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Abstract. The main goal of this paper is to introduce and study the notion of Property (A)
of a ring R or an R-module M with respect to an ideal I of R. The new notion turns out to be
a weak form of the classic notion of an A-ring, in the sense that, any R-module satisfying the
Property (A) satisfies as well the Property (A) with respect to any ideal I of R. Moreover, we
prove that if I is contained in the nilradical of R, then the notion of A-module with respect to
I and the notion of A-module collapse. Also, we present an example of a ring R possessing an
ideal I ⊆ Z(R) such that R is an A-ring with respect to I while R is not an A-ring. Finally, we
totally characterize the rings R and the R-modules M satisfying the Proprety (A) with respect
to an ideal I as well as we investigate the behavior of the Property (A) with respect to an ideal
vis-à-vis the direct products of rings and modules.

1 Introduction

Throughout this paper, all rings are supposed to be commutative with unit element and all R-
modules are unital. Let R be a commutative ring and M an R-module. We denote by ZR(M) =
{r ∈ R : rm = 0 for some nonzero element m ∈ M} the set of zero divisors of R on M and
by Z(R) := ZR(R) the set of zero divisors of the ring R. In [4], the notions of A-module and
SA-module are extensively studied. In fact, an R-module M satisfies Property (A), or M is an
A-module overR (orA-module if no confusion is likely), if for every finitely generated ideal I of
R with I ⊆ ZR(M)), there exists a nonzerom ∈M with Im = 0, or equivalently, annM (I) 6= 0.
M is said to satisfy strong Property (A), or is an SA-module over R (or an SA-module if no
confusion is likely), if for any r1, · · · , rn ∈ ZR(M), there exists a nonzero m ∈ M such that
r1m = · · · = rnm = 0. The ring R is said to satisfy Property (A), or an A-ring, (respectively,
SA-ring) if R is an A-module (resp., an SA-module). One may easily check that M is an SA-
module if and only if M is anA-module and ZR(M) is an ideal of R. It is worthwhile reminding
the reader that the Property (A) for commutative rings was introduced by Quentel in [18] who
called it Property (C) and Huckaba used the term Property (A) in [13, 14]. In [11], Faith called
rings satisfying Property (A) McCoy rings. The Property (A) for modules was introduced by
Darani [9] who called such modules F-McCoy modules (for Faith McCoy terminology). He
also introduced the strong Property (A) under the name super coprimal and called a module
M coprimal if ZR(M) is an ideal. In [17], the strong Property (A) for commutative rings was
independently introduced by Mahdou and Hassani in [17] and further studied by Dobbs and
Shapiro in [10]. Note that a finitely generated module over a Noetherian ring is an A-module
(for example, see [15, Theorem 82]) and thus a Noetherian ring is an A-ring. Also, it is well
known that a zero-dimensional ring R is an A-ring as well as any ring R whose total quotient
ring Q(R) is zero-dimensional. In fact, it is easy to see that R is an A-ring if and only if so is
Q(R) [9, Corollary 2.6]. Any polynomial ring R[X] is an A-ring [13] as well as any reduced
ring with a finite number of minimal prime ideals [13]. In [6], we generalize a result of T.G.
Lucas which states that if R is a reduced commutative ring and M is a flat R-module, then the
idealization RnM is an A-ring if and only if R is an A-ring [16, Proposition 3.5]. In effect, we
drop the reduceness hypotheses and prove that, given an arbitrary commutative ring R and any
submodule M of a flat R-module F , RnM is an A-ring (resp., SA-ring) if and only if R is an
A-ring (resp., SA-ring). In [7], we present an answer to a problem raised by D.D. Anderson and
S. Chun in [4] on characterizing when is the idealization R nM of a ring R on an R-module
M an A-ring (resp., an SA-ring) in terms of module-theoretic properties of R and M . Also,
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we were concerned with presenting a complete answer to an open question asked by these two
authors which reads the following: What modules over a given ring R are homomorphic images
of modules satisfying the strong Property (A)? [4, Question 4.4 (1)]. The main theorem of [8]
extends a result of Hong, Kim, Lee and Ryu in [12] which proves that a direct product

