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Abstract Let R be a commutative ring with identity. The main purpose of this paper is to
introduce the notions of comultiplication-like and virtually codivisible R-modules as general-
izations of comultiplication and codivisible R-modules, respectively. Also, we explore some of
theirs basis properties.

1 Introduction

Throughout this paper, R will denote a commutative ring with identity and "⊂" will denote the
strict inclusion. Further, Z will denote the ring of integers.

An R-module M is said to be a multiplication module if for every submodule N of M there
exists an ideal I of R such that N = IM [8].

An R-module M is said to be a multiplication-like module if for each non-zero submodule N
of M , AnnR(M) ⊂ AnnR(M/N) [9]. More information concerning this class of modules can
be found in [12], [7], and [16].

An R-module M is said to be a comultiplication module if for every submodule N of M
there exists an ideal I of R such that N = (0 :M I), equivalently, for each submodule N of M ,
we have N = (0 :M AnnR(N)) [2].

A non-zero submodule N of an R-module M is said to be second if for each a ∈ R, the
homomorphism N

a→ N is either surjective or zero [17].
An R-module M is said to be a virtually divisible module, if Ann(M/N) = Ann(M) for

each proper submodule N of M [9].
Let R be an integral domain. An R module M is called codivisible if (0 :M r) = 0, for all

0 6= r ∈ R [6]. For example, every projective module is codivisible. Over Z, or more generally
over any principal ideal domain, the codivisible modules are exactly the projective modules [6].

The main purpose of this paper is to introduce the notion of comultiplication-like R-modules
(this can be regarded as a dual notion of multiplication-like modules) as a generalization of
comultiplication modules. Also, we investigate the first properties of this class of modules.
Moreover, we introduce the notion of virtually codivisible R-modules (this can be regarded as
a dual notion of virtually divisible modules) as a generalization of codivisible R-modules and
obtain some related results.

2 Comultiplication-like modules

Definition 2.1. We say that an R-module M is a comultiplication-like module if for each proper
submodule N of M , AnnR(M) ⊂ AnnR(N).

Clearly, every comultiplication R-module is comultiplication-like, but we have not found any
example where M is comultiplication-like R-module and M is not a comultiplication R-module.
Therefore, we have the following question.

Question 2.2. Let M be a comultiplication-like R-module. Is M a comultiplication R-module?

Proposition 2.3. Let M be an R-module. Then we have the following.
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(a) If every submodule of M is a comultiplication-like R-module, then M is a comultiplication
R-module.

(b) If every homomorphic image of M is a multiplication-like R-module, then M is a multipli-
cation R-module.

Proof. (a) Suppose that every submodule of M is a comultiplication-like R-module. First note
that always for each submodule N of an R-module M , we have AnnR((0 :M AnnR(N))) =
AnnR(N). Assume that M is not a comultiplication R-module. Then there is a submodule N
of M such that N ⊂ (0 :M AnnR(N)). By assumption, (0 :M AnnR(N)) is a comultiplication-
like R-module. Therefore, AnnR((0 :M AnnR(N))) ⊂ AnnR(N), a contradiction. Thus M is
a comultiplication R-module.

(b) Let every homomorphic image of M be a multiplication-like R-module. First note
that always for each submodule N of an R-module M , we have AnnR(M/(N :R M)M) =
AnnR(M/N). If M is not a multiplication R-module, then there is a submodule N of M such
that (N :R M)M ⊂ N . By assumption, M/(N :R M)M is a multiplication-like R-module.
Hence,

AnnR(M/(N :R M)M) ⊂ AnnR((M/(N :R M)M)/(N/(N :R M)M))

= AnnR(M/N).

This is a contradiction. Thus M is a multiplication R-module.

A submodule N of M is said to be completely irreducible if N =
⋂

i∈I Ni, where {Ni}i∈I
is a family of R-submodules of M , then N = Ni for some i ∈ I . It is easy to see that every
submodule of M is an intersection of completely irreducible submodules of M [11].

