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Abstract Let R be a ring and e be an idempotent element of R, then R is said to be an e-
reversible ring if ab = 0 implies bae = 0 and we call R a strongly e-reversible ring if ab = 0
implies bea = 0, for all a, b ∈ R. We provide a number of examples of e-reversible and non e-
reversible rings. We characterize (strongly) e-reversible rings. Also, we study various properties
and extensions of (strongly) e-reversible rings.

1 Introduction and Preliminaries

The study of reversible rings, which are generalization of reduced rings, is meaningful in Ring
Theory. Throughout all rings are associative and noncommutative with identity unless otherwise
stated. We denote the center, the set of all nilpotent elements and the set of all idempotent
elements of a ring R by Z(R), N(R) and E(R), respectively. Let Mn(R), Tn(R) and Dn(R)
be the ring of all n × n matrices, upper triangular matrices and diagonal matrices over the ring
R, respectively. Eij ∈ Mn(R) denotes the matrix with (i, j)th entry 1R (the identity of R) and
elsewhere 0R (the zero of R). We refer readers to [8] for all undefined terms and notions.

We begin by defining the notions of (strongly) e-reversible rings.

Definition 1.1. Let R be a ring and e ∈ E(R).

(i) If ab = 0 implies bae = 0 for all a, b ∈ R, then R is said to be e-reversible.

(ii) If ab = 0 implies bea = 0 for all a, b ∈ R, then R is said to be strongly e-reversible.

According to [2], a ring R is called reversible if ab = 0 implies ba = 0.

Example 1.2. (i) Every reversible ring is e-reversible for any idempotent element e of the ring,
but the converse need not be true. In support, let R = T2(D) where D is a domain. Then

a. R is an E11-reversible ring by Corollary 2.3(i), and

b. R is not reversible because if, we take A = E12, B = E11 ∈ R, then AB = 0 while
BA = E12 6= 0.

(ii) Every strongly e-reversible ring is e-reversible for any idempotent element e of the ring; it
follows from Theorem 2.4 − 2.5, as we will subsequently prove. But the converse need not
be true. In support, consider the ring R from Example 1.2(i). Then

a. R is an E11-reversible ring; and

b. R is not strongly E11-reversible because if, we take A =

[
0 1
0 1

]
, B =

[
1 0
0 0

]
∈ R,

then AB =

[
0 0
0 0

]
but BE11A =

[
0 1
0 0

]
6= 0.
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In [9], a ringR is said to be symmetric if abc = 0 implies acb = 0, for all a, b, c ∈ R. It is clear
that symmetric rings are reversible but not conversely (see [10, Example 5]). Recently, F. Meng
and J. Wei [11] defined the notion of an (strongly) e-symmetric ring where e is an idempotent
element of R, which is a generalization of a symmetric ring. A ring R is said to be (strongly)
e-symmetric if for any a, b, c ∈ R, abc = 0 implies (aceb = 0) acbe = 0. A ring R is called
reduced if it has no nonzero nilpotent elements. A ring R is said to be a right e-reduced ring if
N(R)e = 0. We now find some relations between (strongly) e-reversible rings and these rings.

Example 1.3. (i) Every e-symmetric ring R is e-reversible, where e ∈ E(R). Let R be a ring
which is reversible but not symmetric (for such a ring see [10, Example 5]). Then T2(R)
is E11-reversible by Corollary 2.3(i). But T2(R) is not E11-symmetric by [12, Proposition
4.1(1)].

(ii) Every strongly e-symmetric ring R is strongly e-reversible for e ∈ E(R). Consider a ring
R (see [10, Example 5]), it is strongly 1R-reversible but not strongly 1R-symmetric.

(iii) It follows from [11, Corollary 4.3] that for e ∈ E(R), a right e-reduced ring is e-reversible.

Recall [7], a ring R is said to be semicommutative if for any a, b ∈ R, ab = 0 implies
aRb = 0. Recall [11], a ring R is said to be abelian if all idempotents of R are central.