∏
Ri of

rings is an A-ring if and only if so is any Ri. In this regard, we show that if {Ri}i∈I is a family
of rings and {Mi}i∈I is a family of modules such that each Mi is an Ri-module, then the direct
product

∏
i∈I

Mi of the Mi is an A-module over
∏
i∈I

Ri if and only if each Mi is an A-module over

Ri, i ∈ I . Finally, our main concern in [1] is to introduce and investigate a new class of rings
lying properly between the class of A-rings and the class of SA-rings. The new class of rings,
termed the class of PSA-rings, turns out to share common characteristics with both A-rings
and SA-rings. Numerous properties and characterizations of this class are given as well as the
module-theoretic version of PSA-rings is introduced and studied. For further works related to
the Property (A) and (SA), we refer the reader to [2, 3, 4, 5, 12, 16].

The main goal of this paper is to introduce and investigate the new notions of an A-ring and
A-module with respect to an ideal I of R. The new notion turns out to be a weak form of the
classic notion of an A-ring, in the sense that, any R-module satisfying the Property (A) satisfies
as well the Property (A) with respect to any ideal I of R. Also, the introduced property stems
from the lack of stability of Z(R) under the first operation "+" of R. In particular, we examine
the ideals of R which satisfy the Property (A) with respect to themselves. For instance, if R is
Noetherian, then any ideal I is an A-module with respect to itself. Also, if R is a ring and I is
an ideal of R such that I is contained in the nilradical Rad(R) of R, then an R-module M is an
A-module with respect to I if and only if M is an A-module. Moreover, through Example 4.5,
we present an example of a ring R possessing an ideal I ⊆ Z(R) such that R is an A-ring with
respect to I while R is not an A-ring. The main theorem of Section 3 totally characterizes when
a ring R (resp., an R-module M ) is an A-ring (resp., an A-module) with respect to a given ideal
I . Finally, in Section 4, we investigate the behavior of the Property (A) with respect to an ideal
vis-à-vis the direct products of rings and modules. This allows us to generalize, via Theorem
4.1, a proposition of Hong-Kim-Lee-Ryu stating that the direct product

∏
Ri of a family of rings

(Ri)i is an A-ring if and only if each Ri is an A-ring [12, Proposition 1.3].

2 The set of zero divisors with respect to an ideal

This section introduces and studies the set of zero divisors of a ring R (resp., an R-module M )
with respect to a given ideal I of R denoted by ZI(R) (resp., ZI

R(M)). We seek conditions under
which the complement of ZI(R) is a saturated multiplicative subset of R. In this regard, we
prove that if R admits a finite number of maximal prime ideals, in particular if R is Noetherian,
then R \ ZI(R) is a saturated multiplicative subset of R. Also, we characterize the set of zero
divisors of a direct product R =

∏
i∈Λ

Ri of the rings Ri with respect to an ideal I of R in terms of

the set of zero divisors of Ri with respect to the projections of I on the rings Ri.

We begin by giving the definitions of the new concepts.

Definition 2.1. Let R be a ring and I an ideal of R. Let M be an R-module.

(i) An element x of R is said to be a zero divisor with respect to I if x+ I ⊆ Z(R).

(ii) The set of all zero divisors with respect to I is denoted by ZI(R) = {x ∈ R : x+I ⊆ Z(R)}.
(iii) An element x of R is said to be a zero divisor of M with respect to I if x+ I ⊆ ZR(M).

(iv) The set of all zero divisors of M with respect to I is denoted by ZI
R(M).

