Comultiplication-like modules and related results

Faranak Farshadifar
Communicated by Jawad Abuhlail

MSC 2010 Classifications: 13C13, 13C99.
Keywords and phrases: Comultiplication module, comultiplication-like module, codivisible module, virtually codivisible module.

Abstract Let R be a commutative ring with identity. The main purpose of this paper is to introduce the notions of comultiplication-like and virtually codivisible R-modules as generalizations of comultiplication and codivisible R-modules, respectively. Also, we explore some of theirs basis properties.

1 Introduction

Throughout this paper, R will denote a commutative ring with identity and " \subset " will denote the strict inclusion. Further, \mathbb{Z} will denote the ring of integers.

An R-module M is said to be a multiplication module if for every submodule N of M there exists an ideal I of R such that $N=I M$ [8].

An R-module M is said to be a multiplication-like module if for each non-zero submodule N of $M, A n n_{R}(M) \subset A n n_{R}(M / N)$ [9]. More information concerning this class of modules can be found in [12], [7], and [16].

An R-module M is said to be a comultiplication module if for every submodule N of M there exists an ideal I of R such that $N=\left(0:_{M} I\right)$, equivalently, for each submodule N of M, we have $N=\left(0:_{M} A n n_{R}(N)\right)$ [2].

A non-zero submodule N of an R-module M is said to be second if for each $a \in R$, the homomorphism $N \xrightarrow{a} N$ is either surjective or zero [17].

An R-module M is said to be a virtually divisible module, if $\operatorname{Ann}(M / N)=\operatorname{Ann}(M)$ for each proper submodule N of M [9].

Let R be an integral domain. An R module M is called codivisible if $\left(0:_{M} r\right)=0$, for all $0 \neq r \in R$ [6]. For example, every projective module is codivisible. Over \mathbb{Z}, or more generally over any principal ideal domain, the codivisible modules are exactly the projective modules [6].

The main purpose of this paper is to introduce the notion of comultiplication-like R-modules (this can be regarded as a dual notion of multiplication-like modules) as a generalization of comultiplication modules. Also, we investigate the first properties of this class of modules. Moreover, we introduce the notion of virtually codivisible R-modules (this can be regarded as a dual notion of virtually divisible modules) as a generalization of codivisible R-modules and obtain some related results.

2 Comultiplication-like modules

Definition 2.1. We say that an R-module M is a comultiplication-like module if for each proper submodule N of $M, A n n_{R}(M) \subset A n n_{R}(N)$.

Clearly, every comultiplication R-module is comultiplication-like, but we have not found any example where M is comultiplication-like R-module and M is not a comultiplication R-module. Therefore, we have the following question.

Question 2.2. Let M be a comultiplication-like R-module. Is M a comultiplication R-module?
Proposition 2.3. Let M be an R-module. Then we have the following.
(a) If every submodule of M is a comultiplication-like R-module, then M is a comultiplication R-module.
(b) If every homomorphic image of M is a multiplication-like R-module, then M is a multiplication R-module.

Proof. (a) Suppose that every submodule of M is a comultiplication-like R-module. First note that always for each submodule N of an R-module M, we have $A n n_{R}\left(\left(0:_{M} A n n_{R}(N)\right)\right)=$ $A n n_{R}(N)$. Assume that M is not a comultiplication R-module. Then there is a submodule N of M such that $N \subset\left(0:_{M} A n n_{R}(N)\right)$. By assumption, $\left(0:_{M} A n n_{R}(N)\right)$ is a comultiplicationlike R-module. Therefore, $A n n_{R}\left(\left(0:_{M} A n n_{R}(N)\right)\right) \subset A n n_{R}(N)$, a contradiction. Thus M is a comultiplication R-module.
(b) Let every homomorphic image of M be a multiplication-like R-module. First note that always for each submodule N of an R-module M, we have $A n n_{R}\left(M /\left(N:_{R} M\right) M\right)=$ $A n n_{R}(M / N)$. If M is not a multiplication R-module, then there is a submodule N of M such that $\left(N:_{R} M\right) M \subset N$. By assumption, $M /\left(N:_{R} M\right) M$ is a multiplication-like R-module. Hence,

$$
\begin{gathered}
\operatorname{Ann}_{R}\left(M /\left(N:_{R} M\right) M\right) \subset \operatorname{Ann}_{R}\left(\left(M /\left(N:_{R} M\right) M\right) /\left(N /\left(N:_{R} M\right) M\right)\right) \\
=\operatorname{Ann}_{R}(M / N) .
\end{gathered}
$$

This is a contradiction. Thus M is a multiplication R-module.
A submodule N of M is said to be completely irreducible if $N=\bigcap_{i \in I} N_{i}$, where $\left\{N_{i}\right\}_{i \in I}$ is a family of R-submodules of M, then $N=N_{i}$ for some $i \in I$. It is easy to see that every submodule of M is an intersection of completely irreducible submodules of M [11].