Remark 2.4. Let N and K be two submodules of an R-module M . To prove N ⊆ K, it is
enough to show that if L is a completely irreducible submodule of M such that K ⊆ L, then
N ⊆ L [4].

In the following theorem, we provide a characterization for comultiplication-like modules.

Theorem 2.5. Let M be an R-module. Then M is a comultiplication-like module if and only if
for each proper completely irreducible submodule L of M , we have AnnR(M) ⊂ AnnR(L)

Proof. The necessity is clear. Conversely, suppose that for each proper completely irreducible
submodule L of M , we have AnnR(M) ⊂ AnnR(L). Let N be a proper submodule of M .
Then there exists a proper completely irreducible submodule L of M with N ⊆ L ⊂ M by
Remark 2.4. Thus AnnR(M) ⊂ AnnR(L) ⊆ AnnR(N) by assumption. This implies that
AnnR(M) ⊂ AnnR(N), as required.

Proposition 2.6. Let M be a comultiplication-like R-module. Then M is a second module if and
only if AnnR(M) is a prime ideal of R.

Proof. First suppose that M is a second module. Then by [17], AnnR(M) is a prime ideal of
R. Now let AnnR(M) is a prime ideal of R, r ∈ R, rM 6= 0, and rM 6= M . As M is a
comultiplication-like module, AnnR(M) 6= AnnR(rM). Thus there exists s ∈ AnnR(rM) \
AnnR(M). Hence rsM = 0 and sM 6= 0. Therefore, rM = 0, a contradiction. Hence M is a
second module.

An R-module M is called indecomposable if M 6= 0 and M cannot be written as a direct
sum of non-zero submodules.

Theorem 2.7. Let M be a second comultiplication-like R-module. Then we have the following.

(a) M is an indecomposable R-module.

(b) If M has a maximal submodule, then M is a simple R-module.
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Proof. (a) Let M be a decomposable second comultiplication-like R-module. Then M = N⊕K
for some non-zero submodules N and K of M . Thus AnnR(M) = AnnR(N) ∩ AnnR(K). As
M is second, AnnR(M) is a prime ideal of R. Thus AnnR(M) = AnnR(N) or AnnR(M) =
AnnR(K). This implies that M = N or M = K since M is a comultiplication-like R-module.
This contradiction implies that M is an indecomposable R-module.

(b) Let K be a maximal submodule of M . Then AnnR(M/K) is a maximal ideal of R. As
M is second, AnnR(M/K)M = M or AnnR(M/K)M = 0. If AnnR(M/K)M = M , then
M = AnnR(M/K)M ⊆ K, a contradiction. Thus AnnR(M/K)M = 0. This implies that
AnnR(M/K) = AnnR(M) and so AnnR(M) is a maximal ideal of R. Thus R/AnnR(M) is a
field. Therefore, M is a semisimple R/AnnR(M)-module by [14, Proposition 3.7], and hence
M as an R-module is semisimple. Now the result follows from part (a).

Corollary 2.8. Let M be a finitely generated second comultiplication-like R-module. Then M
is a simple module.

Proof. This immediately follows from Theorem 2.7 (b).

Let M be an R-module. The subset ZR(M) of R, the set of zero divisors of M , is defined by
{r ∈ R|∃0 6= m ∈Msuch that rm = 0}.

The dual notion of ZR(M) is denoted by WR(M) and defined by

W (M) = {r ∈ R : rM 6= M}.

Proposition 2.9. Let M be an R-module. Then ZR(R/AnnR(M)) ⊆ WR(M). Moreover, the
reverse inequality holds when M is a comultiplication-like R-module.

