraphs is one of the most studied and interesting topic in graph
theory. G proper coloring of the graph is a mapping from the vertex set of the graph to the set of
k-colors such that every adjacent vertices have different labeling. The chromatic polynomial of
graph is the number of all proper coloring of graph. The chromatically equivalent graph is the
family of graphs which have same chromatic polynomial. A graph is said to be chromatically
unique if no other graph shares its chromatic polynomial. The chromaticity of graph is the
study of chromatically equivalent and chromatically unique graphs. The chromaticity of k-bridge
graph was initiated by Dong et al. [5] and since then many result about the chromaticity of
k-bridge graphs are obtained. In this paper, this study has been extended and the chromatic
uniqueness of a new family of 6-bridge graph θ(r, r, r, s, t, u), where 2 ≤ r ≤ s ≤ t ≤ u is
investigated.
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