Remark 2.4. Let N and K be two submodules of an R-module M. To prove $N \subseteq K$, it is enough to show that if L is a completely irreducible submodule of M such that $K \subseteq L$, then $N \subseteq L$ [4].

In the following theorem, we provide a characterization for comultiplication-like modules.
Theorem 2.5. Let M be an R-module. Then M is a comultiplication-like module if and only if for each proper completely irreducible submodule L of M, we have $A n n_{R}(M) \subset A n n_{R}(L)$

Proof. The necessity is clear. Conversely, suppose that for each proper completely irreducible submodule L of M, we have $A n n_{R}(M) \subset A n n_{R}(L)$. Let N be a proper submodule of M. Then there exists a proper completely irreducible submodule L of M with $N \subseteq L \subset M$ by Remark 2.4. Thus $A n n_{R}(M) \subset A n n_{R}(L) \subseteq A n n_{R}(N)$ by assumption. This implies that $A n n_{R}(M) \subset A n n_{R}(N)$, as required.

Proposition 2.6. Let M be a comultiplication-like R-module. Then M is a second module if and only if $A n n_{R}(M)$ is a prime ideal of R.

Proof. First suppose that M is a second module. Then by [17], $A n n_{R}(M)$ is a prime ideal of R. Now let $A n n_{R}(M)$ is a prime ideal of $R, r \in R, r M \neq 0$, and $r M \neq M$. As M is a comultiplication-like module, $A n n_{R}(M) \neq A n n_{R}(r M)$. Thus there exists $s \in A n n_{R}(r M) \backslash$ $A n n_{R}(M)$. Hence $r s M=0$ and $s M \neq 0$. Therefore, $r M=0$, a contradiction. Hence M is a second module.

An R-module M is called indecomposable if $M \neq 0$ and M cannot be written as a direct sum of non-zero submodules.

Theorem 2.7. Let M be a second comultiplication-like R-module. Then we have the following.
(a) M is an indecomposable R-module.
(b) If M has a maximal submodule, then M is a simple R-module.

Proof. (a) Let M be a decomposable second comultiplication-like R-module. Then $M=N \oplus K$ for some non-zero submodules N and K of M. Thus $A n n_{R}(M)=A n n_{R}(N) \cap A n n_{R}(K)$. As M is second, $A n n_{R}(M)$ is a prime ideal of R. Thus $A n n_{R}(M)=A n n_{R}(N)$ or $A n n_{R}(M)=$ $A n n_{R}(K)$. This implies that $M=N$ or $M=K$ since M is a comultiplication-like R-module. This contradiction implies that M is an indecomposable R-module.
(b) Let K be a maximal submodule of M. Then $A n n_{R}(M / K)$ is a maximal ideal of R. As M is second, $A n n_{R}(M / K) M=M$ or $A n n_{R}(M / K) M=0$. If $A n n_{R}(M / K) M=M$, then $M=A n n_{R}(M / K) M \subseteq K$, a contradiction. Thus $A n n_{R}(M / K) M=0$. This implies that $A n n_{R}(M / K)=A n n_{R}(M)$ and so $A n n_{R}(M)$ is a maximal ideal of R. Thus $R / A n n_{R}(M)$ is a field. Therefore, M is a semisimple $R / A n n_{R}(M)$-module by [14, Proposition 3.7], and hence M as an R-module is semisimple. Now the result follows from part (a).

Corollary 2.8. Let M be a finitely generated second comultiplication-like R-module. Then M is a simple module.

Proof. This immediately follows from Theorem 2.7 (b).
Let M be an R-module. The subset $Z_{R}(M)$ of R, the set of zero divisors of M, is defined by $\{r \in R \mid \exists 0 \neq m \in M$ such that $r m=0\}$.

The dual notion of $Z_{R}(M)$ is denoted by $W_{R}(M)$ and defined by

$$
W(M)=\{r \in R: r M \neq M\} .
$$

Proposition 2.9. Let M be an R-module. Then $Z_{R}\left(R / A n n_{R}(M)\right) \subseteq W_{R}(M)$. Moreover, the reverse inequality holds when M is a comultiplication-like R-module.