Proof. Let r ∈ ZR(R/AnnR(M)). Then there exist 0̄ 6= s + AnnR(M) ∈ R/AnnR(M) such
that r(s+AnnR(M)) = 0̄. This implies that rsM = 0. If rM = M , then 0 = srM = sM 6= 0,
a contradiction. Therefore, rM 6= M . Thus ZR(R/AnnR(M)) ⊆ WR(M). Now let M be
a comultiplication-like R-module and r ∈ WR(M). Then rM 6= M and hence AnnR(M) ⊂
AnnR(rM). Thus there exists t ∈ AnnR(rM) \ AnnR(M). Therefore, rtM = 0 and rM 6= 0.
It follows that r ∈ ZR(R/AnnR(M)), as required.

The following example shows that the condition "M is a comultiplication-like R-module"
cannot be omitted in Proposition 2.9.

Example 2.10. Let M be the Z-module Z. Then clearly, M is not a comultiplication-like Z-
module. We have WZ(M) = Z \ {1,−1}. But ZZ(Z/AnnZ(M)) = {0}.

An R-module M is said to be co-Hopfian if every injective endomorphism f of M is an
isomorphism [13].

Proposition 2.11. Let M be a comultiplication-like R-module. Then we have the following.

(a) M is co-Hopfian.

(b) For each r ∈ WR(M) \ AnnR(M) there exists t ∈ WR(M) \ AnnR(M) such that rt ∈
AnnR(M).

Proof. (a) Let f : M →M be a monomorphism. Assume that f(M) 6= M . Then by assumption,
there exists r ∈ AnnR(f(M)) \ AnnR(M). Thus f(rM) = 0 and so rM ⊆ Ker(f) = {0}, a
contradiction. It follows that M is a co-Hopfian R-module.

(b) Let r ∈WR(M)\AnnR(M). Then rM 6= M . As M is a comultiplication-like R-module,
AnR(M) ⊂ AnnR(rM). Thus there exists t ∈ AnnR(rM) \ AnnR(M). Hence, rtM = 0 and
tM 6= 0. If tM = M , then rM = 0, a contradiction. Hence t ∈ WR(M), t 6∈ AnnR(M) and
rt ∈ AnnR(M).

For a submodule N of an R-module M the second radical (or second socle) of N is defined as
the sum of all second submodules of M contained in N and it is denoted by sec(N) (or soc(N)).
In case N does not contain any second submodule, the second radical of N is defined to be (0)
(see [10] and [3]).
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Theorem 2.12. Let M be a finitely generated comultiplication-like R-module and N be a sub-
module of M . If sec(M) ⊆ N , then AnnR(N) ⊆

√
AnnR(M/N).

Proof. The result follows by Proposition 2.6 and similar arguments as in the proof for Theorem
2.21 of [5].

An R-module M is said to be coreduced if (L :M r) = M implies that L+ (0 :M r) = M ,
where r ∈ R and L is a completely irreducible submodule of M [5].

Proposition 2.13. Let M be a coreduced comultiplication-like R-module. Then we have the
following.

(a) If M is a finitely generated R-module, then sec(M) = M .

(b) If I is an ideal of R such that I ⊆ P , where P is a minimal prime ideal of AnnR(M), then
I ⊆WR(M).

Proof. (a) Let M be a finitely generated R-module and sec(M) 6= M . Then there exists a
proper completely irreducible submodule L of M such that sec(M) ⊆ L by Remark 2.4. Hence,
by Theorem 2.12, AnnR(L) ⊆

√
AnnR(M/L). As M is a comultiplication-like R-module and

L is proper, there exits t ∈ AnnR(L) \ AnnR(M). Therefore, tnM ⊆ L for some n ∈ N.
This implies that tn+1M = 0. But since M is coreduced, tM = t2M by [5, Theorem 2.13].
Therefore, tM = 0, which is a contradiction. Thus sec(M) = M .