Lemma 1.4. A semiprime and semicommutative ring R is (strongly) e-reversible for any e ∈
E(R).

Proof. Clear.

Remark 1.5. The converse of Lemma 1.4 need not be true. Consider, a ring R from Example
2.8(ii). Then R is e-reversible but not abelian. Since semicommutative rings are abelian by [4,
Lemma 1] , therefore R is not semicommutative.

Example 1.6. Let R =

[
F F

0 F

]
, where F is any field and let I =

[
F F

0 0

]
be an ideal of R.

Then

(i) R/I is (strongly) ē-reversible for any ē ∈ E(R/I) because R/I ' F .

(ii) R is not an e-reversible ring for e = E22 as if, we take A =

[
0 1
0 1

]
, B =

[
1 1
0 0

]
, then

AB = 0 while BAe =

[
0 2
0 0

]
6= 0.

(iii) R is not strongly e-reversible.

Lemma 1.7. Let D be a division ring and R = D < x, y > be the free D-algebra in two
noncommutating variables x and y. Then

(i) R is an (strongly) 1R-reversible ring.

(ii) For ideal I =< xy >,R/I is not (strongly) 1̄R-reversible.

Example 1.8. Let S = R/I , where R = D < x, y > be the free D-algebra in two noncommu-
tating variables x and y, D be a division ring and I =< xy >. Let a = x + I , b = y + I and
e = I , then ab = 0. Also, bea = (y+ I)I(x+ I) = 0 in R/I but ba = (y+ I)(x+ I) 6= 0. Then
S is a strongly e-reversible ring but not a reversible ring.

Recall [11], an idempotent e of a ringR is said to be left (right) semicentral if ae = eae (ea =
eae) for each a ∈ R.

Proposition 1.9. Let I be a reduced ideal of a ring R and e ∈ E(R).

(i) For any ē ∈ E(R/I), if R/I is an ē-reversible and e is left semicentral, then R is an
e-reversible ring.
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(ii) For any ē ∈ E(R/I), if R/I is a strongly ē-reversible ring, then R is a strongly e-reversible
ring.

Proof. (1). Let a, b ∈ R such that ab = 0. Then ab ∈ I and so bae ∈ I because R/I is ē-
reversible. As ab = 0 and e is left semicentral, we have (bae)2 = baebae = babae = 0. Since I
is a reduced ring, therefore bae = 0. Hence R is an e-reversible ring.

(2). It is analogous to (1).

Lemma 1.10. Let S be any subring of a ring R and e ∈ E(S). If R is e-reversible (strongly
e-reversible), then S is also e-reversible (strongly e-reversible).

Lemma 1.11. Let (Ri)i∈I be a family of rings and (ei)i∈I ∈ E(Πi∈IRi). Then Πi∈IRi is an
(ei)i∈I -reversible ring if and only if for each i ∈ I , Ri is an ei-reverssible ring.

Corollary 1.12. For a central idempotent element e of the ring R, eR and (1 − e)R are e-
reversible rings if and only if R is an e-reversible ring.

2 e-Reversible and Strongly e-reversible Rings

In this section, we provide characterizations of reversible rings; (strongly) e-reversible rings;
(strongly)left minimal abelian rings; left quasi-duo rings. Finally, we discuss some equivalent
classes of rings over a semiprime ring.

Theorem 2.1. Given a ring R containing an idempotent e ∈ E(R), for any r1, r2, r3, · · · , rn−1 ∈
R define the idempotent X of the ring Tn(R) of upper triangular n by n matrices over R to be

X =


e er1 · · · ern−1

0 0 · · · 0
...

...
. . .

...
0 0 0 0

. Then R is e-reversible if and only if Tn(R) is X-reversible.

