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Abstract. The main goal of this paper is to introduce and study the notion of Property (.A)
of aring R or an R-module M with respect to an ideal I of R. The new notion turns out to be
a weak form of the classic notion of an A-ring, in the sense that, any R-module satisfying the
Property (A) satisfies as well the Property (.4) with respect to any ideal I of R. Moreover, we
prove that if I is contained in the nilradical of R, then the notion of .A-module with respect to
I and the notion of .A-module collapse. Also, we present an example of a ring R possessing an
ideal I C Z(R) such that R is an A-ring with respect to I while R is not an A-ring. Finally, we
totally characterize the rings R and the R-modules M satisfying the Proprety (A) with respect
to an ideal I as well as we investigate the behavior of the Property (A) with respect to an ideal
vis-a-vis the direct products of rings and modules.

1 Introduction

Throughout this paper, all rings are supposed to be commutative with unit element and all R-
modules are unital. Let R be a commutative ring and M an R-module. We denote by Zg(M) =
{r € R : rm = 0 for some nonzero element m € M} the set of zero divisors of R on M and
by Z(R) := Zg(R) the set of zero divisors of the ring R. In [4], the notions of .4-module and
S A-module are extensively studied. In fact, an R-module M satisfies Property (A), or M is an
A-module over R (or A-module if no confusion is likely), if for every finitely generated ideal I of
R with I C Zr(M)), there exists a nonzero m € M with Im = 0, or equivalently, anny; (1) # 0.
M is said to satisfy strong Property (A), or is an S.A-module over R (or an S.A-module if no
confusion is likely), if for any ry,--- ,r, € Zgr(M), there exists a nonzero m € M such that
rym = --- = r,m = 0. The ring R is said to satisfy Property (.A), or an A-ring, (respectively,
S A-ring) if R is an A-module (resp., an S.A-module). One may easily check that M is an S.A-
module if and only if M is an .A-module and Z (/) is an ideal of R. It is worthwhile reminding
the reader that the Property (A) for commutative rings was introduced by Quentel in [18] who
called it Property (C) and Huckaba used the term Property (A) in [13, 14]. In [11], Faith called
rings satisfying Property (A) McCoy rings. The Property (A) for modules was introduced by
Darani [9] who called such modules F-McCoy modules (for Faith McCoy terminology). He
also introduced the strong Property (A) under the name super coprimal and called a module
M coprimal if Zr(M) is an ideal. In [17], the strong Property (A) for commutative rings was
independently introduced by Mahdou and Hassani in [17] and further studied by Dobbs and
Shapiro in [10]. Note that a finitely generated module over a Noetherian ring is an .4-module
(for example, see [15, Theorem 82]) and thus a Noetherian ring is an A-ring. Also, it is well
known that a zero-dimensional ring R is an .A-ring as well as any ring R whose total quotient
ring Q(R) is zero-dimensional. In fact, it is easy to see that R is an .A-ring if and only if so is
Q(R) [9, Corollary 2.6]. Any polynomial ring R[X] is an A-ring [13] as well as any reduced
ring with a finite number of minimal prime ideals [13]. In [6], we generalize a result of T.G.
Lucas which states that if R is a reduced commutative ring and M is a flat R-module, then the
idealization R x M is an A-ring if and only if R is an A-ring [16, Proposition 3.5]. In effect, we
drop the reduceness hypotheses and prove that, given an arbitrary commutative ring R and any
submodule M of a flat R-module F', R x M is an A-ring (resp., SA-ring) if and only if R is an
A-ring (resp., SA-ring). In [7], we present an answer to a problem raised by D.D. Anderson and
S. Chun in [4] on characterizing when is the idealization R X M of a ring R on an R-module
M an A-ring (resp., an S.A-ring) in terms of module-theoretic properties of R and M. Also,
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we were concerned with presenting a complete answer to an open question asked by these two
authors which reads the following: What modules over a given ring R are homomorphic images
of modules satisfying the strong Property (A)? [4, Question 4.4 (1)]. The main theorem of [8]
extends a result of Hong, Kim, Lee and Ryu in [12] which proves that a direct product [[ R; of
rings is an A-ring if and only if so is any R;. In this regard, we show that if {R; };c; is a family
of rings and {M, };<; is a family of modules such that each M, is an R;-module, then the direct
product ] M; of the M; is an A-module over [] R; if and only if each M; is an .A-module over
i€l iel

R;, i € I. Finally, our main concern in [1] is to introduce and investigate a new class of rings
lying properly between the class of A-rings and the class of S.A-rings. The new class of rings,
termed the class of PS.A-rings, turns out to share common characteristics with both A-rings
and S A-rings. Numerous properties and characterizations of this class are given as well as the
module-theoretic version of PS.A-rings is introduced and studied. For further works related to
the Property (A) and (S.A), we refer the reader to [2, 3, 4, 5, 12, 16].

The main goal of this paper is to introduce and investigate the new notions of an .A-ring and
A-module with respect to an ideal I of R. The new notion turns out to be a weak form of the
classic notion of an .A-ring, in the sense that, any R-module satisfying the Property (A) satisfies
as well the Property (A) with respect to any ideal I of R. Also, the introduced property stems
from the lack of stability of Z(R) under the first operation "+" of R. In particular, we examine
the ideals of R which satisfy the Property (A) with respect to themselves. For instance, if R is
Noetherian, then any ideal [ is an .4-module with respect to itself. Also, if R is a ring and [ is
an ideal of R such that I is contained in the nilradical Rad(R) of R, then an R-module M is an
A-module with respect to I if and only if M is an A-module. Moreover, through Example 4.5,
we present an example of a ring R possessing an ideal I C Z(R) such that R is an A-ring with
respect to I while R is not an .A-ring. The main theorem of Section 3 totally characterizes when
aring R (resp., an R-module M) is an A-ring (resp., an .A-module) with respect to a given ideal
1. Finally, in Section 4, we investigate the behavior of the Property (A) with respect to an ideal
vis-a-vis the direct products of rings and modules. This allows us to generalize, via Theorem
4.1, a proposition of Hong-Kim-Lee-Ryu stating that the direct product [| R; of a family of rings
(R;); is an A-ring if and only if each R; is an .A-ring [12, Proposition 1.3].

2 The set of zero divisors with respect to an ideal

This section introduces and studies the set of zero divisors of a ring R (resp., an R-module M)
with respect to a given ideal I of R denoted by Z” (R) (resp., Z+(M)). We seek conditions under
which the complement of Z’ (R) is a saturated multiplicative subset of R. In this regard, we
prove that if R admits a finite number of maximal prime ideals, in particular if R is Noetherian,
then R \ Z'(R) is a saturated multiplicative subset of R. Also, we characterize the set of zero

divisors of a direct product R = [] R; of the rings R; with respect to an ideal I of R in terms of
i€A
the set of zero divisors of R; with respect to the projections of I on the rings R;.

We begin by giving the definitions of the new concepts.
Definition 2.1. Let R be a ring and [ an ideal of R. Let M be an R-module.
(i) An element z of R is said to be a zero divisor with respect to I if z + I C Z(R).
(ii) The set of all zero divisors with respect to I is denoted by Z' (R) = {z € R : z+1 C Z(R)}.
(iii) An element x of R is said to be a zero divisor of M with respectto [ if x + I C Zr(M).
(iv) The set of all zero divisors of M with respect to I is denoted by Z%(M).

Let R be a ring and M an R-module. Let Spec(Z(R)) (resp., Max(Z(R))) denote the
set of prime ideals (resp., maximal ideals) of R contained in Z(R) and Spec(Zr(M)) (resp.,
Max(Zg(M))) denote the set of prime ideals (resp., maximal ideals) of R contained in Zy(M).
According to [15], Max(Zg(M)) stands for the set of the maximal primes of the R-module M.
Also, let I be an ideal of R. Note that Z' (R) C Z(R) and Z%(M) C Zr(M). If I C Z(R), then
we denote by Max;(Z(R)) the set of the maximal primes of R containing I, that is,

Max;(Z(R)) = {m € Max(Z(R)) : I C m}.
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Our first theorem characterizes the set of zero divisors with respect to an ideal and it provides
conditions under which R \ Z’(R) is a saturated multiplicative subset of a ring R.

Theorem 2.2. Let R be a ring and I an ideal of R. Then
1) U m C Z'(R).
meMaxr (Z(R))
2) If R admits a finite number of maximal primes, then Z (R) = U m.
méEMax;(Z(R))

Proof. 1) 1tis clear.