(b) Let I be an ideal of R such that I ⊆ P , where P is a minimal prime ideal of AnnR(M).
By [5, Lemma 2.15], R/AnnR(M) is a reduced R-module. Hence since R/AnnR(M) is a
multiplication R-module, I ⊆ ZR(R/AnnR(M)) by [1, 2.3]. Now as M is a comultiplication-
like R-module, WR(M) = ZR(R/AnnR(M)) by Proposition 2.9. Therefore, I ⊆WR(M).

Proposition 2.14. Let R be a Noetherian ring and let M be a finitely generated R-module. If
S is a multiplicatively closed subset of R such that for all ideals I, J of R with I ⊂ J , we
have (I :R J) ∩ S = ∅, then M is a comultiplication-like R-module if and only if S−1M is a
comultiplication-like S−1R-module.

Proof. First note that as R is Noetherian and M is a finitely generated R-module, every submod-
ule N of M is finitely generated. Therefore,

S−1(AnnR(N)) = AnnS−1R(S
−1N)

by [15, Lemma 9.12]. Assume that M is a comultiplication-like R-module and S−1N is a
proper submodule of S−1M . If AnnS−1R(S

−1N) = AnnS−1R(S
−1M), then S−1(AnnR(N)) =

S−1(AnnR(M)). This implies that (AnnR(N) :R AnnR(M)) ∩ S 6= ∅ since R is Noethe-
rian and so AnnR(M) is finitely generated. This contradiction shows that AnnS−1R(S

−1M) ⊂
AnnS−1R(S

−1N), as needed. Conversely, suppose that S−1M is a comultiplication-like S−1R-
module and N is a proper submodule of M . If S−1N = S−1M , then we can conclude that
(AnnR(N) :R AnnR(M)) ∩ S 6= ∅, a contradiction. Thus S−1N 6= S−1M and so by as-
sumption, AnnS−1R(S

−1N) 6= AnnS−1R(S
−1M). It follows that AnnR(M) = AnnR(N) as

requested.

3 Virtually codivisible modules

Definition 3.1. Let M be a non-zero R-module. We say that M is a virtually codivisible module,
if Ann(N) = Ann(M) for each non-zero submodule N of M . Also, we say that M is a weakly
virtually codivisible module, if Ann(L) = Ann(M) for each non-zero completely irreducible
submodule L of M .

Remark 3.2. It is clear that every virtually codivisible R-module is weakly virtually codivisible
but the converse is not true. For example, M = Zp∞ ⊕ Zp∞ , where p is a prime number, is a
weakly virtually codivisible Z-module but it is not a virtually codivisible Z-module.
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Example 3.3. (a) Let R be an integral domain. If M is a non-zero codivisible R-module, then it
is clear that for each non-zero submodule N of M , we have Ann(N) = Ann(M) = 0. Thus
every codivisible R-module is virtually codivisible but the converse is not true (for example,
every non-simple homogeneous cosemisimple Z-module M is virtually codivisible but it is
not a codivisible Z-module).

(b) Now let R be a commutative ring (not necessarily a domain) and M be a homogeneous
cosemisimple R-module. It is clear that Ann(M) is a maximal ideal and so for each
non-zero submodule N of M we have Ann(N) = Ann(M). Hence, every homogeneous
cosemisimple R-module is virtually codivisible.

Proposition 3.4. Let M be an R-module with P = Ann(M). Then M is virtually codivisible if
and only if P is a prime ideal and M is a codivisible R/P -module.

Proof. Let M be a virtually codivisible R-module. Let ab ∈ P , where a, b ∈ R. Assume that
aM 6= 0. If (0 :M a) 6= 0, then AnnR((0 :M a)) = AnnR(M) = P since M is virtually
codivisible and so a ∈ AnnR((0 :M a)) = AnnR(M), a contradiction. Thus (0 :M a) = 0
and so (0 :M b) = (0 :M a) :M b) = (0 :M ab) = M . It follows that b ∈ AnnR(M) = P .
Therefore, P is a prime ideal of R. Now, let 0 6= r ∈ R \ P . Then rM 6= 0. If (0 :M r) 6= 0,
then r ∈ AnnR((0 :M r)) = AnnR(M) = P , a contradiction. Thus (0 :M r) = 0 i.e.,
(0 :M r + P ) = 0 and so M is codivisible as a R/P -module.. The converse is clear.