Proof. Let a, b ∈ R such that ab = 0. If we take A = aE11, B = bE11 ∈ Tn(R), then AB = 0
and so BAX = 0, because Tn(R) is X-reversible. This implies that bae = 0. Thus, R is
e-reversible. Conversely, let A = [aij ], B = [bij ] ∈ Tn(R) such that AB = 0, then we have
aiibii = 0∀ 1 ≤ i ≤ n and so biiaiie = 0∀ 1 ≤ i ≤ n, due to R is e-reversible. So,

BAX =


b11a11e b11a11er1 · · · b11a11ern−1

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 = 0.

Thus, Tn(R) is X-reversible.

Remark 2.2. (i) If e = 1, then R is a reversible ring if and only if Tn(R) is a X-reversible ring
for any n ≥ 1.

(ii) If r1, r2, r3, · · · , rn−1 = 0, then R is e-reversible if and only if Tn(R) is eE11-reversible for
any n ≥ 1.

Corollary 2.3. Let R be a ring and e ∈ E(R).

(i) R is reversible if and only if Tn(R) is E11-reversible for any n ≥ 1.

(ii) R is (strongly) e-reversible if and only if Dn(R) is (strongly) eIn-reversible for any n ≥ 1.

Theorem 2.4. The following are equivalent for a ring R and e ∈ E(R):

(i) R is an e-reversible ring.



220 Avanish K. Chaturvedi and Rohit K. Verma

(ii) eRe is a reversible ring and e is left semicentral.

Proof. Suppose R is an e-reversible ring. For x ∈ R, e(1− e)x = 0. It follows that (1− e)xe =
(1 − e)xe2 = 0, this implies that xe = exe. Thus, e is left semicentral. Now, we have to show
that eRe is a reversible ring. Let a, b ∈ eRe such that ab = 0. Since eRe is a subring of R and R
is an e-reversible ring, therefore we have bae = 0. Also, ae = a implies that ba = 0. Thus, eRe
is a reversible ring.

Conversely, suppose eRe is a reversible ring and e is left semicentral. Let a, b ∈ R such that
ab = 0. It follows that 0 = abe = eaebe and bae = ebeae = 0. Hence, R is an e-reversible
ring.

Theorem 2.5. The following are equivalent for a ring R and e ∈ E(R):

(i) R is a strongly e-reversible ring.

(ii) eRe is a reversible ring and e ∈ Z(R).

Proof. Assume that R is a strongly e-reversible ring. For each a ∈ R, a(1− e)e = 0. It follows
that ea(1 − e) = e2a(1 − e) = 0. Thus, ea = eae. Since R is a strongly e-reversible ring,
therefore e-reversible. Then by Theorem 2.4, e is left semicentral. It follows that e ∈ Z(R).
Again by Theorem 2.4, eRe is a reversible ring.

Conversely, suppose that e ∈ Z(R) and eRe is a reversible ring. It follows that eae = aee =
ae. This implies that e is left semicentral. By Theorem 2.4, R is an e-reversible ring. Due to e
as a central element, R is a strongly e-reversible ring.

Corollary 2.6. The following are equivalent for a ring R and e ∈ E(R):

(i) R is a strongly e-reversible ring.

(ii) R is an e-reversible ring and e ∈ Z(R).

Proof. It directly follows from Theorem 2.4 and 2.5.

Recall [12], a ring R is said to be left e-reflexive if aRe = 0 =⇒ eRa = 0 for any a ∈ R.

Proposition 2.7. The following are equivalent for a ring R and e ∈ E(R):

(i) R is strongly e-reversible ring.

(ii) R is e-reversible and left e-reflexive.

Proof. Assume that R is strongly e-reversible. It follows by Theorem 2.5 that e is central and R
is e-reversible. Let a ∈ R such that aRe = 0. It gives ae = 0 and so, eRa = aRae = 0 due to e
is central. Thus, R is left e-reflexive.