2) Assume that Max(Z(R)) = { P\, P, -+ , P, } is afinite set. Then Z(R) = P,UP,U---U P,.
Let Max;(Z(R)) = {P\,Ps,--- ,P,}. ThenI C PPNPN---NPand I € Py U---UP,.
Suppose thatZI(R) ¢ PU---UP;andletz € ZI(R)\Plu- -UP,. Leti € I\ Py U---UP,. Let
z € PN+ -NPAPy1U---UP, forsomer € {t+1,--- ,n}. Note that, if P.,;N---NP, = (0),
then, in particular, P.,N---NP, C P; and thus there exists k € {r+1,--- ,n} suchthat P, C P,
so that P, = P, which is absurd as I C P; while I ;C_ Py.. Hence P,y N---N P, # (0). Let
yePuyyN---NP,\ Py U---UP,. Consider z := = + yi. Then z € Z(R) as z € Z'(R). If
ze PUPRU.---UP,thenz € PLU---UP,asI C PiN---N P, This leads to a contradiction
sincex ¢ PPU---UP,.Ifz€ PyU---UP,,thenyi€ P, yU---UP.asz € Py N---NP,
which is absurd since i,y & P, U---UP.. If z € P..;U---UP,,thenx € P., U---UP, since
y € P.yyN---NP,. Thisis absurd as z ¢ P, U---U P,. It follows that Z/(R) C PU---UP,
and thus the desired equality holds comlpleting the proof. O

Next, we deduce that in the setting of a Noetherian ring R, R \ Z'(R) is a saturated multi-
plicative subset of R.

Corollary 2.3. If R is a Noetherian ring and I an ideal of R, then
zZrR= |y m

meMaxy (Z(R))

Proof. It follows from Theorem 2.2 since by [15, Theorem 80], if R is Noetherian, then it admits
a finite number of maximal primes. O

The following theorem characterizes the set of zero divisors of a direct product R = [] R;
i€A
of the rings R; with respect to an ideal I of R in terms of the set of zero divisors of R; with
respect to the projections of I on the rings R;.

Theorem 2.4. Let (R;) jca be a family of rings and let R :== [ R;. For each j € A, let I; be an
JEA
ideal of R; and let I := [ I; be the resulting ideal of R. Let x = (x;); € R. Then x € Z'(R)
JEA
if and only if there exists j € A such that z; € Z' (R;).

Proof. Assume that z € Z' (R). Then 2 + I C Z(R). Assume, by way of contradiction, that for
each j € A, there exists i; € I; such that z; +i; ¢ Z(R;). Let z = (z; +4;); = « + (4;); with
(ij); € I. Then z € x + I and z ¢ Z(R) which is absurd. It follows that there exists j € A such
that z; + I; C Z(R;), that is, z; € Z"/(R;), as desired. The converse is direct completing the
proof. O

Next, we describe the finitely generated ideals contained in the set of zero divisors of a direct
products [[ R; of a family of rings R; with respect to an ideal I of this direct product.
i€A

Theorem 2.5. Let (Ry):cp be a family of rings and R = [ Ry. Let I be an ideal of R,
teA
for eacht € A and I = []I; the resulting ideal of R. Let M; be an R;-module for each

t
te Aand M = [[ My. Let J = (ay,az, -+ ,an)R be a finitely generated ideal of R and
teA
Ji = (a1s, ae, - -+, ant) Ry the projection of J on Ry for each t € A, where a;, = (agt)ien for
eachk =1,2,--- ,n. Then J C Z(M) if and only if there exists t € A such that .J, C th (My).
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Proof. The sufficient condition is direct. Let us now prove the necessary one. Assume that
Ji & th(Mt) for each t € A. Then, for each t € A, there exists by = aj;a1; + oorar +
<+ + apians € Jy such that by & Zfét (My). Put ry, = (age)ien for k = 1,---  n. Now, take
r = riay + ray + -+ + rpa,. Then x € J, as J is an ideal, and x; = b; for each ¢t € A.

Therefore z; ¢ th (M) for each t € A and thus, by Theorem 2.4, & ¢ Z5 (] M,). It follows
teA

that J ¢ ZE(H M;). This proves the necessary condition completing the proof.

3 Property (.A) with respect to an ideal

This section introduces and investigates the new notions of an 4-ring and .A-module with respect
to an ideal I of R. It turns out that any A-ring (resp., any .4-module) is, in particular, an A-ring
(resp., an A-module) with respect to any ideal I of R. The new property stems from the lack of
stability of Z(R) under the first operation "+" of R. In particular, we examine those ideals of
R which satisfy the Property (A) with respect to themselves. For instance, if R is Noetherian,
then any ideal [ is an .A-module with respect to itself. The new notion turns out to be a weak
form of the classic notion of an A-ring, in the sense that, any R-module satisfying the Property
(A) satisfies as well the Property (A) with respect to any ideal I of R. Moreover, we prove that
if I is contained in the nilradical of R, then the notion of .4-module with respect to I and the
notion of .A-module collapse. Moreover, through Example 4.5, we present an example of a ring
R admitting an ideal I C Z(R) such that R is an .A-ring with respect to I while R is not an .A-ring.

We begin by giving the definitions of the new concepts.

Definition 3.1. Let R be aring and I an ideal of R. Let M be an R-module. Then

(1) R is said to be an A-ring with respect to [ if for each finitely generated ideal such that
J C Z'(R), we have anng(.J) # (0).

(i) M is said to be an .4-module with respect to [ if for each finitely generated such that
J C Z%(M), we have anny;(J) # (0).

The following proposition presents examples of (vacuous) .A-rings and .A-modules with re-
spect to particular ideals.

Proposition 3.2. Let R be a ring, I an ideal of R and M an R-module.
(i) If I € Z(R), then R is (vacuously) an A-ring with respect to 1.
(ii) If I € Zr(M), then M is (vacuously) an A-module with respect to I.

(iii) R is (vacuously) an A-ring with respect to R and M is (vacuously) an A-module with
respect to R.

Proof. 1) It suffices to note that, when I ¢ Z(R), then J + I ¢ Z(R) for any ideal J of R.
Hence the statement (1) follows vacuously from Definition 3.1.

2) The proof is similar to that of (1).

3) It is direct from (2). O

Let R be any ring which is not an A-ring. Then R is an example of an A-ring with respect
to R which is not an A-ring. Ahead, via Example 4.5, we provide a ring R and an ideal I with
I C Z(R) such that R is an A-ring with respect to I while R is not an A-ring. This discussion
proves that the notion of an .A-ring with respect to an ideal is weak form of the notion of an
A-ring.

We deduce from Proposition 3.2(2) the first case of an ideal of a ring R which is an .4-module
with respect to itself.

Corollary 3.3. Let R be a ring and I an ideal of R such that I ¢ Zg(I). Then I is an A-module
with respect to itself.
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The following two propositions records the fact that the Property (A) of aring R is a particular
case of the Property (A) of R with respect to an ideal and that in the Noetherian setting any ideal
I of R is an .A-module with respect to itself.

Proposition 3.4. Let R be a ring and M be an R-module. Then
1) The following assertions are equivalent:

a) Ris an A-ring;

b) R is an A-ring with respect to (0).
2) The following assertions are equivalent:

a) M is an A-module;

b) M is an A-module with respect to (0).

Proof. 1t is direct from Definition 3.1. O

Proposition 3.5. Let R be a ring. Then

(i) Any A-module M over R is an A-module with respect to any ideal I of R. In particular, if
R is an A-ring, then R is an A-ring with respect to any ideal I of R.

(ii) If R is Noetherian, then any ideal I of R is an A-module and thus an A-module with respect
to itself.

Proof. 1) Itis clear from Definition 3.1.
2) Assume that R is Noetherian. Then I is a Noetherian module over R. Therefore, by [4,
Theorem 2.2(5)], I is an .A-module. Hence, by (1), [ is an .A-module with respect to itself. O

It is known that a ring R (resp., an R-module M) is an A-ring (resp., an .A-module over R)
if and only if the total quotient ring Q(R) (resp., the total quotient module Q(M)) is an A-ring
(resp., an A-module over Q(R)). Next, we handle the transfer of this result to the Property
(A) with respect to an ideal. Given a ring R and an R-module M, put S := R\ Z(R) and
Sr(M) := R\ Zr(M).

Proposition 3.6. Let R be a ring and I an ideal of R. Let M be an R-module.
1) Assume that I C Z(R). Then the following assertions are equivalent.
a) R is an A-ring with respect to I;
b) Q(R) is an A-ring with respect to S™'I.
2) Assume that I C Zr(M). Let Q(M) = Sp(M)~'M denote the total quotient module of M.
Then the following assertions are equivalent.
a) M is an A-module with respect to I;
b) Q(M) is an A-module with respect to Sp(M)~'I.

Proof. 1) a) = b) Assume that R is an A-ring with respect to I. Let K be a proper finitely
generated ideal of Q(R) such that K + S~'T C Z(Q(R)). Then there exists a finitely generated
ideal J C Z(R) of Rsuch that K = S~!J. Hence S~!(J+1I) C Z(Q(R)) and thus J+1 C Z(R).
Therefore, as R is an .A-ring with respect to I, ann(.J) # (0). It follows, since K = S~!.J, that
anngp) (K) # (0). Consequently, Q(R) is an A-ring with respect to S~'1, as desired.
b) = a) Assume that Q(R) is an A-ring with respect to S~!I. Let J C Z(R) be a finitely
generated ideal of R such that J +1 C Z(R). Then S~!(J+1) = S~'J+ S~!I is a proper ideal
of Q(R). Hence, as Q(R) is an A-ring with respect to S~'1, we get anng ) (S~'J) # (0). It
follows, as S consists of regular elements of R, that ann(.J) # (0). Consequently, R is an A-ring
with respect to I, as desired.
2) The proof is similar to that of (1).

o

Corollary 3.7. Let R be a ring and I an ideal of R such that I C Zg(I). Then I is an A-module
with respect to itself if and only if the ideal Sg(I)~'I of Qr(I) is an A-module with respect to
itself.

Through the next bunch of results we seek conditions under which an R-module M is an
A-module with respect to an ideal I. Given a ring R, we denote by Rad(R) the nilradical of R.
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Proposition 3.8. Let R be a ring and I an ideal of R. Assume that I C Rad(R). Let M be an
R-module. Then M is an A-module with respect to I if and only if M is an A-module.

Proof. By Proposition 3.5, it suffices to prove the necessary statement. Assume that M is an
A-module with respect to I. Let J be a finitely generated ideal of R such that J C Zg(M). Let
j € Jand i € I. Then there exists 0 # m € M such that jm = 0 and there exists n € N such
that i = 0. Let 7 := max{t € N : i'm # 0}. Note that 0 < r < n — 1. Hence (j +4)i"m = 0
and i"m # 0 so that j +i € Zr(M). It follows that J + I C Zz(M) and thus J C Z§(M).
Hence ann,(J) # (0). Consequently, M is an .A-module. o

Corollary 3.9. Let R be a ring and I a nilpotent ideal of R, that is, there exists n > 1 such that
I" = (0). Let M be an R-module. Then M is an A-module with respect to I if and only if M is
an A-module.

Proof. 1suffices to note that I C Rad(R) and then to apply Proposition 3.8.
|

Proposition 3.10. Let R be an S A-ring. Put I := Z(R). Then I is an A-module and thus I is an
A-module with respect to itself.

Proof. Let J C Zr(I) be a nonzero finitely generated ideal of R. Then, as J C Zg(I) C Z(R)
and R is an A-ring, we get ann(.J) # (0) and thus there exists a € R\ {0} such that aJ = (0).
As J # (0), we get a € Z(R) = I. Then ann;(.J) # (0). It follows that I is an .A-module and
thus 7 is an .A-module with respect to itself, as desired.

o

Proposition 3.11. Let R be an A-ring and I an ideal of R. Assume that ann(I) C I. Then I is
an A-module with respect to itself.

Proof. Let J C Z§(I) be a nonzero finitely generated ideal of R. As Z§(I) C Zr(I) € Z(R)
and R is an A-ring, we get ann(J) # (0) and thus there exists a € R such that a # 0 and
aJ = (0). If a € I, then ann;(J) # (0). Assume that a € I. Then, as ann(I) C I, we get
a ¢ ann(l). Hence there exists ¢ € I such that j := ai # 0. It follows that jJ = (0) and
j € I'\ {0}, so that ann;(J) # (0). Consequently, I is an .A-module with respect to itself.

o

Corollary 3.12. Let R be an A-ring and I an ideal of R such that ann(I) = (0). Then I is an
A-module with respect to itself.

Corollary 3.13. Let R be an A-ring and I an ideal of R. Assume that Zr(I) C I. Then I is an
A-module with respect to itself.

Proof. 1t is direct from Proposition 3.11 as ann(I) C Zg(I).

Next, we prove a sort of ascent behavior of the Property (.4) with respect to an ideal.

Proposition 3.14. Let R be a ring and M an R-module. Let 1) C I, be ideals of R. Then
(i) If R is an A-ring with respect to 1, then R is an A-ring with respect to I,.

(ii) If M is an A-module with respect to 1, then M is an A-module with respect to I.

Proof. 1) Assume that R is an A-ring with respect to ;. Let J be a finitely generated ideal of R
such that J C Z2(R). Then,as I} C I, J +I; C J + I, C Z(R) and thus J C Z"'(R). Now,
since R is an A-ring with respect to I, it follows that ann(.JJ) # (0). Therefore R is an .A-ring
with respect to I, as desired.

2) It is similar to (1).
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The following theorem and corollary characterize the A-rings R (resp., A-modules M) with
respect to a given ideal I of R in the crucial case when I C Z(R) (resp., I C Zr(M)). Given
aring R and an ideal I of R, we denote by Max;(R) the set of maximal ideals of R containing
I and we denote by Max;(Z(R)) the set of prime ideals of R which are maximal among the
prime ideals in Z(R) and which contain 7, in other words, the elements of Max;(Z(R)) are the
maximal primes of R containing I. Also, given an R-module M, let Max;(Zr (M )) denote the
set of prime ideals of R which are maximal among the prime ideals in Zr (M) and which contain
1.

Theorem 3.15. Let R be a ring and I an ideal of R.
1) Assume that I C Z(R) and that Q(R) = R. Then the following assertions are equivalent.
a) R is an A-ring with respect to I;
b) For each proper finitely generated ideal J of R such that I + J is a proper ideal of R,
ann(.J) # (0);
¢) For each proper finitely generated ideal J of R such that J C U m,ann(J) # (0).
méEMax;(R)

2) Let M be an R-module such that I C Zr(M). Assume that Qr(M) = R. Then the following
assertions are equivalent.
a) M is an A-module with respect to I;
b) For each finitely generated ideal J of R such that I + J is a proper ideal of R, anny;(J) #
(0);
¢) For each finitely generated ideal J of R such that J C U m, annp(J) # (0).

meEMaxr(R)
Lemma 3.16. Let R be a ring such that Q(R) = R. Let I be a proper ideal of R. Then, for each
ideal J of R, I + J is a proper ideal of R if and only if J C U m.

méEMaxy(R)

Proof. Let J be an ideal of R. Assume that I + J is a proper ideal of R. Then there exists a
maximal ideal of R such that I + J C m. Hence m € Max;(R) such that J C m. Therefore
J C UmeMaxI (R) M Conversely, suppose that J C U m. Then I + J C U m as

meEMaxr(R) méEMaxy(R)
I C m for each m € Max;(R). Hence I + J is a proper ideal of R since 1 ¢ (U m. This
meMax(R)

completes the proof of the lemma.
|

Proof of Theorem 3.15. 1) a) < b) It is clear from Definition 3.1 as Z(R) is the set of non
invertible elements of R.
b) & c¢) It is straighforward by Lemma 3.16.
¢) = a) Assume that (c) holds. Let J be a finitely generated ideal of R such that I + J C Z(R).
It follows, applying (c), that ann(.JJ) # (0). Consequently, R is an .A-ring with respect to I, as
desired.
2) The proof is similar to the treatment of (1).

O

Our final result gives a characterization of .A-rings and .4-modules with respect to an ideal in
the general setting.

Corollary 3.17. Let R be a ring and I an ideal of R.
1) Assume that I C Z(R). Then the following assertions are equivalent.
a) R is an A-ring with respect to I;
b) For each finitely generated ideal J C Z(R) of R such that J C U m, ann(J) #
méEMax;(Z(R))
(0).

2) Let M be an R-module such that I C Zg(M). Then the following assertions are equivalent.

a) M is an A-module with respect to I,
b) For each finitely generated ideal J C Zr(M) of R such that J C U m,

meEMaxy(Zr(M))
anny(J) # (0).

Proof. Tt follows easily from the combination of Theorem 3.15 and Proposition 3.6.
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4 Property (LA) with respect to an ideal and direct product of rings and
modules

This section investigates the behavior of the Property (A) with respect to an ideal vis-a-vis the
direct products of rings and modules. Given a family of rings (R )reca, we characterize when
a direct product H Mj, is an A-module with respect to the ideal H I, with each M}, is an Ry-

module and each I & 1s an ideal of Ry, for any k € A. This allows to generahze via Theorem 4.1,
a result of Hong-Kim-Lee-Ryu stating that the direct product [] R; of a family of rings (R;); is
an A-ring if and only if each R; is an A-ring [12, Proposition 1.3].

We begin by announcing the main theorem of this section.

Theorem 4.1. Let (Ry)ren be a family of commutative rings. Let R = [ Rg. Let I be an
keA
ideal of Ry, for each k € A and let I := [[Ij. Let My, be an Ry-module for each k € A and

M :=T] M. Then the following assertions are equivalent.
k

(i) M is an A-module with respect to I;

(ii) My is an A-module with respect to Iy for each k € A.

Proof. 1) = 2) Assume that M is an A-module with respect to I. Fix t € A and let J C
Zg,(M,) be a finitely generated ideal of R; such that J + I, C Zg,(M;). Consider the ideal
K =JR+(---,1,1,0g,,1,1,---)R of R. Then K is a finitely generated ideal of R and it
is easily checked that K C Z%L (M) since J C Zﬁt(Mt). Hence, since M is an .A-module
with respect to I, there exists 0 # m’ € M such that Km' = 0. Put m’ = (m},)x. Then
(---,1,1,0g,,1,1,---)m’ = 0, as (---,1,1,0g,,1,1,---) € K, and thus mj = O for each
k # t. It follows that m; # 0 and Jm} = (0), so that, annyy, (J) # (0). Consequently, M}, is an
A-module with respect to I;, as desired.

2) = 1) Assume that each M, is an A-module with respect to Ij.. Let J = (a1, a2, -+ ,a,)R C
Zr(M) be a finitely generated ideal of R such that J C Z%(M). Let ax = (agi)iea for each
k=1,--- ,nandlet J; := (ay;,az, - ,an;)R; the ith projection of J for each i € A. Then, by
Theorem 2 5, there exists ¢ € A such that J, C Z% ,(My). Since Mj, is an A-module with respect
to Ij, we get that annyy, (Ji) # (0), that is, there exists 0 # my, € M, such that J,m;, = (0).
Hence, it is easily verified that

J( ,0,0,mk,0,0,~~~) g (HJZ)( 70707mk70a0a"')

:..-x(O)X(O)XkakX(O)X(O)X"':(0)7

that is, annps (J) # (0). Therefore M is an .A-module with respect to I completing the proof of
the theorem.
o

Corollary 4.2. Let (Ry)rea be a family of commutative rings and R = []| Rg. Let Iy be an
kEA
ideal of Ry, for each k € A and I := [ Iy. Then R is an A-ring with respect to I if and only if

Ry, is an A-ring with respect to I, for each k € A.

Corollary 4.3. Let Ry and R; be rings. Let I and I, be ideals of Ry and Ry, respectively. Then
Ry X Ry is an A-ring with respect to 1) x I, if and only if R, is an A-ring with respect to I, and
Ry is an A-ring with respect to I.

Corollary 4.4. Let (Ry,)rea be a family of commutative rings. Let R = || Ry. Let Iy, be an
keA

ideal of Ry, for each k € A and let I := [[Ij.. Then I is an A-module with respect to itself if and

only if I, is an A-module with respect to itself for each k € A.

We close this paper by giving an example of a ring R and an ideal I such that I C Z(R) and
R is an A-ring with respect to I while R is not an .A-ring.
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Example 4.5. Let S be a ring which is not an A-ring. Note that, by Proposition 3.2(3), S is an
A-ring with respect to S. Let 1" be a zero-dimensional ring and m a maximal ideal of 7. Then T’
is an A-ring, and in particular an .A-ring with respect to m, and m C Z(T). Let R := S x T and
I := S x m. Note that I C Z(R). Moreover, by Corollary 4.3, R is an .A-ring with respect to [
while, by [12, Proposition 1.3], R is not an .A-ring as S is not so, as desired.
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