In the following theorem there are several characterizations for a virtually codivisible R-
module.

Theorem 3.5. Let M be an R-module. Then the following are equivalent.

(a) M is virtually codivisible.

(b) P = Ann(M) is a prime ideal and M is a codivisible R/P -module.

(c) Each direct summand of M is a virtually codivisible module.

(d) For each a ∈ R, we have (0 :M a) = 0 or aM = 0.

(e) For each ideal I of R, we have (0 :M I) = 0 or IM = 0.

Proof. The equivalence of (a) and (b) is from Proposition 3.4 and the equivalence of (d) and (e)
is clear.

(b) ⇒ (c) Let N be a direct summand of M . Then M = N ⊕ K, for some submodule
K of M . If N = M , then we are done. Let N 6= M . Since P = AnnR(M) is a prime
ideal and M is a codivisible R/P -module, the submodule K is also a codivisible R/P -module.
Now by (a) ⇒ (b), AnnR(M/N) = AnnR(M) = P and N a codivisible R/P -module (since,
M/N ∼= K). Thus N is a virtually codivisible R-module.

(c)⇒ (a) This is clear.
(b) ⇒ (d) Let a ∈ R and aM 6= 0. Then a 6∈ AnnR(M) = P . As M is a codivisible

R/P -module, (0 :M (a+ P ) = 0 i.e., (0 :M a) = 0.
(d)⇒ (b) Let a, b ∈ R and abM = 0. If bM 6= 0 then by our hypothesis (0 :M b) = 0. Now

abM = 0 implies that

M = (0 :M ab) = ((0 :M b) :M a) = (0 :M a).

So aM = 0. Thus P = AnnR(M) is a prime ideal. Now let r ∈ R \ P . Then (0 :M r) = 0 and
so (0 :M r + P ) = 0. Thus M is a codivisible R/P -module.

Next, we determine virtually codivisible modules over one-dimensional dimensional do-
mains.

Corollary 3.6. Let R be an integral domain with dim(R) = 1 and let M be an R-module. Then
M is a virtually codivisible R-module if and only if one of the following statements hold.

(a) M is a homogeneous cosemisimple module.

(b) M is a codivisible module.
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Proof. ⇒ Let M be a virtually codivisible R-module. By Proposition 3.4, P = AnnR(M) is
a prime ideal of R and M is a codivisible R/P -module. If P = 0, then M is a codivisible
R-module but, if P 6= 0, then P is a maximal ideal and so M is a homogeneous semisimple
module.
⇐ This immediately follows from Theorem 3.5.

Remark 3.7. Let R be a domain which is not a field. Then every codivisible R-module M has
no minimal submodule, for otherwise if M is a codivisible R-module with a minimal submodule
N , then AnnR(N) = P is a maximal ideal of R. This means that N ⊆ (0 :M P ) = 0, a
contradiction.

The following proposition shows that if M is a finitely cogenerated module, then homoge-
neous cosemisimpility and virtually codivisibility of M coincide.

Proposition 3.8. Let M be a finitely cogenerated R-module. Then M is virtually codivisible if
and only if M is a homogeneous cosemisimple module.

Proof. Let M be a finitely cogenerated virtually codivisible R-module. Then by Proposition 3.4,
P = AnnR(M) is a prime ideal of R and M is a divisible R/P -module. If P is not a maximal
ideal of R, then R/P is a domain which is not a field. By Remark 3.7, M as an R/P -module has
no minimal submodule, this is a contradiction (since M is a finitely cogenerated R/P -module).
Therefore, P is a maximal ideal of R and so, M is a homogeneous cosemisimple module.
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