Conversely, suppose R is e-reversible and left e-reflexive. Since R is e-reversible, it follows
by Theorem 2.4 that e is left semicentral. So, we have (1 − e)Re = 0 which implies that
eR(1− e) = 0 as R is left e-reflexive. Hence, e is central and thus R is strongly e-reversible by
Theorem 2.4 and 2.5.

According to [7], a ring R is called central reversible if for any a, b ∈ R, ab = 0 implies ba
belongs to the center of R. Recall from [11] that an element e ∈ E(R) is said to be left minimal
idempotent of R if Re is a minimal left ideal of R. The set of all left minimal idempotents of R
is denoted by MEl(R). By [15], a ring R is called left minimal abelian if either MEl(R) = φ
or every e ∈MEl(R) is left semicentral.

Example 2.8. (i) In general, an abelian ring need not be e-reversible for some e ∈ E(R).
Consider the following ring from [7],

R =

{[
a b

c d

]
: a ≡ d(mod2), b ≡ c ≡ 0(mod2), a, b, c, d ∈ Z

}
.

Then
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a. R is an abelian ring because

[
0 0
0 0

]
and

[
1 0
0 1

]
are the only idempotents in R.

b. R is not an e-reversible ring for e = I2 as if, we take x =

[
0 0
0 2

]
, y =

[
2 2
0 0

]
∈ R,

then xy = 0 but yxe =

[
0 4
0 0

]
6= 0.

(ii) An e-reversible ring need not be a central reversible ring for some e ∈ E(R). Consider a
ring R from Example 1.2(i). Then

a. R is an E11-reversible ring, and

b. R is not central reversible because if, we takeA =

[
0 1
0 1

]
,B =

[
1 0
0 0

]
thenAB = 0

but

[
0 0
0 0

]
= A(BA) 6= (BA)A =

[
0 1
0 0

]
which implies that BA /∈ Z(T2(R)).

c. It is also observed that R is not abelian as if, we take A = E12, B = E11 then 0 =
AB 6= BA = E12. Thus, an e-reversible ring need not be abelian.

Remark 2.9. If R is a central reversible ring, then R is e-reversible for any e ∈MEl(R).

In the following, we characterize a left minimal abelian ring:

Proposition 2.10. The following are equivalent for a ring R:

(i) R is a left minimal abelian ring.

(ii) R is e-symmetric for any e ∈MEl(R).

(iii) R is e-reversible for any e ∈MEl(R).

Proof. (1) =⇒ (2). It follows from [11, Theorem 2.5].
(2) =⇒ (3). It follows from Example 1.3(i).
(3) =⇒ (1). Let e ∈MEl(R). By the assumption,R is e-reversible. So, e is left semicentral

by Theorem 2.4. Hence, R is left minimal abelian.

Corollary 2.11. The following are equivalent for a ring R:

(i) R is a left quasi-duo ring,

(ii) R is a MELT ring and e-symmetric for any e ∈MEl(R),

(iii) R is a MELT ring and e-reversible for any e ∈MEl(R).

Proof. (1) ⇐⇒ (2). It follows from [11, Corollary 2.6].
(2) ⇐⇒ (3). It follows from Proposition 2.10.

Recall [15], a ring R is called a strongly left minimal abelian if MEl(R) ⊆ Z(R).

Proposition 2.12. The following are equivalent for a ring R:

(i) R is a strongly left minimal abelian ring,

(ii) R is strongly e-symmetric for any e ∈MEl(R),

(iii) R is strongly e-reversible for any e ∈MEl(R).

Proof. (1) =⇒ (2). It follows from [11, Theorem 3.4].
(2) =⇒ (3). It follows from Example 1.3(ii).
(3) =⇒ (1). Let e ∈MEl(R). By the assumption, R is strongly e-reversible. It follows by

Theorem 2.5 that e ∈ Z(R). Hence, R is strongly left minimal abelian.

Corollary 2.13. If R is an abelian ring, then R is (strongly) e-reversible for every e ∈MEl(R).
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Lemma 2.14. The following are equivalent for a ring R and e ∈ E(R):

(i) R is a reversible ring.

(ii) R is both an e-reversible and (1− e)-reversible ring.

Proof. (1) =⇒ (2). Clear.
(2) =⇒ (1). Let a, b ∈ R such that ab = 0. Since R is (1 − e)-reversible ring, therefore

ba(1 − e) = 0. This implies that ba = 0 as R is an e-reversible ring. Hence, R is a reversible
ring.

Corollary 2.15. The following are equivalent for a ring R and e ∈ E(R):

(i) R is a reversible ring.

(ii) R is a strongly e-reversible ring and (1− e)R(1− e) is a reversible ring.

Proof. Suppose that R is a reversible ring. It follows that R is an e-reversible ring and an abelian
ring. This implies that e ∈ Z(R). By Corollary 2.6, R is a strongly e-reversible ring. Since
(1− e)R(1− e) is a subring of R, therefore (1− e)R(1− e) is also a reversible ring.

Conversely, suppose that R is a strongly e-reversible ring and (1− e)R(1− e) is a reversible
ring. Then by Theorem 2.5, R is a strongly (1− e)-reversible as (1− e) ∈ Z(R). It follows that
R is both an e-reversible and (1 − e)-reversible ring. Hence by Lemma 2.14, R is a reversible
ring.

3 Some extensions

In this section, first we discuss some extensions of the class of (strongly) e-reversible rings and
after that various properties related to these classes of rings with ∗-rings.

Recall [3], let R be an algebra over a commutative ring S. The Dorroh extension of R by S
is the ring R × S with operations (r1, s1) + (r2, s2) = (r1 + r2, s1 + s2) and (r1, s1)(r2, s2) =
(r1r2 + s1r2 + s2r1, s1)s2, where ri ∈ R and si ∈ S. According to Rege and Chhawchharia
[14], a ring R is called Armendariz if for any f(x) =

∑n
i=0 aix

i, g(x) =
∑m

j=0 bjx
j inR[x],

f(x)g(x) = 0 implies that aibj = 0 for all i and j.

Theorem 3.1. Let R be an e-reversible ring and e ∈ E(R).

(i) If R is an algebra over a commutative domain S, and D is the Dorroh extension of R by S,
then D is an e-reversible ring.

(ii) If S is a multiplicatively closed subset of R consisting of central regular elements, then
S−1R is an e-reversible ring.

(iii) If R is an Armendariz ring, then R[x] is an e-reversible ring.

Proof. (1). It is easy to prove by following the proof of [5, Proposition 1.14(2)].
(2). It is analogous to [5, Proposition 1.13(2)].
(3). Clear.

Corollary 3.2. Let R be a ring. If R[x] is an e-reversible ring, then R[x;x−1] is also an e-
reversible ring.

Proof. It follows from Theorem 3.1(ii).

Recall [12], two idempotents e and f in R are said to be left (respectively, right) isomorphic
if Re ∼= Rf as left R-modules (respectively, eR ∼= fR as right R-modules).

Proposition 3.3. Let R be an e-reversible ring and e, f ∈ E(R).

(i) If e and f are left isomorphic, then R is f -reversible.

(ii) If e and f are left isomorphic, then eR = fR.
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Proof. Since R is e-reversible, by Theorem 2.4 e is left semicentral.
(1). Let φ : Re→ Rf be the left R-module isomorphism. Then ∃ a ∈ R such that f = φ(ae),

so we have ef = eφ(ae) = φ(eae) = φ(ae) = f . Let a, b ∈ R such that ab = 0 then bae = 0 as
R is e-reversible. So, we have baf = baef = 0. Thus, R is f -reversible.

(2). Suppose e and f are left isomorphic. Then by (1), R is a f -reversible ring. Hence, f
is left semicentral by Theorem 2.4. by observing the proof of (1), we have f = ef and e = fe
which implies that eR = fR.

Proposition 3.4. Let R be a strongly e-reversible ring and e, f ∈ E(R). If e and f are left
isomorphic, then e = f .

Proof. Since R is strongly e-reversible, therefore by Corollary 2.6 e is central and R is e-
reversible. It follows by Proposition 3.3(ii) that eR = fR. This implies that e = fe and
f = ef . So, f = fe = e due to e is central.

Proposition 3.5. Let R be an e-reversible ring and e, f ∈ E(R). If R satisfies any one of the
following conditions, then R is f -reversible:

(i) eR+ (1− f)R = R.

(ii) ea+ 1− f ∈ U(R) for some a ∈ R.

(iii) Re+R(1− f) = R.

(iv) ae+ 1− f ∈ U(R) for some a ∈ R.

Proof. Let R be an e-reversible ring. Then by Theorem 2.4, e is left semicentral. In each case
first, we show that f = ef which implies by the proof of Proposition 3.3(i) thatR is f -reversible.

(1). Since eR + (1 − f)R = R and e is left semicentral, fR = feR = efeR ⊆ eR and this
implies that f = ef .

(2). Consider ea + 1 − f = u ∈ U(R). This implies that fu = f(ea + 1 − f) = fea and
therefore f = feau−1. So f = efeau−1 = ef , as e is left semicentral.

(3). Since Re + R(1 − f) = R, Rf = Ref . Consider f = xef for some x ∈ R. It gives
f = exef = ef , as e is left semicentral.

(4). Consider ae+ 1 − f = v ∈ U(R) . It gives fv = f(ae+ 1 − f) = fae which implies
that f = faev−1. So f = faev−1 = efaev−1 = ef , as e is left semicentral.

Recall [12], an involution a 7→ a∗ in a ring R is a map with the properties: (a∗)∗ = a, (a +
b)∗ = a∗+ b∗, (ab)∗ = b∗a∗ for all a, b ∈ R. A ring R with an involution ∗ is called a ∗-ring. Let
R be a ∗-ring and e ∈ E(R). If e∗ = e, then e is called projection.

Proposition 3.6. If e ∈ E(R) is a projection element in a ∗-ringR, thenR is strongly e-reversible
if and only if R is e-reversible.

Proof. The projection element in a ∗-ring R is left semicentral if and only if it is central (see the
proof of [12, Proposition 3.2]). Now, the result follows from Theorem 2.4 and 2.5.

Proposition 3.7. Let R be a ∗-ring and e-reversible with e ∈ E(R). Then

(i) e∗e ∈ E(R).

(ii) The following conditions are equivalent:

(a) R is e∗e-reversible.

(b) R is strongly e∗e-reversible.

(c) e∗e is central.

(d) e∗xe = xe∗e for each x ∈ R.

(e) ee∗e = e∗e.

Proof. (i) Since R is an e-reversible ring, therefore e is left semicentral by Theorem 2.4. It
follows that (e∗e)2 = e∗ee∗e = e∗e∗e = e∗e.
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(ii) (a)⇒(b). Assume the condition (a). From (1), it follows that e∗e is a projection. By the
Proposition 3.6, R is strongly e∗e-reversible.

(b)⇒(c). It follows from Theorem 2.5.

(c)⇒(d). Since e∗e is central, we have xe∗e = e∗ex for each x ∈ R and so, xe∗e = e∗exe.
This implies that xe∗e = e∗xe, e is left semicentral.

(d)⇒(e). Take x = e in the assumption, then we have ee∗e = e∗e.

(e)⇒(a). Let a, b ∈ R such that ab = 0. Then bae = 0, as R is e-reversible. So, bae∗e =
baee∗e = 0. Thus, R is e∗e-reversible.

Proposition 3.8. If R is a ∗-ring and e-reversible, e ∈ E(R), then the following conditions are
equivalent:

(1) ee∗ ∈ E(R).

(2) e∗xe = xee∗ for each x ∈ R.

(3) ee∗ = e∗e.

(4) ee∗ is central.

Proof. (1)⇒(2). Assume the condition (1). It follows that R is ee∗-reversible (since bae =
0 =⇒ baee∗ = 0) and so, ee∗ is left semicentral by Theorem 2.4. Hence, xee∗ = ee∗xee∗ for
each x ∈ R which implies that xee∗ = e∗xe for each x ∈ R, as e is left semicentral. So, e∗ is
right semicentral.

(2)⇒(3). Choose x = e in the assumption, then we have ee∗ = e∗e.
(3)⇒(4). Since R is e-reversible and ee∗e = e∗ee = e∗e, by Proposition 3.7(ii), ee∗ = e∗e is

central.
(4)⇒(1). Since e is left semicentral and ee∗ is central, we have (ee∗)2 = ee∗ee∗ = e∗ee∗ =

ee∗e∗ = ee∗. This implies that ee∗ ∈ E(R).

Proposition 3.9. Let R be a ∗-ring and e-reversible, e ∈ E(R). If 1+(e∗− e)∗(e∗− e) ∈ U(R),
then R is a strongly e-reversible ring and e is a projection.

Proof. Consider u = 1 + (e∗ − e)∗(e∗ − e) and v = u−1, then we have u∗ = u, eu = ue =
ee∗e, e∗u = ue∗ and v∗ = v, ev = ve, e∗v = ve∗. Choose f = ee∗v = vee∗, then f2 =
(vee∗)(ee∗v) = v(ee∗e)e∗v = veue∗v = veuve∗ = vee∗ = f and f∗ = (vee∗)∗ = (ee∗) ∗ v∗ =
ee∗v = f which implies that f is a projection. Since R is e-reversible and ef = e(ee∗v) =
ee∗v = f , R is ef -reversible (because bae = 0 =⇒ baf = baef = 0). By the Proposition
3.6, R is strongly ef -reversible and so, f is central by the Theorem 2.5. This implies that
f = ef = fe = vee∗e = vue = e. Thus, R is an strongly e-reversible ring and e is a
projection.

Recall [6], let R be a ∗-ring and e ∈ E(R), then p ∈ R is called a range projection if, p is a
projection satisfying pe = e and ep = p. The projection of e is denoted by e⊥.

Proposition 3.10. If R is a ∗-ring and e-reversible for e ∈ E(R), then the following conditions
are equivalent:

(1) 1 + (e∗ − e)∗(e∗ − e) ∈ U(R).

(2) e+ e∗ − 1 ∈ U(R).

(3) e⊥ exists.

Proof. (1)⇒(2). Suppose 1 + (e∗ − e)∗(e∗ − e) ∈ U(R). By the Proposition 3.9, e is projection
and so e+ e∗ − 1 = 2e− 1 ∈ U(R).

(2)⇒(3). It follows from [6, Theorem 2.1].
(3)⇒(1). Let p = e⊥. SinceR is e-reversible and ep = p, R is p-reversible and so, p is central

by the Proposition 3.6 and Theorem 2.5. It follows that e = pe = ep = p. Since e is central,
(e∗ − e)∗(e∗ − e) = 0 and so, 1 + (e∗ − e)∗(e∗ − e) = 1 ∈ U(R).
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Recall [13], an element a† in a ∗-ring is said to be the Moore-Penrose inverse (or MP inverse)
if aa†a = a, a†aa† = a†, aa† = (aa†)∗, a†a = (a†a)∗. In this case, we say that a is MP-
invertible. The set of all MP-invertible elements of R is denoted by R†.

Lemma 3.11. [6, Theorem 3.1] Let R be a ∗-ring and let e ∈ E(R). Then e ∈ R† if and only if
e+ e∗ − 1 ∈ U(R).

Proposition 3.12. Let R be a ∗-ring and let e ∈ E(R) such that R is an e-reversible ring. Then
e ∈ R† if and only if e is a projection.

Proof. It follows from Proposition 3.9-3.10 and Lemma 3.11.
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