Proof. Let $r \in Z_{R}\left(R / A n n_{R}(M)\right)$. Then there exist $\overline{0} \neq s+A n n_{R}(M) \in R / A n n_{R}(M)$ such that $r\left(s+A n n_{R}(M)\right)=\overline{0}$. This implies that $r s M=0$. If $r M=M$, then $0=s r M=s M \neq 0$, a contradiction. Therefore, $r M \neq M$. Thus $Z_{R}\left(R / A n n_{R}(M)\right) \subseteq W_{R}(M)$. Now let M be a comultiplication-like R-module and $r \in W_{R}(M)$. Then $r M \neq M$ and hence $A n n_{R}(M) \subset$ $A n n_{R}(r M)$. Thus there exists $t \in A n n_{R}(r M) \backslash A n n_{R}(M)$. Therefore, $r t M=0$ and $r M \neq 0$. It follows that $r \in Z_{R}\left(R / A n n_{R}(M)\right)$, as required.

The following example shows that the condition " M is a comultiplication-like R-module" cannot be omitted in Proposition 2.9.

Example 2.10. Let M be the \mathbb{Z}-module \mathbb{Z}. Then clearly, M is not a comultiplication-like \mathbb{Z} module. We have $W_{\mathbb{Z}}(M)=\mathbb{Z} \backslash\{1,-1\}$. But $Z_{\mathbb{Z}}\left(\mathbb{Z} / A n n_{\mathbb{Z}}(M)\right)=\{0\}$.

An R-module M is said to be co-Hopfian if every injective endomorphism f of M is an isomorphism [13].

Proposition 2.11. Let M be a comultiplication-like R-module. Then we have the following.
(a) M is co-Hopfian.
(b) For each $r \in W_{R}(M) \backslash A n n_{R}(M)$ there exists $t \in W_{R}(M) \backslash A n n_{R}(M)$ such that $r t \in$ $A n n_{R}(M)$.

Proof. (a) Let $f: M \rightarrow M$ be a monomorphism. Assume that $f(M) \neq M$. Then by assumption, there exists $r \in A n n_{R}(f(M)) \backslash A n n_{R}(M)$. Thus $f(r M)=0$ and so $r M \subseteq \operatorname{Ker}(f)=\{0\}$, a contradiction. It follows that M is a co-Hopfian R-module.
(b) Let $r \in W_{R}(M) \backslash A n n_{R}(M)$. Then $r M \neq M$. As M is a comultiplication-like R-module, $A n_{R}(M) \subset A n n_{R}(r M)$. Thus there exists $t \in A n n_{R}(r M) \backslash A n n_{R}(M)$. Hence, $r t M=0$ and $t M \neq 0$. If $t M=M$, then $r M=0$, a contradiction. Hence $t \in W_{R}(M), t \notin A n n_{R}(M)$ and $r t \in A n n_{R}(M)$.

For a submodule N of an R-module M the second radical (or second socle) of N is defined as the sum of all second submodules of M contained in N and it is denoted by $\sec (N)$ (or $\operatorname{soc}(N)$). In case N does not contain any second submodule, the second radical of N is defined to be (0) (see [10] and [3]).

Theorem 2.12. Let M be a finitely generated comultiplication-like R-module and N be a submodule of M. If $\sec (M) \subseteq N$, then $A n n_{R}(N) \subseteq \sqrt{A n n_{R}(M / N)}$.

Proof. The result follows by Proposition 2.6 and similar arguments as in the proof for Theorem 2.21 of [5].

An R-module M is said to be coreduced if $\left(L:_{M} r\right)=M$ implies that $L+\left(0:_{M} r\right)=M$, where $r \in R$ and L is a completely irreducible submodule of M [5].

Proposition 2.13. Let M be a coreduced comultiplication-like R-module. Then we have the following.
(a) If M is a finitely generated R-module, then $\sec (M)=M$.
(b) If I is an ideal of R such that $I \subseteq P$, where P is a minimal prime ideal of $A n n_{R}(M)$, then $I \subseteq W_{R}(M)$.

Proof. (a) Let M be a finitely generated R-module and $\sec (M) \neq M$. Then there exists a proper completely irreducible submodule L of M such that $\sec (M) \subseteq L$ by Remark 2.4. Hence, by Theorem 2.12, $A n n_{R}(L) \subseteq \sqrt{A n n_{R}(M / L)}$. As M is a comultiplication-like R-module and L is proper, there exits $t \in A n n_{R}(L) \backslash A n n_{R}(M)$. Therefore, $t^{n} M \subseteq L$ for some $n \in \mathbb{N}$. This implies that $t^{n+1} M=0$. But since M is coreduced, $t M=t^{2} M$ by [5, Theorem 2.13]. Therefore, $t M=0$, which is a contradiction. Thus $\sec (M)=M$.
(b) Let I be an ideal of R such that $I \subseteq P$, where P is a minimal prime ideal of $A n n_{R}(M)$. By [5, Lemma 2.15], $R / A n n_{R}(M)$ is a reduced R-module. Hence since $R / A n n_{R}(M)$ is a multiplication R-module, $I \subseteq Z_{R}\left(R / A n n_{R}(M)\right)$ by [1, 2.3]. Now as M is a comultiplicationlike R-module, $W_{R}(M)=Z_{R}\left(R / A n n_{R}(M)\right)$ by Proposition 2.9. Therefore, $I \subseteq W_{R}(M)$.

Proposition 2.14. Let R be a Noetherian ring and let M be a finitely generated R-module. If S is a multiplicatively closed subset of R such that for all ideals I, J of R with $I \subset J$, we have $\left(I:_{R} J\right) \cap S=\emptyset$, then M is a comultiplication-like R-module if and only if $S^{-1} M$ is a comultiplication-like $S^{-1} R$-module.

Proof. First note that as R is Noetherian and M is a finitely generated R-module, every submodule N of M is finitely generated. Therefore,

$$
S^{-1}\left(A n n_{R}(N)\right)=A n n_{S^{-1} R}\left(S^{-1} N\right)
$$

by [15, Lemma 9.12]. Assume that M is a comultiplication-like R-module and $S^{-1} N$ is a proper submodule of $S^{-1} M$. If $A n n_{S^{-1} R}\left(S^{-1} N\right)=A n n_{S^{-1} R}\left(S^{-1} M\right)$, then $S^{-1}\left(A n n_{R}(N)\right)=$ $S^{-1}\left(A n n_{R}(M)\right)$. This implies that $\left(A n n_{R}(N):_{R} A n n_{R}(M)\right) \cap S \neq \emptyset$ since R is Noetherian and so $A n n_{R}(M)$ is finitely generated. This contradiction shows that $A n n_{S^{-1} R}\left(S^{-1} M\right) \subset$ $A n n_{S^{-1} R}\left(S^{-1} N\right)$, as needed. Conversely, suppose that $S^{-1} M$ is a comultiplication-like $S^{-1} R$ module and N is a proper submodule of M. If $S^{-1} N=S^{-1} M$, then we can conclude that $\left(A n n_{R}(N):_{R} A n n_{R}(M)\right) \cap S \neq \emptyset$, a contradiction. Thus $S^{-1} N \neq S^{-1} M$ and so by assumption, $A n n_{S^{-1} R}\left(S^{-1} N\right) \neq A n n_{S^{-1} R}\left(S^{-1} M\right)$. It follows that $A n n_{R}(M)=A n n_{R}(N)$ as requested.

3 Virtually codivisible modules

Definition 3.1. Let M be a non-zero R-module. We say that M is a virtually codivisible module, if $\operatorname{Ann}(N)=\operatorname{Ann}(M)$ for each non-zero submodule N of M. Also, we say that M is a weakly virtually codivisible module, if $\operatorname{Ann}(L)=\operatorname{Ann}(M)$ for each non-zero completely irreducible submodule L of M.

Remark 3.2. It is clear that every virtually codivisible R-module is weakly virtually codivisible but the converse is not true. For example, $M=\mathbb{Z}_{p^{\infty}} \oplus \mathbb{Z}_{p^{\infty}}$, where p is a prime number, is a weakly virtually codivisible \mathbb{Z}-module but it is not a virtually codivisible \mathbb{Z}-module.

Example 3.3. (a) Let R be an integral domain. If M is a non-zero codivisible R-module, then it is clear that for each non-zero submodule N of M, we have $\operatorname{Ann}(N)=\operatorname{Ann}(M)=0$. Thus every codivisible R-module is virtually codivisible but the converse is not true (for example, every non-simple homogeneous cosemisimple \mathbb{Z}-module M is virtually codivisible but it is not a codivisible \mathbb{Z}-module).
(b) Now let R be a commutative ring (not necessarily a domain) and M be a homogeneous cosemisimple R-module. It is clear that $\operatorname{Ann}(M)$ is a maximal ideal and so for each non-zero submodule N of M we have $\operatorname{Ann}(N)=\operatorname{Ann}(M)$. Hence, every homogeneous cosemisimple R-module is virtually codivisible.

Proposition 3.4. Let M be an R-module with $P=\operatorname{Ann}(M)$. Then M is virtually codivisible if and only if P is a prime ideal and M is a codivisible R / P-module.

Proof. Let M be a virtually codivisible R-module. Let $a b \in P$, where $a, b \in R$. Assume that $a M \neq 0$. If $\left(0:_{M} a\right) \neq 0$, then $\operatorname{Ann}_{R}\left(\left(0:_{M} a\right)\right)=A n n_{R}(M)=P$ since M is virtually codivisible and so $a \in A n n_{R}\left(\left(0:_{M} a\right)\right)=A n n_{R}(M)$, a contradiction. Thus $\left(0:_{M} a\right)=0$ and so $\left.\left(0:_{M} b\right)=\left(0:_{M} a\right):_{M} b\right)=\left(0:_{M} a b\right)=M$. It follows that $b \in A n n_{R}(M)=P$. Therefore, P is a prime ideal of R. Now, let $0 \neq r \in R \backslash P$. Then $r M \neq 0$. If $\left(0:_{M} r\right) \neq 0$, then $r \in A n n_{R}\left(\left(0:_{M} r\right)\right)=A n n_{R}(M)=P$, a contradiction. Thus $\left(0:_{M} r\right)=0$ i.e., $\left(0:_{M} r+P\right)=0$ and so M is codivisible as a R / P-module.. The converse is clear.

In the following theorem there are several characterizations for a virtually codivisible R module.

Theorem 3.5. Let M be an R-module. Then the following are equivalent.
(a) M is virtually codivisible.
(b) $P=\operatorname{Ann}(M)$ is a prime ideal and M is a codivisible R / P-module.
(c) Each direct summand of M is a virtually codivisible module.
(d) For each $a \in R$, we have $\left(0:_{M} a\right)=0$ or $a M=0$.
(e) For each ideal I of R, we have $\left(0:_{M} I\right)=0$ or $I M=0$.

Proof. The equivalence of (a) and (b) is from Proposition 3.4 and the equivalence of (d) and (e) is clear.
$(b) \Rightarrow(c)$ Let N be a direct summand of M. Then $M=N \oplus K$, for some submodule K of M. If $N=M$, then we are done. Let $N \neq M$. Since $P=A n n_{R}(M)$ is a prime ideal and M is a codivisible R / P-module, the submodule K is also a codivisible R / P-module. Now by $(a) \Rightarrow(b), A n n_{R}(M / N)=A n n_{R}(M)=P$ and N a codivisible R / P-module (since, $M / N \cong K$). Thus N is a virtually codivisible R-module.
$(c) \Rightarrow(a)$ This is clear.
$(b) \Rightarrow(d)$ Let $a \in R$ and $a M \neq 0$. Then $a \notin A n n_{R}(M)=P$. As M is a codivisible R / P-module, $\left(0:_{M}(a+P)=0\right.$ i.e., $\left(0:_{M} a\right)=0$.
$(d) \Rightarrow(b)$ Let $a, b \in R$ and $a b M=0$. If $b M \neq 0$ then by our hypothesis $\left(0:_{M} b\right)=0$. Now $a b M=0$ implies that

$$
M=\left(0:_{M} a b\right)=\left(\left(0:_{M} b\right):_{M} a\right)=\left(0:_{M} a\right)
$$

So $a M=0$. Thus $P=A n n_{R}(M)$ is a prime ideal. Now let $r \in R \backslash P$. Then $\left(0:_{M} r\right)=0$ and so $\left(0:_{M} r+P\right)=0$. Thus M is a codivisible R / P-module.

Next, we determine virtually codivisible modules over one-dimensional dimensional domains.

Corollary 3.6. Let R be an integral domain with $\operatorname{dim}(R)=1$ and let M be an R-module. Then M is a virtually codivisible R-module if and only if one of the following statements hold.
(a) M is a homogeneous cosemisimple module.
(b) M is a codivisible module.

Proof. \Rightarrow Let M be a virtually codivisible R-module. By Proposition 3.4, $P=A n n_{R}(M)$ is a prime ideal of R and M is a codivisible R / P-module. If $P=0$, then M is a codivisible R-module but, if $P \neq 0$, then P is a maximal ideal and so M is a homogeneous semisimple module.
\Leftarrow This immediately follows from Theorem 3.5.
Remark 3.7. Let R be a domain which is not a field. Then every codivisible R-module M has no minimal submodule, for otherwise if M is a codivisible R-module with a minimal submodule N, then $A n n_{R}(N)=P$ is a maximal ideal of R. This means that $N \subseteq\left(0:_{M} P\right)=0$, a contradiction.

The following proposition shows that if M is a finitely cogenerated module, then homogeneous cosemisimpility and virtually codivisibility of M coincide.

Proposition 3.8. Let M be a finitely cogenerated R-module. Then M is virtually codivisible if and only if M is a homogeneous cosemisimple module.

Proof. Let M be a finitely cogenerated virtually codivisible R-module. Then by Proposition 3.4, $P=A n n_{R}(M)$ is a prime ideal of R and M is a divisible R / P-module. If P is not a maximal ideal of R , then R / P is a domain which is not a field. By Remark 3.7, M as an R / P-module has no minimal submodule, this is a contradiction (since M is a finitely cogenerated R / P-module). Therefore, P is a maximal ideal of R and so, M is a homogeneous cosemisimple module.

References

[1] D. F. Anderson, Sh. Ghalandarzadeh, S. Shirinkam, and P. Malakooti Rad, On the diameter of the graph $\Gamma_{\operatorname{Ann}(M)}(R)$, Filomat, 26(3), 623-629 (2012).
[2] H. Ansari-Toroghy and F. Farshadifar, The dual notion of multiplication modules, Taiwanese J. Math. 11 (4), 1189-1201 (2007).
[3] H. Ansari-Toroghy and F. Farshadifar, On the dual notion of prime submodules, Algebra Colloq. 19 (Spec 1), 1109-1116 (2012).
[4] H. Ansari-Toroghy and F. Farshadifar, The dual notion of some generalizations of prime submodules, Comm. Algebra, 39 (2011), 2396-2416.
[5] H. Ansari-Toroghy, F. Farshadifar, and F. Mahboobi-Abkenara, On the ideal-based zero-divisor graphs, International Electronic Journal of Algebra, 23, 115-130 (2018).
[6] H. Ansari-Toroghy and S. Keyvani, The dual notion of divisible modules, Far East Journal of Mathematical Sciences 52 (2), 171-178 (2011).
[7] S. Babaei, Sh. Payrovi, and E.S. Sevim, A Submodule-Based Zero Divisor Graph for Modules, Iranian Journal of Mathematical Sciences and Informatics, 14 (1), 147-157 (2019).
[8] A. Barnard, Multiplication modules, J. Algebra 71, 174-178 (1981).
[9] M. Behboodi, Zero divisor graphs for modules over commutative rings, J. Commut. Algebra 4 (2), 175197 (2012).
[10] S. Çeken, M. Alkan, and P. F. Smith, Second modules over noncommutative rings, Comm. Algebra, 41 (1), 83-98 (2013).
[11] L. Fuchs, W. Heinzer, and B. Olberding, Commutative ideal theory without finiteness conditions: Irreducibility in the quotient filed, in : Abelian Groups, Rings, Modules, and Homological Algebra, Lect. Notes Pure Appl. Math. 249, 121-145 (2006).
[12] A. Haghany and M.R. Vedadi, Endoprime Modules, Acta Math. Hungarca, 106, 89-99 (2002).
[13] A. Haghang and M.R. Vedali, Modules whose injective endomorphism are essential, Journal of Algebra, 243, 765-779 (2001).
[14] D.W. Sharpe and P. Vamos, Injective modules, Cambridge University Press, 1972.
[15] R. Y. Sharp, Step in commutative algebra, Cambridge University Press, 1990.
[16] R.Wisbauer, Modules and algebras, Bimodule Structure and Group Action on Algebras, Pitman Mono 81, Addison-Wesley-Longman, Chicago, 1996.
[17] S. Yassemi, The dual notion of prime submodules, Arch. Math (Brno) 37, 273-278 (2001).

Author information

Faranak Farshadifar, Department of Mathematics, Farhangian University, Tehran, Iran.
E-mail: f.farshadifar@cfu.ac.ir
Received: May 7, 2020.
Accepted: August 9, 2020.