Let R be a ring and M an R-module. Let Spec(Z(R)) (resp., Max(Z(R))) denote the
set of prime ideals (resp., maximal ideals) of R contained in Z(R) and Spec(ZR(M)) (resp.,
Max(ZR(M))) denote the set of prime ideals (resp., maximal ideals) of R contained in ZR(M).
According to [15], Max(ZR(M)) stands for the set of the maximal primes of the R-module M .
Also, let I be an ideal of R. Note that ZI(R) ⊆ Z(R) and ZI

R(M) ⊆ ZR(M). If I ⊆ Z(R), then
we denote by MaxI(Z(R)) the set of the maximal primes of R containing I , that is,

MaxI(Z(R)) = {m ∈ Max(Z(R)) : I ⊆ m}.
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Our first theorem characterizes the set of zero divisors with respect to an ideal and it provides
conditions under which R \ ZI(R) is a saturated multiplicative subset of a ring R.

Theorem 2.2. Let R be a ring and I an ideal of R. Then
1)

⋃
m∈MaxI (Z(R))

m ⊆ ZI(R).

2) If R admits a finite number of maximal primes, then ZI(R) =
⋃

m∈MaxI (Z(R))

m.

Proof. 1) It is clear.
2) Assume that Max(Z(R)) = {P1, P2, · · · , Pn} is a finite set. Then Z(R) = P1 ∪ P2 ∪ · · · ∪ Pn.
Let MaxI(Z(R)) = {P1, P2, · · · , Pt}. Then I ⊆ P1 ∩ P2 ∩ · · · ∩ Pt and I * Pt+1 ∪ · · · ∪ Pn.
Suppose that ZI(R) * P1∪· · ·∪Pt and let x ∈ ZI(R)\P1∪· · ·∪Pt. Let i ∈ I\Pt+1∪· · ·∪Pn. Let
x ∈ Pt+1∩· · ·∩Pr\Pr+1∪· · ·∪Pn for some r ∈ {t+1, · · · , n}. Note that, if Pr+1∩· · ·∩Pn = (0),
then, in particular, Pr+1∩· · ·∩Pn ⊆ P1 and thus there exists k ∈ {r+1, · · · , n} such that Pk ⊆ P1
so that Pk = P1 which is absurd as I ⊆ P1 while I * Pk. Hence Pr+1 ∩ · · · ∩ Pn 6= (0). Let
y ∈ Pr+1 ∩ · · · ∩ Pn \ Pt+1 ∪ · · · ∪ Pr. Consider z := x+ yi. Then z ∈ Z(R) as x ∈ ZI(R). If
z ∈ P1 ∪ P2 ∪ · · · ∪ Pt, then x ∈ P1 ∪ · · · ∪ Pt as I ⊆ P1 ∩ · · · ∩ Pt. This leads to a contradiction
since x 6∈ P1 ∪ · · · ∪ Pt. If z ∈ Pt+1 ∪ · · · ∪ Pr, then yi ∈ Pt+1 ∪ · · · ∪ Pr as x ∈ Pt+1 ∩ · · · ∩ Pr

which is absurd since i, y 6∈ Pt+1∪· · ·∪Pr. If z ∈ Pr+1∪· · ·∪Pn, then x ∈ Pr+1∪· · ·∪Pn since
y ∈ Pr+1 ∩ · · · ∩Pn. This is absurd as x 6∈ Pr+1 ∪ · · · ∪Pn. It follows that ZI(R) ⊆ P1 ∪ · · · ∪Pt

and thus the desired equality holds comlpleting the proof.

Next, we deduce that in the setting of a Noetherian ring R, R \ ZI(R) is a saturated multi-
plicative subset of R.

Corollary 2.3. If R is a Noetherian ring and I an ideal of R, then

ZI(R) =
⋃

m∈MaxI (Z(R))

m.

Proof. It follows from Theorem 2.2 since by [15, Theorem 80], ifR is Noetherian, then it admits
a finite number of maximal primes.

The following theorem characterizes the set of zero divisors of a direct product R =
∏
i∈Λ

Ri

of the rings Ri with respect to an ideal I of R in terms of the set of zero divisors of Ri with
respect to the projections of I on the rings Ri.

Theorem 2.4. Let (Rj)j∈Λ be a family of rings and let R :=
∏
j∈Λ

Rj . For each j ∈ Λ, let Ij be an

ideal of Rj and let I :=
∏
j∈Λ

Ij be the resulting ideal of R. Let x = (xj)j ∈ R. Then x ∈ ZI(R)

if and only if there exists j ∈ Λ such that xj ∈ ZIj (Rj).

Proof. Assume that x ∈ ZI(R). Then x+ I ⊆ Z(R). Assume, by way of contradiction, that for
each j ∈ Λ, there exists ij ∈ Ij such that xj + ij 6∈ Z(Rj). Let z = (xj + ij)j = x+ (ij)j with
(ij)j ∈ I . Then z ∈ x+ I and z 6∈ Z(R) which is absurd. It follows that there exists j ∈ Λ such
that xj + Ij ⊆ Z(Rj), that is, xj ∈ ZIj (Rj), as desired. The converse is direct completing the
proof.

Next, we describe the finitely generated ideals contained in the set of zero divisors of a direct
products

∏
i∈Λ

Ri of a family of rings Ri with respect to an ideal I of this direct product.

Theorem 2.5. Let (Rt)t∈Λ be a family of rings and R =
∏
t∈Λ

Rt. Let It be an ideal of Rt

for each t ∈ Λ and I =
∏
t
It the resulting ideal of R. Let Mt be an Rt-module for each

t ∈ Λ and M =
∏
t∈Λ

Mt. Let J = (a1, a2, · · · , an)R be a finitely generated ideal of R and

Jt = (a1t, a2t, · · · , ant)Rt the projection of J on Rt for each t ∈ Λ, where ak = (akt)t∈Λ for
each k = 1, 2, · · · , n. Then J ⊆ ZI

R(M) if and only if there exists t ∈ Λ such that Jt ⊆ ZIt
Rt
(Mt).
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Proof. The sufficient condition is direct. Let us now prove the necessary one. Assume that
Jt 6⊆ ZIt

Rt
(Mt) for each t ∈ Λ. Then, for each t ∈ Λ, there exists bt = α1ta1t + α2ta2t +

· · · + αntant ∈ Jt such that bt 6∈ ZIt
Rt
(Mt). Put rk = (αkt)t∈Λ for k = 1, · · · , n. Now, take

x = r1a1 + r2a2 + · · · + rnan. Then x ∈ J , as J is an ideal, and xt = bt for each t ∈ Λ.
Therefore xt 6∈ ZIt

Rt
(Mt) for each t ∈ Λ and thus, by Theorem 2.4, x 6∈ ZI

R(
∏
t∈Λ

Mt). It follows

that J * ZI
R(

∏
i

Mi). This proves the necessary condition completing the proof.

3 Property (A) with respect to an ideal

This section introduces and investigates the new notions of anA-ring andA-module with respect
to an ideal I of R. It turns out that any A-ring (resp., any A-module) is, in particular, an A-ring
(resp., an A-module) with respect to any ideal I of R. The new property stems from the lack of
stability of Z(R) under the first operation "+" of R. In particular, we examine those ideals of
R which satisfy the Property (A) with respect to themselves. For instance, if R is Noetherian,
then any ideal I is an A-module with respect to itself. The new notion turns out to be a weak
form of the classic notion of an A-ring, in the sense that, any R-module satisfying the Property
(A) satisfies as well the Property (A) with respect to any ideal I of R. Moreover, we prove that
if I is contained in the nilradical of R, then the notion of A-module with respect to I and the
notion of A-module collapse. Moreover, through Example 4.5, we present an example of a ring
R admitting an ideal I ⊆ Z(R) such thatR is anA-ring with respect to I whileR is not anA-ring.

We begin by giving the definitions of the new concepts.

Definition 3.1. Let R be a ring and I an ideal of R. Let M be an R-module. Then

(i) R is said to be an A-ring with respect to I if for each finitely generated ideal such that
J ⊆ ZI(R), we have annR(J) 6= (0).

(ii) M is said to be an A-module with respect to I if for each finitely generated such that
J ⊆ ZI

R(M), we have annM (J) 6= (0).

The following proposition presents examples of (vacuous) A-rings and A-modules with re-
spect to particular ideals.

Proposition 3.2. Let R be a ring, I an ideal of R and M an R-module.

(i) If I * Z(R), then R is (vacuously) an A-ring with respect to I .

(ii) If I * ZR(M), then M is (vacuously) an A-module with respect to I .

(iii) R is (vacuously) an A-ring with respect to R and M is (vacuously) an A-module with
respect to R.

Proof. 1) It suffices to note that, when I * Z(R), then J + I * Z(R) for any ideal J of R.
Hence the statement (1) follows vacuously from Definition 3.1.
2) The proof is similar to that of (1).
3) It is direct from (2).

Let R be any ring which is not an A-ring. Then R is an example of an A-ring with respect
to R which is not an A-ring. Ahead, via Example 4.5, we provide a ring R and an ideal I with
I ⊆ Z(R) such that R is an A-ring with respect to I while R is not an A-ring. This discussion
proves that the notion of an A-ring with respect to an ideal is weak form of the notion of an
A-ring.

We deduce from Proposition 3.2(2) the first case of an ideal of a ringR which is anA-module
with respect to itself.

Corollary 3.3. Let R be a ring and I an ideal of R such that I * ZR(I). Then I is an A-module
with respect to itself.
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The following two propositions records the fact that the Property (A) of a ringR is a particular
case of the Property (A) of R with respect to an ideal and that in the Noetherian setting any ideal
I of R is an A-module with respect to itself.

Proposition 3.4. Let R be a ring and M be an R-module. Then
1) The following assertions are equivalent:

a) R is an A-ring;
b) R is an A-ring with respect to (0).

2) The following assertions are equivalent:
a) M is an A-module;
b) M is an A-module with respect to (0).

Proof. It is direct from Definition 3.1.

Proposition 3.5. Let R be a ring. Then

(i) Any A-module M over R is an A-module with respect to any ideal I of R. In particular, if
R is an A-ring, then R is an A-ring with respect to any ideal I of R.

(ii) IfR is Noetherian, then any ideal I ofR is anA-module and thus anA-module with respect
to itself.

Proof. 1) It is clear from Definition 3.1.
2) Assume that R is Noetherian. Then I is a Noetherian module over R. Therefore, by [4,
Theorem 2.2(5)], I is an A-module. Hence, by (1), I is an A-module with respect to itself.

It is known that a ring R (resp., an R-module M ) is an A-ring (resp., an A-module over R)
if and only if the total quotient ring Q(R) (resp., the total quotient module Q(M)) is an A-ring
(resp., an A-module over Q(R)). Next, we handle the transfer of this result to the Property
(A) with respect to an ideal. Given a ring R and an R-module M , put S := R \ Z(R) and
SR(M) := R \ ZR(M).

Proposition 3.6. Let R be a ring and I an ideal of R. Let M be an R-module.
1) Assume that I ⊆ Z(R). Then the following assertions are equivalent.

a) R is an A-ring with respect to I;
b) Q(R) is an A-ring with respect to S−1I .

2) Assume that I ⊆ ZR(M). Let Q(M) = SR(M)−1M denote the total quotient module of M .
Then the following assertions are equivalent.

a) M is an A-module with respect to I;
b) Q(M) is an A-module with respect to SR(M)−1I .

Proof. 1) a) ⇒ b) Assume that R is an A-ring with respect to I . Let K be a proper finitely
generated ideal of Q(R) such that K + S−1I ⊆ Z(Q(R)). Then there exists a finitely generated
ideal J ⊆ Z(R) ofR such thatK = S−1J . Hence S−1(J+I) ⊆ Z(Q(R)) and thus J+I ⊆ Z(R).
Therefore, as R is an A-ring with respect to I , ann(J) 6= (0). It follows, since K = S−1J , that
annQ(R)(K) 6= (0). Consequently, Q(R) is an A-ring with respect to S−1I , as desired.
b) ⇒ a) Assume that Q(R) is an A-ring with respect to S−1I . Let J ⊆ Z(R) be a finitely
generated ideal of R such that J+I ⊆ Z(R). Then S−1(J+I) = S−1J+S−1I is a proper ideal
of Q(R). Hence, as Q(R) is an A-ring with respect to S−1I , we get annQ(R)(S

−1J) 6= (0). It
follows, as S consists of regular elements of R, that ann(J) 6= (0). Consequently, R is anA-ring
with respect to I , as desired.
2) The proof is similar to that of (1).

Corollary 3.7. Let R be a ring and I an ideal of R such that I ⊆ ZR(I). Then I is an A-module
with respect to itself if and only if the ideal SR(I)−1I of QR(I) is an A-module with respect to
itself.

Through the next bunch of results we seek conditions under which an R-module M is an
A-module with respect to an ideal I . Given a ring R, we denote by Rad(R) the nilradical of R.
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Proposition 3.8. Let R be a ring and I an ideal of R. Assume that I ⊆ Rad(R). Let M be an
R-module. Then M is an A-module with respect to I if and only if M is an A-module.

Proof. By Proposition 3.5, it suffices to prove the necessary statement. Assume that M is an
A-module with respect to I . Let J be a finitely generated ideal of R such that J ⊆ ZR(M). Let
j ∈ J and i ∈ I . Then there exists 0 6= m ∈ M such that jm = 0 and there exists n ∈ N such
that in = 0. Let r := max{t ∈ N : itm 6= 0}. Note that 0 ≤ r ≤ n − 1. Hence (j + i)irm = 0
and irm 6= 0 so that j + i ∈ ZR(M). It follows that J + I ⊆ ZR(M) and thus J ⊆ ZI

R(M).
Hence annM (J) 6= (0). Consequently, M is an A-module.

Corollary 3.9. Let R be a ring and I a nilpotent ideal of R, that is, there exists n ≥ 1 such that
In = (0). Let M be an R-module. Then M is an A-module with respect to I if and only if M is
an A-module.

Proof. I suffices to note that I ⊆ Rad(R) and then to apply Proposition 3.8.

Proposition 3.10. Let R be an SA-ring. Put I := Z(R). Then I is an A-module and thus I is an
A-module with respect to itself.

Proof. Let J ⊆ ZR(I) be a nonzero finitely generated ideal of R. Then, as J ⊆ ZR(I) ⊆ Z(R)
and R is an A-ring, we get ann(J) 6= (0) and thus there exists a ∈ R \ {0} such that aJ = (0).
As J 6= (0), we get a ∈ Z(R) = I . Then annI(J) 6= (0). It follows that I is an A-module and
thus I is an A-module with respect to itself, as desired.

Proposition 3.11. Let R be an A-ring and I an ideal of R. Assume that ann(I) ⊆ I . Then I is
an A-module with respect to itself.

Proof. Let J ⊆ ZI
R(I) be a nonzero finitely generated ideal of R. As ZI

R(I) ⊆ ZR(I) ⊆ Z(R)
and R is an A-ring, we get ann(J) 6= (0) and thus there exists a ∈ R such that a 6= 0 and
aJ = (0). If a ∈ I , then annI(J) 6= (0). Assume that a 6∈ I . Then, as ann(I) ⊆ I , we get
a 6∈ ann(I). Hence there exists i ∈ I such that j := ai 6= 0. It follows that jJ = (0) and
j ∈ I \ {0}, so that annI(J) 6= (0). Consequently, I is an A-module with respect to itself.

Corollary 3.12. Let R be an A-ring and I an ideal of R such that ann(I) = (0). Then I is an
A-module with respect to itself.

Corollary 3.13. Let R be an A-ring and I an ideal of R. Assume that ZR(I) ⊆ I . Then I is an
A-module with respect to itself.

Proof. It is direct from Proposition 3.11 as ann(I) ⊆ ZR(I).

Next, we prove a sort of ascent behavior of the Property (A) with respect to an ideal.

Proposition 3.14. Let R be a ring and M an R-module. Let I1 ⊆ I2 be ideals of R. Then

(i) If R is an A-ring with respect to I1, then R is an A-ring with respect to I2.

(ii) If M is an A-module with respect to I1, then M is an A-module with respect to I2.

Proof. 1) Assume that R is an A-ring with respect to I1. Let J be a finitely generated ideal of R
such that J ⊆ ZI2(R). Then, as I1 ⊆ I2, J + I1 ⊆ J + I2 ⊆ Z(R) and thus J ⊆ ZI1(R). Now,
since R is an A-ring with respect to I1, it follows that ann(J) 6= (0). Therefore R is an A-ring
with respect to I2, as desired.
2) It is similar to (1).
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The following theorem and corollary characterize the A-rings R (resp., A-modules M ) with
respect to a given ideal I of R in the crucial case when I ⊆ Z(R) (resp., I ⊆ ZR(M)). Given
a ring R and an ideal I of R, we denote by MaxI(R) the set of maximal ideals of R containing
I and we denote by MaxI(Z(R)) the set of prime ideals of R which are maximal among the
prime ideals in Z(R) and which contain I , in other words, the elements of MaxI(Z(R)) are the
maximal primes of R containing I . Also, given an R-module M , let MaxI(ZR(M)) denote the
set of prime ideals ofR which are maximal among the prime ideals in ZR(M) and which contain
I .

Theorem 3.15. Let R be a ring and I an ideal of R.
1) Assume that I ⊆ Z(R) and that Q(R) = R. Then the following assertions are equivalent.

a) R is an A-ring with respect to I;
b) For each proper finitely generated ideal J of R such that I + J is a proper ideal of R,

ann(J) 6= (0);
c) For each proper finitely generated ideal J of R such that J ⊆

⋃
m∈MaxI (R)

m, ann(J) 6= (0).

2) Let M be an R-module such that I ⊆ ZR(M). Assume that QR(M) = R. Then the following
assertions are equivalent.

a) M is an A-module with respect to I;
b) For each finitely generated ideal J of R such that I+J is a proper ideal of R, annM (J) 6=

(0);
c) For each finitely generated ideal J of R such that J ⊆

⋃
m∈MaxI (R)

m, annM (J) 6= (0).

Lemma 3.16. Let R be a ring such that Q(R) = R. Let I be a proper ideal of R. Then, for each
ideal J of R, I + J is a proper ideal of R if and only if J ⊆

⋃
m∈MaxI (R)

m.

Proof. Let J be an ideal of R. Assume that I + J is a proper ideal of R. Then there exists a
maximal ideal of R such that I + J ⊆ m. Hence m ∈ MaxI(R) such that J ⊆ m. Therefore
J ⊆

⋃
m∈MaxI (R)m. Conversely, suppose that J ⊆

⋃
m∈MaxI (R)

m. Then I + J ⊆
⋃

m∈MaxI (R)

m as

I ⊆ m for each m ∈ MaxI(R). Hence I + J is a proper ideal of R since 1 /∈
⋃

m∈MaxI (R)

m. This

completes the proof of the lemma.

Proof of Theorem 3.15. 1) a) ⇔ b) It is clear from Definition 3.1 as Z(R) is the set of non
invertible elements of R.
b)⇔ c) It is straighforward by Lemma 3.16.
c)⇒ a) Assume that (c) holds. