On Property (\mathcal{A}) with respect to an ideal

A. Ait Ouahi, Y. Arssi and S. Bouchiba

Communicated by Najib Mahdou

MSC 2010 Classifications: Primary 13C13; Secondary 13A99.

Keywords and phrases: A-ring; A-ring with respect to an ideal; A-module with respect to an ideal; zero divisor.

Abstract. The main goal of this paper is to introduce and study the notion of Property (\mathcal{A}) of a ring R or an R-module M with respect to an ideal I of R. The new notion turns out to be a weak form of the classic notion of an \mathcal{A} -ring, in the sense that, any R-module satisfying the Property (\mathcal{A}) satisfies as well the Property (\mathcal{A}) with respect to any ideal I of R. Moreover, we prove that if I is contained in the nilradical of R, then the notion of \mathcal{A} -module with respect to I and the notion of \mathcal{A} -module collapse. Also, we present an example of a ring R possessing an ideal $I \subseteq Z(R)$ such that R is an \mathcal{A} -ring with respect to I while R is not an \mathcal{A} -ring. Finally, we totally characterize the rings R and the R-modules M satisfying the Property (\mathcal{A}) with respect to an ideal I as well as we investigate the behavior of the Property (\mathcal{A}) with respect to an ideal vis-à-vis the direct products of rings and modules.

1 Introduction

Throughout this paper, all rings are supposed to be commutative with unit element and all *R*modules are unital. Let R be a commutative ring and M an R-module. We denote by $Z_R(M) =$ $\{r \in R : rm = 0 \text{ for some nonzero element } m \in M\}$ the set of zero divisors of R on M and by $Z(R) := Z_R(R)$ the set of zero divisors of the ring R. In [4], the notions of A-module and \mathcal{SA} -module are extensively studied. In fact, an *R*-module *M* satisfies Property (\mathcal{A}), or *M* is an \mathcal{A} -module over R (or \mathcal{A} -module if no confusion is likely), if for every finitely generated ideal I of R with $I \subseteq \mathbb{Z}_R(M)$, there exists a nonzero $m \in M$ with Im = 0, or equivalently, $\operatorname{ann}_M(I) \neq 0$. M is said to satisfy strong Property (A), or is an SA-module over R (or an SA-module if no confusion is likely), if for any $r_1, \dots, r_n \in \mathbb{Z}_R(M)$, there exists a nonzero $m \in M$ such that $r_1m = \cdots = r_nm = 0$. The ring R is said to satisfy Property (A), or an A-ring, (respectively, \mathcal{SA} -ring) if R is an \mathcal{A} -module (resp., an \mathcal{SA} -module). One may easily check that M is an \mathcal{SA} module if and only if M is an A-module and $Z_R(M)$ is an ideal of R. It is worthwhile reminding the reader that the Property (A) for commutative rings was introduced by Quentel in [18] who called it Property (C) and Huckaba used the term Property (A) in [13, 14]. In [11], Faith called rings satisfying Property (A) McCoy rings. The Property (A) for modules was introduced by Darani [9] who called such modules F-McCoy modules (for Faith McCoy terminology). He also introduced the strong Property (\mathcal{A}) under the name super coprimal and called a module M coprimal if $Z_R(M)$ is an ideal. In [17], the strong Property (A) for commutative rings was independently introduced by Mahdou and Hassani in [17] and further studied by Dobbs and Shapiro in [10]. Note that a finitely generated module over a Noetherian ring is an A-module (for example, see [15, Theorem 82]) and thus a Noetherian ring is an A-ring. Also, it is well known that a zero-dimensional ring R is an A-ring as well as any ring R whose total quotient ring Q(R) is zero-dimensional. In fact, it is easy to see that R is an A-ring if and only if so is Q(R) [9, Corollary 2.6]. Any polynomial ring R[X] is an A-ring [13] as well as any reduced ring with a finite number of minimal prime ideals [13]. In [6], we generalize a result of T.G. Lucas which states that if R is a reduced commutative ring and M is a flat R-module, then the idealization $R \ltimes M$ is an A-ring if and only if R is an A-ring [16, Proposition 3.5]. In effect, we drop the reduceness hypotheses and prove that, given an arbitrary commutative ring R and any submodule M of a flat R-module F, $R \ltimes M$ is an A-ring (resp., SA-ring) if and only if R is an \mathcal{A} -ring (resp., $\mathcal{S}\mathcal{A}$ -ring). In [7], we present an answer to a problem raised by D.D. Anderson and S. Chun in [4] on characterizing when is the idealization $R \ltimes M$ of a ring R on an R-module M an A-ring (resp., an \mathcal{SA} -ring) in terms of module-theoretic properties of R and M. Also, we were concerned with presenting a complete answer to an open question asked by these two authors which reads the following: What modules over a given ring R are homomorphic images of modules satisfying the strong Property (A)? [4, Question 4.4 (1)]. The main theorem of [8] extends a result of Hong, Kim, Lee and Ryu in [12] which proves that a direct product $\prod R_i$ of rings is an A-ring if and only if so is any R_i . In this regard, we show that if $\{R_i\}_{i \in I}$ is a family of rings and $\{M_i\}_{i \in I}$ is a family of modules such that each M_i is an R_i -module, then the direct product $\prod_{i \in I} M_i$ of the M_i is an A-module over $\prod_{i \in I} R_i$ if and only if each M_i is an A-module over R_i , $i \in I$. Finally, our main concern in [1] is to introduce and investigate a new class of rings lying properly between the class of A-rings and the class of SA-rings. The new class of rings, termed the class of \mathcal{PSA} -rings, turns out to share common characteristics with both A-rings and SA-rings. Numerous properties and characterizations of this class are given as well as the

module-theoretic version of \mathcal{PSA} -rings is introduced and studied. For further works related to

the Property (\mathcal{A}) and $(\mathcal{S}\mathcal{A})$, we refer the reader to [2, 3, 4, 5, 12, 16]. The main goal of this paper is to introduce and investigate the new notions of an A-ring and \mathcal{A} -module with respect to an ideal I of R. The new notion turns out to be a weak form of the classic notion of an A-ring, in the sense that, any R-module satisfying the Property (A) satisfies as well the Property (A) with respect to any ideal I of R. Also, the introduced property stems from the lack of stability of Z(R) under the first operation "+" of R. In particular, we examine the ideals of R which satisfy the Property (A) with respect to themselves. For instance, if R is Noetherian, then any ideal I is an A-module with respect to itself. Also, if R is a ring and I is an ideal of R such that I is contained in the nilradical Rad(R) of R, then an R-module M is an \mathcal{A} -module with respect to I if and only if M is an \mathcal{A} -module. Moreover, through Example 4.5, we present an example of a ring R possessing an ideal $I \subseteq Z(R)$ such that R is an A-ring with respect to I while R is not an A-ring. The main theorem of Section 3 totally characterizes when a ring R (resp., an R-module M) is an A-ring (resp., an A-module) with respect to a given ideal I. Finally, in Section 4, we investigate the behavior of the Property (A) with respect to an ideal vis-à-vis the direct products of rings and modules. This allows us to generalize, via Theorem 4.1, a proposition of Hong-Kim-Lee-Ryu stating that the direct product $\prod R_i$ of a family of rings $(R_i)_i$ is an A-ring if and only if each R_i is an A-ring [12, Proposition 1.3].

2 The set of zero divisors with respect to an ideal

This section introduces and studies the set of zero divisors of a ring R (resp., an R-module M) with respect to a given ideal I of R denoted by $Z^{I}(R)$ (resp., $Z^{I}_{R}(M)$). We seek conditions under which the complement of $Z^{I}(R)$ is a saturated multiplicative subset of R. In this regard, we prove that if R admits a finite number of maximal prime ideals, in particular if R is Noetherian, then $R \setminus Z^{I}(R)$ is a saturated multiplicative subset of R. Also, we characterize the set of zero divisors of a direct product $R = \prod_{i \in \Lambda} R_i$ of the rings R_i with respect to an ideal I of R in terms of the set of zero divisors of R.

the set of zero divisors of R_i with respect to the projections of I on the rings R_i .

We begin by giving the definitions of the new concepts.

Definition 2.1. Let R be a ring and I an ideal of R. Let M be an R-module.

- (i) An element x of R is said to be a zero divisor with respect to I if $x + I \subseteq Z(R)$.
- (ii) The set of all zero divisors with respect to I is denoted by $Z^{I}(R) = \{x \in R : x+I \subseteq Z(R)\}.$
- (iii) An element x of R is said to be a zero divisor of M with respect to I if $x + I \subseteq Z_R(M)$.
- (iv) The set of all zero divisors of M with respect to I is denoted by $Z_B^I(M)$.

Let R be a ring and M an R-module. Let Spec(Z(R)) (resp., Max(Z(R))) denote the set of prime ideals (resp., maximal ideals) of R contained in Z(R) and $\text{Spec}(Z_R(M))$ (resp., $\text{Max}(Z_R(M))$) denote the set of prime ideals (resp., maximal ideals) of R contained in $Z_R(M)$. According to [15], $\text{Max}(Z_R(M))$ stands for the set of the maximal primes of the R-module M. Also, let I be an ideal of R. Note that $Z^I(R) \subseteq Z(R)$ and $Z^I_R(M) \subseteq Z_R(M)$. If $I \subseteq Z(R)$, then we denote by $\text{Max}_I(Z(R))$ the set of the maximal primes of R containing I, that is,

$$\operatorname{Max}_{I}(\operatorname{Z}(R)) = \{ m \in \operatorname{Max}(\operatorname{Z}(R)) : I \subseteq m \}.$$

Our first theorem characterizes the set of zero divisors with respect to an ideal and it provides conditions under which $R \setminus Z^{I}(R)$ is a saturated multiplicative subset of a ring R.

Theorem 2.2. Let R be a ring and I an ideal of R. Then 1) $\bigcup_{m \in Max_I(Z(R))} m \subseteq Z^I(R)$. 2) If R admits a finite number of maximal primes, then $Z^I(R) = \bigcup_{m \in Max_I(Z(R))} m$.

Proof. 1) It is clear.

2) Assume that $\operatorname{Max}(Z(R)) = \{P_1, P_2, \dots, P_n\}$ is a finite set. Then $Z(R) = P_1 \cup P_2 \cup \dots \cup P_n$. Let $\operatorname{Max}_I(Z(R)) = \{P_1, P_2, \dots, P_t\}$. Then $I \subseteq P_1 \cap P_2 \cap \dots \cap P_t$ and $I \notin P_{t+1} \cup \dots \cup P_n$. Suppose that $Z^I(R) \notin P_1 \cup \dots \cup P_t$ and let $x \in Z^I(R) \setminus P_1 \cup \dots \cup P_t$. Let $i \in I \setminus P_{t+1} \cup \dots \cup P_n$. Let $x \in P_{t+1} \cap \dots \cap P_r \setminus P_{r+1} \cup \dots \cup P_n$ for some $r \in \{t+1, \dots, n\}$. Note that, if $P_{r+1} \cap \dots \cap P_n = (0)$, then, in particular, $P_{r+1} \cap \dots \cap P_n \subseteq P_1$ and thus there exists $k \in \{r+1, \dots, n\}$ such that $P_k \subseteq P_1$ so that $P_k = P_1$ which is absurd as $I \subseteq P_1$ while $I \notin P_k$. Hence $P_{r+1} \cap \dots \cap P_n \neq (0)$. Let $y \in P_{r+1} \cap \dots \cap P_n \setminus P_{t+1} \cup \dots \cup P_r$. Consider z := x + yi. Then $z \in Z(R)$ as $x \in Z^I(R)$. If $z \in P_1 \cup P_2 \cup \dots \cup P_t$, then $x \in P_1 \cup \dots \cup P_t$ as $I \subseteq P_1 \cap \dots \cap P_t$. This leads to a contradiction since $x \notin P_1 \cup \dots \cup P_t$. If $z \in P_{t+1} \cup \dots \cup P_r$, then $yi \in P_{t+1} \cup \dots \cup P_r$ as $x \in P_{t+1} \cap \dots \cap P_r$ which is absurd since $i, y \notin P_{t+1} \cup \dots \cup P_r$. If $z \in P_{r+1} \cup \dots \cup P_n$. It follows that $Z^I(R) \subseteq P_1 \cup \dots \cup P_t$ and thus the desired equality holds completing the proof.

Next, we deduce that in the setting of a Noetherian ring R, $R \setminus Z^{I}(R)$ is a saturated multiplicative subset of R.

Corollary 2.3. If R is a Noetherian ring and I an ideal of R, then

$$Z^{I}(R) = \bigcup_{m \in \operatorname{Max}_{I}(Z(R))} m.$$

Proof. It follows from Theorem 2.2 since by [15, Theorem 80], if R is Noetherian, then it admits a finite number of maximal primes.

The following theorem characterizes the set of zero divisors of a direct product $R = \prod_{i \in \Lambda} R_i$ of the rings R_i with respect to an ideal I of R in terms of the set of zero divisors of R_i with respect to the projections of I on the rings R_i .

Theorem 2.4. Let $(R_j)_{j \in \Lambda}$ be a family of rings and let $R := \prod_{j \in \Lambda} R_j$. For each $j \in \Lambda$, let I_j be an ideal of R_j and let $I := \prod_{j \in \Lambda} I_j$ be the resulting ideal of R. Let $x = (x_j)_j \in R$. Then $x \in Z^I(R)$ if and only if there exists $j \in \Lambda$ such that $x_j \in Z^{I_j}(R_j)$.

Proof. Assume that $x \in Z^{I}(R)$. Then $x + I \subseteq Z(R)$. Assume, by way of contradiction, that for each $j \in \Lambda$, there exists $i_j \in I_j$ such that $x_j + i_j \notin Z(R_j)$. Let $z = (x_j + i_j)_j = x + (i_j)_j$ with $(i_j)_j \in I$. Then $z \in x + I$ and $z \notin Z(R)$ which is absurd. It follows that there exists $j \in \Lambda$ such that $x_j + I_j \subseteq Z(R_j)$, that is, $x_j \in Z^{I_j}(R_j)$, as desired. The converse is direct completing the proof.

Next, we describe the finitely generated ideals contained in the set of zero divisors of a direct products $\prod_{i \in \Lambda} R_i$ of a family of rings R_i with respect to an ideal I of this direct product.

Theorem 2.5. Let $(R_t)_{t \in \Lambda}$ be a family of rings and $R = \prod_{t \in \Lambda} R_t$. Let I_t be an ideal of R_t for each $t \in \Lambda$ and $I = \prod_t I_t$ the resulting ideal of R. Let M_t be an R_t -module for each $t \in \Lambda$ and $M = \prod_{t \in \Lambda} M_t$. Let $J = (a_1, a_2, \dots, a_n)R$ be a finitely generated ideal of R and $J_t = (a_{1t}, a_{2t}, \dots, a_{nt})R_t$ the projection of J on R_t for each $t \in \Lambda$, where $a_k = (a_{kt})_{t \in \Lambda}$ for each $k = 1, 2, \dots, n$. Then $J \subseteq Z_R^I(M)$ if and only if there exists $t \in \Lambda$ such that $J_t \subseteq Z_{R_t}^{I_t}(M_t)$. *Proof.* The sufficient condition is direct. Let us now prove the necessary one. Assume that $J_t \not\subseteq Z_{R_t}^{I_t}(M_t)$ for each $t \in \Lambda$. Then, for each $t \in \Lambda$, there exists $b_t = \alpha_{1t}a_{1t} + \alpha_{2t}a_{2t} + \cdots + \alpha_{nt}a_{nt} \in J_t$ such that $b_t \notin Z_{R_t}^{I_t}(M_t)$. Put $r_k = (\alpha_{kt})_{t \in \Lambda}$ for $k = 1, \cdots, n$. Now, take $x = r_1a_1 + r_2a_2 + \cdots + r_na_n$. Then $x \in J$, as J is an ideal, and $x_t = b_t$ for each $t \in \Lambda$. Therefore $x_t \notin Z_{R_t}^{I_t}(M_t)$ for each $t \in \Lambda$ and thus, by Theorem 2.4, $x \notin Z_R^{I}(\prod M_t)$. It follows that $J \notin Z_R^{I}(\prod M_i)$. This proves the necessary condition completing the proof.

3 Property (*A*) with respect to an ideal

This section introduces and investigates the new notions of an A-ring and A-module with respect to an ideal I of R. It turns out that any A-ring (resp., any A-module) is, in particular, an A-ring (resp., an A-module) with respect to any ideal I of R. The new property stems from the lack of stability of Z(R) under the first operation "+" of R. In particular, we examine those ideals of R which satisfy the Property (A) with respect to themselves. For instance, if R is Noetherian, then any ideal I is an A-module with respect to itself. The new notion turns out to be a weak form of the classic notion of an A-ring, in the sense that, any R-module satisfying the Property (A) satisfies as well the Property (A) with respect to any ideal I of R. Moreover, we prove that if I is contained in the nilradical of R, then the notion of A-module with respect to I and the notion of A-module collapse. Moreover, through Example 4.5, we present an example of a ring R admitting an ideal $I \subseteq Z(R)$ such that R is an A-ring with respect to I while R is not an A-ring.

We begin by giving the definitions of the new concepts.

Definition 3.1. Let R be a ring and I an ideal of R. Let M be an R-module. Then

- (i) R is said to be an A-ring with respect to I if for each finitely generated ideal such that $J \subseteq Z^{I}(R)$, we have $\operatorname{ann}_{R}(J) \neq (0)$.
- (ii) M is said to be an \mathcal{A} -module with respect to I if for each finitely generated such that $J \subseteq \mathbb{Z}_R^I(M)$, we have $\operatorname{ann}_M(J) \neq (0)$.

The following proposition presents examples of (vacuous) A-rings and A-modules with respect to particular ideals.

Proposition 3.2. Let R be a ring, I an ideal of R and M an R-module.

- (i) If $I \not\subseteq Z(R)$, then R is (vacuously) an A-ring with respect to I.
- (ii) If $I \not\subseteq \mathbf{Z}_R(M)$, then M is (vacuously) an A-module with respect to I.
- (iii) R is (vacuously) an A-ring with respect to R and M is (vacuously) an A-module with respect to R.

Proof. 1) It suffices to note that, when $I \nsubseteq Z(R)$, then $J + I \nsubseteq Z(R)$ for any ideal J of R. Hence the statement (1) follows vacuously from Definition 3.1. 2) The proof is similar to that of (1).

2) The proof is similar to that of (1 2) $L = \frac{1}{2}$

3) It is direct from (2).

Let R be any ring which is not an A-ring. Then R is an example of an A-ring with respect to R which is not an A-ring. Ahead, via Example 4.5, we provide a ring R and an ideal I with $I \subseteq Z(R)$ such that R is an A-ring with respect to I while R is not an A-ring. This discussion proves that the notion of an A-ring with respect to an ideal is weak form of the notion of an A-ring.

We deduce from Proposition 3.2(2) the first case of an ideal of a ring R which is an A-module with respect to itself.

Corollary 3.3. Let R be a ring and I an ideal of R such that $I \nsubseteq \mathbb{Z}_R(I)$. Then I is an A-module with respect to itself.

The following two propositions records the fact that the Property (A) of a ring R is a particular case of the Property (A) of R with respect to an ideal and that in the Noetherian setting any ideal I of R is an A-module with respect to itself.

Proposition 3.4. *Let R be a ring and M be an R-module. Then 1) The following assertions are equivalent:*

- a) \hat{R} is an \mathcal{A} -ring;
- b) R is an A-ring with respect to (0).
- 2) The following assertions are equivalent:
 - a) M is an A-module;
 - b) M is an A-module with respect to (0).

Proof. It is direct from Definition 3.1.

Proposition 3.5. Let R be a ring. Then

- (i) Any A-module M over R is an A-module with respect to any ideal I of R. In particular, if R is an A-ring, then R is an A-ring with respect to any ideal I of R.
- (ii) If R is Noetherian, then any ideal I of R is an A-module and thus an A-module with respect to itself.

Proof. 1) It is clear from Definition 3.1.

2) Assume that R is Noetherian. Then I is a Noetherian module over R. Therefore, by [4, Theorem 2.2(5)], I is an A-module. Hence, by (1), I is an A-module with respect to itself. \Box

It is known that a ring R (resp., an R-module M) is an A-ring (resp., an A-module over R) if and only if the total quotient ring Q(R) (resp., the total quotient module Q(M)) is an A-ring (resp., an A-module over Q(R)). Next, we handle the transfer of this result to the Property (A) with respect to an ideal. Given a ring R and an R-module M, put $S := R \setminus Z(R)$ and $S_R(M) := R \setminus Z_R(M)$.

Proposition 3.6. Let R be a ring and I an ideal of R. Let M be an R-module.

1) Assume that $I \subseteq Z(R)$. Then the following assertions are equivalent.

a) R is an A-ring with respect to I;

b) Q(R) is an A-ring with respect to $S^{-1}I$.

2) Assume that $I \subseteq \mathbb{Z}_R(M)$. Let $Q(M) = S_R(M)^{-1}M$ denote the total quotient module of M. Then the following assertions are equivalent.

a) M is an A-module with respect to I;

b) Q(M) is an A-module with respect to $S_R(M)^{-1}I$.

Proof. 1) a) \Rightarrow b) Assume that R is an A-ring with respect to I. Let K be a proper finitely generated ideal of Q(R) such that $K + S^{-1}I \subseteq Z(Q(R))$. Then there exists a finitely generated ideal $J \subseteq Z(R)$ of R such that $K = S^{-1}J$. Hence $S^{-1}(J+I) \subseteq Z(Q(R))$ and thus $J+I \subseteq Z(R)$. Therefore, as R is an A-ring with respect to I, ann $(J) \neq (0)$. It follows, since $K = S^{-1}J$, that ann $_{Q(R)}(K) \neq (0)$. Consequently, Q(R) is an A-ring with respect to $S^{-1}I$, as desired.

b) \Rightarrow a) Assume that Q(R) is an A-ring with respect to $S^{-1}I$. Let $J \subseteq Z(R)$ be a finitely generated ideal of R such that $J + I \subseteq Z(R)$. Then $S^{-1}(J+I) = S^{-1}J + S^{-1}I$ is a proper ideal of Q(R). Hence, as Q(R) is an A-ring with respect to $S^{-1}I$, we get $\operatorname{ann}_{Q(R)}(S^{-1}J) \neq (0)$. It follows, as S consists of regular elements of R, that $\operatorname{ann}(J) \neq (0)$. Consequently, R is an A-ring with respect to I, as desired.

2) The proof is similar to that of (1).

Corollary 3.7. Let R be a ring and I an ideal of R such that $I \subseteq Z_R(I)$. Then I is an A-module with respect to itself if and only if the ideal $S_R(I)^{-1}I$ of $Q_R(I)$ is an A-module with respect to itself.

Through the next bunch of results we seek conditions under which an *R*-module *M* is an A-module with respect to an ideal *I*. Given a ring *R*, we denote by Rad(R) the nilradical of *R*.

Proposition 3.8. Let R be a ring and I an ideal of R. Assume that $I \subseteq \text{Rad}(R)$. Let M be an R-module. Then M is an A-module with respect to I if and only if M is an A-module.

Proof. By Proposition 3.5, it suffices to prove the necessary statement. Assume that M is an \mathcal{A} -module with respect to I. Let J be a finitely generated ideal of R such that $J \subseteq \mathbb{Z}_R(M)$. Let $j \in J$ and $i \in I$. Then there exists $0 \neq m \in M$ such that jm = 0 and there exists $n \in \mathbb{N}$ such that $i^n = 0$. Let $r := \max\{t \in \mathbb{N} : i^t m \neq 0\}$. Note that $0 \leq r \leq n-1$. Hence $(j+i)i^r m = 0$ and $i^r m \neq 0$ so that $j + i \in \mathbb{Z}_R(M)$. It follows that $J + I \subseteq \mathbb{Z}_R(M)$ and thus $J \subseteq \mathbb{Z}_R^I(M)$. Hence $\operatorname{ann}_M(J) \neq (0)$. Consequently, M is an \mathcal{A} -module.

Corollary 3.9. Let R be a ring and I a nilpotent ideal of R, that is, there exists $n \ge 1$ such that $I^n = (0)$. Let M be an R-module. Then M is an A-module with respect to I if and only if M is an A-module.

Proof. I suffices to note that $I \subseteq \text{Rad}(R)$ and then to apply Proposition 3.8.

Proposition 3.10. Let R be an SA-ring. Put I := Z(R). Then I is an A-module and thus I is an A-module with respect to itself.

Proof. Let $J \subseteq \mathbb{Z}_R(I)$ be a nonzero finitely generated ideal of R. Then, as $J \subseteq \mathbb{Z}_R(I) \subseteq \mathbb{Z}(R)$ and R is an A-ring, we get $\operatorname{ann}(J) \neq (0)$ and thus there exists $a \in R \setminus \{0\}$ such that aJ = (0). As $J \neq (0)$, we get $a \in \mathbb{Z}(R) = I$. Then $\operatorname{ann}_I(J) \neq (0)$. It follows that I is an A-module and thus I is an A-module with respect to itself, as desired.

Proposition 3.11. Let R be an A-ring and I an ideal of R. Assume that $ann(I) \subseteq I$. Then I is an A-module with respect to itself.

Proof. Let $J \subseteq \mathbb{Z}_R^I(I)$ be a nonzero finitely generated ideal of R. As $\mathbb{Z}_R^I(I) \subseteq \mathbb{Z}_R(I) \subseteq \mathbb{Z}(R)$ and R is an \mathcal{A} -ring, we get $\operatorname{ann}(J) \neq (0)$ and thus there exists $a \in R$ such that $a \neq 0$ and aJ = (0). If $a \in I$, then $\operatorname{ann}_I(J) \neq (0)$. Assume that $a \notin I$. Then, as $\operatorname{ann}(I) \subseteq I$, we get $a \notin \operatorname{ann}(I)$. Hence there exists $i \in I$ such that $j := ai \neq 0$. It follows that jJ = (0) and $j \in I \setminus \{0\}$, so that $\operatorname{ann}_I(J) \neq (0)$. Consequently, I is an \mathcal{A} -module with respect to itself.

Corollary 3.12. Let R be an A-ring and I an ideal of R such that ann(I) = (0). Then I is an A-module with respect to itself.

Corollary 3.13. Let R be an A-ring and I an ideal of R. Assume that $Z_R(I) \subseteq I$. Then I is an A-module with respect to itself.

Proof. It is direct from Proposition 3.11 as $\operatorname{ann}(I) \subseteq \mathbb{Z}_R(I)$.

Next, we prove a sort of ascent behavior of the Property (A) with respect to an ideal.

Proposition 3.14. Let R be a ring and M an R-module. Let $I_1 \subseteq I_2$ be ideals of R. Then

- (i) If R is an A-ring with respect to I_1 , then R is an A-ring with respect to I_2 .
- (ii) If M is an A-module with respect to I_1 , then M is an A-module with respect to I_2 .

Proof. 1) Assume that R is an A-ring with respect to I_1 . Let J be a finitely generated ideal of R such that $J \subseteq Z^{I_2}(R)$. Then, as $I_1 \subseteq I_2$, $J + I_1 \subseteq J + I_2 \subseteq Z(R)$ and thus $J \subseteq Z^{I_1}(R)$. Now, since R is an A-ring with respect to I_1 , it follows that $\operatorname{ann}(J) \neq (0)$. Therefore R is an A-ring with respect to I_2 , as desired.

2) It is similar to (1).

The following theorem and corollary characterize the A-rings R (resp., A-modules M) with respect to a given ideal I of R in the crucial case when $I \subseteq Z(R)$ (resp., $I \subseteq Z_R(M)$). Given a ring R and an ideal I of R, we denote by $Max_I(R)$ the set of maximal ideals of R containing I and we denote by $Max_I(Z(R))$ the set of prime ideals of R which are maximal among the prime ideals in Z(R) and which contain I, in other words, the elements of $Max_I(Z(R))$ are the maximal primes of R containing I. Also, given an R-module M, let $Max_I(Z_R(M))$ denote the set of prime ideals of R which are maximal among the prime ideals in $Z_R(M)$ and which contain I.

Theorem 3.15. Let *R* be a ring and *I* an ideal of *R*.

1) Assume that $I \subseteq Z(R)$ and that Q(R) = R. Then the following assertions are equivalent. a) R is an A-ring with respect to I;

b) For each proper finitely generated ideal J of R such that I + J is a proper ideal of R, $ann(J) \neq (0)$;

c) For each proper finitely generated ideal J of R such that $J \subseteq \bigcup_{m \in Max_I(R)} m$, $ann(J) \neq (0)$.

2) Let M be an R-module such that $I \subseteq \mathbb{Z}_R(M)$. Assume that $Q_R(M) = R$. Then the following assertions are equivalent.

a) M is an A-module with respect to I;

b) For each finitely generated ideal J of R such that I + J is a proper ideal of R, $\operatorname{ann}_M(J) \neq (0)$;

c) For each finitely generated ideal J of R such that $J \subseteq \bigcup_{m \in Max_I(R)} m$, $ann_M(J) \neq (0)$.

Lemma 3.16. Let R be a ring such that Q(R) = R. Let I be a proper ideal of R. Then, for each ideal J of R, I + J is a proper ideal of R if and only if $J \subseteq \bigcup_{m \in Max_I(R)} m$.

Proof. Let J be an ideal of R. Assume that I + J is a proper ideal of R. Then there exists a maximal ideal of R such that $I + J \subseteq m$. Hence $m \in Max_I(R)$ such that $J \subseteq m$. Therefore $J \subseteq \bigcup_{m \in Max_I(R)} m$. Conversely, suppose that $J \subseteq \bigcup_{m \in Max_I(R)} m$. Then $I + J \subseteq \bigcup_{m \in Max_I(R)} m$ as $I \subseteq m$ for each $m \in Max_I(R)$. Hence I + J is a proper ideal of R since $1 \notin \bigcup_{m \in Max_I(R)} m$. This

completes the proof of the lemma.

Proof of Theorem 3.15. 1) a) \Leftrightarrow b) It is clear from Definition 3.1 as Z(R) is the set of non invertible elements of R.

b) \Leftrightarrow c) It is straightforward by Lemma 3.16.

c) \Rightarrow a) Assume that (c) holds. Let *J* be a finitely generated ideal of *R* such that $I + J \subseteq \mathbb{Z}(R)$. It follows, applying (c), that ann $(J) \neq (0)$. Consequently, *R* is an *A*-ring with respect to *I*, as desired.

2) The proof is similar to the treatment of (1).

Our final result gives a characterization of A-rings and A-modules with respect to an ideal in the general setting.

Corollary 3.17. *Let R be a ring and I an ideal of R.*

1) Assume that $I \subseteq Z(R)$. Then the following assertions are equivalent. a) R is an A-ring with respect to I;

b) For each finitely generated ideal $J \subseteq Z(R)$ of R such that $J \subseteq \bigcup_{m \in Max_I(Z(R))} m$, $ann(J) \neq Max_I(Z(R))$

(0).

2) Let M be an R-module such that $I \subseteq Z_R(M)$. Then the following assertions are equivalent. a) M is an A-module with respect to I;

b) For each finitely generated ideal $J \subseteq \mathbb{Z}_R(M)$ of R such that $J \subseteq \bigcup_{m \in \operatorname{Max}_I(\mathbb{Z}_R(M))} m$,

 $\operatorname{ann}_M(J) \neq (0).$

Proof. It follows easily from the combination of Theorem 3.15 and Proposition 3.6.

4 Property (A) with respect to an ideal and direct product of rings and modules

This section investigates the behavior of the Property (\mathcal{A}) with respect to an ideal vis-à-vis the direct products of rings and modules. Given a family of rings $(R_k)_{k \in \Lambda}$, we characterize when a direct product $\prod_k M_k$ is an \mathcal{A} -module with respect to the ideal $\prod_k I_k$ with each M_k is an R_k -module and each I_k is an ideal of R_k for any $k \in \Lambda$. This allows to generalize, via Theorem 4.1, a result of Hong-Kim-Lee-Ryu stating that the direct product $\prod R_i$ of a family of rings $(R_i)_i$ is an \mathcal{A} -ring if and only if each R_i is an \mathcal{A} -ring [12, Proposition 1.3].

We begin by announcing the main theorem of this section.

Theorem 4.1. Let $(R_k)_{k \in \Lambda}$ be a family of commutative rings. Let $R = \prod_{k \in \Lambda} R_k$. Let I_k be an ideal of R_k for each $k \in \Lambda$ and let $I := \prod I_k$. Let M_k be an R_k -module for each $k \in \Lambda$ and $M := \prod_k M_k$. Then the following assertions are equivalent.

- (i) M is an A-module with respect to I;
- (ii) M_k is an A-module with respect to I_k for each $k \in \Lambda$.

Proof. 1) \Rightarrow 2) Assume that M is an A-module with respect to I. Fix $t \in \Lambda$ and let $J \subseteq Z_{R_t}(M_t)$ be a finitely generated ideal of R_t such that $J + I_t \subseteq Z_{R_t}(M_t)$. Consider the ideal $K = JR + (\cdots, 1, 1, 0_{R_t}, 1, 1, \cdots)R$ of R. Then K is a finitely generated ideal of R and it is easily checked that $K \subseteq Z_R^I(M)$ since $J \subseteq Z_{R_t}^{I_t}(M_t)$. Hence, since M is an A-module with respect to I, there exists $0 \neq m' \in M$ such that Km' = 0. Put $m' = (m'_k)_k$. Then $(\cdots, 1, 1, 0_{R_t}, 1, 1, \cdots)m' = 0$, as $(\cdots, 1, 1, 0_{R_t}, 1, 1, \cdots) \in K$, and thus $m'_k = 0$ for each $k \neq t$. It follows that $m'_t \neq 0$ and $Jm'_t = (0)$, so that, $\operatorname{ann}_{M_t}(J) \neq (0)$. Consequently, M_k is an A-module with respect to I_t , as desired.

2) \Rightarrow 1) Assume that each M_k is an \mathcal{A} -module with respect to I_k . Let $J = (a_1, a_2, \dots, a_n)R \subseteq Z_R(M)$ be a finitely generated ideal of R such that $J \subseteq Z_R^I(M)$. Let $a_k = (a_{ki})_{i \in \Lambda}$ for each $k = 1, \dots, n$ and let $J_i := (a_{1i}, a_{2i}, \dots, a_{ni})R_i$ the *i*th projection of J for each $i \in \Lambda$. Then, by Theorem 2.5, there exists $t \in \Lambda$ such that $J_k \subseteq Z_{R_i}^{I_k}(M_t)$. Since M_k is an \mathcal{A} -module with respect to I_k , we get that $\operatorname{ann}_{M_k}(J_k) \neq (0)$, that is, there exists $0 \neq m_k \in M_k$ such that $J_k m_k = (0)$. Hence, it is easily verified that

$$J(\dots, 0, 0, m_k, 0, 0, \dots) \subseteq (\prod_{i \in \Lambda} J_i)(\dots, 0, 0, m_k, 0, 0, \dots)$$
$$= \dots \times (0) \times (0) \times J_k m_k \times (0) \times (0) \times \dots = (0),$$

that is, $\operatorname{ann}_M(J) \neq (0)$. Therefore M is an A-module with respect to I completing the proof of the theorem.

Corollary 4.2. Let $(R_k)_{k \in \Lambda}$ be a family of commutative rings and $R = \prod_{k \in \Lambda} R_k$. Let I_k be an ideal of R_k for each $k \in \Lambda$ and $I := \prod I_k$. Then R is an A-ring with respect to I if and only if R_k is an A-ring with respect to I_k for each $k \in \Lambda$.

Corollary 4.3. Let R_1 and R_2 be rings. Let I_1 and I_2 be ideals of R_1 and R_2 , respectively. Then $R_1 \times R_2$ is an A-ring with respect to $I_1 \times I_2$ if and only if R_1 is an A-ring with respect to I_1 and R_2 is an A-ring with respect to I_2 .

Corollary 4.4. Let $(R_k)_{k \in \Lambda}$ be a family of commutative rings. Let $R = \prod_{k \in \Lambda} R_k$. Let I_k be an ideal of R_k for each $k \in \Lambda$ and let $I := \prod I_k$. Then I is an A-module with respect to itself if and only if I_k is an A-module with respect to itself for each $k \in \Lambda$.

We close this paper by giving an example of a ring R and an ideal I such that $I \subseteq Z(R)$ and R is an A-ring with respect to I while R is not an A-ring.

Example 4.5. Let S be a ring which is not an A-ring. Note that, by Proposition 3.2(3), S is an A-ring with respect to S. Let T be a zero-dimensional ring and m a maximal ideal of T. Then T is an A-ring, and in particular an A-ring with respect to m, and $m \subseteq Z(T)$. Let $R := S \times T$ and $I := S \times m$. Note that $I \subseteq Z(R)$. Moreover, by Corollary 4.3, R is an A-ring with respect to I while, by [12, Proposition 1.3], R is not an A-ring as S is not so, as desired.

References

- A. Ait Ouahi, S. Bouchiba and M. El-Arabi, On proper strong Property (A) for rings and modules, J. Algebra Appl. 19 (2020), no. 12, 2050239, 13 pp
- [2] D. D. Anderson and S. Chun, *The set of torsion elements of a module*, Comm. Algebra 42 (2014) 1835-1843.
- [3] D. D. Anderson and S. Chun, Zero-divisors, torsion elements, and unions of annihilators, Commun. Algebra 43 (2015) 76-83.
- [4] D. D. Anderson and S. Chun, Annihilator conditions on modules over commutative rings, J. Alg. Applications, Vol. 16, no. 7 (2017) 1750143 (19 pages).
- [5] D. D. Anderson and S. Chun, *McCoy modules and related modules over commutative rings*, 2017, Vol. 45, no. 6, 2593-2601.
- [6] S. Bouchiba, On the vanishing of annihilators of modules, Commun. Algebra 48 (2020), no. 2, 879-890.
- [7] S. Bouchiba, M. El-Arabi and M. Khaloui, When is the idealization $R \ltimes M$ an A-ring?, J. Algebra Appl. 19 (2020), no. 12, 2050227, 14 pp.
- [8] S. Bouchiba and M. El-Arabi, On Property (A) for modules over direct products of rings, Quaestiones Mathematicae, to appear.
- [9] A. Y. Darani, Notes on annihilator conditions in modules over commutative rings, An. Stinnt. Univ. Ovidius Constanta 18 (2010) 59-72.
- [10] D. E. Dobbs and J. Shapiro, On the strong (A)-ring of Mahdou and Hassani, Mediterr. J. Math. 10 (2013) 1995-1997.
- [11] C. Faith, Annihilator ideals, associated primes, and Kasch-McCoy commutative rings, Commun. Algebra 19 (1991) 1867-1892.
- [12] C. Y. Hong, N. K. Kim, Y. Lee and S. T. Ryu, *Rings with Property (A) and their extensions*, J. Algebra 315 (2007) 612-628.
- [13] J. A. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, Inc., New York and Basel, 1988.
- [14] J. A. Huckaba and J. M. Keller, Annihilation of ideals in commutative rings, Pacific J. Math. 83 (1979) 375-379.
- [15] I. Kaplansky, Commutative Rings, Polygonal Publishing House, Washington, New Jersey, 1994.
- [16] T. G. Lucas, Two annihilator conditions: Property (A) and (A.C.), Commun. Algebra 14 (1986) 557-580.
- [17] N. Mahdou and A. R. Hassani, On strong (A)-rings, Mediterr. J. Math. 9 (2012) 393-402.
- [18] Y. Quentel, Sur la compacité du spectre minimal d'un anneau, Bull. Soc. Math. France 99 (1971) 265-272.

Author information

A. Ait Ouahi, Y. Arssi and S. Bouchiba, Department of Mathematics, Faculty of Sciences, Moulay Ismail University of Meknes, Morocco. E-mail: s.bouchiba@fs.umi.ac.ma

Received: October 22, 2020. Accepted: January 7, 2021.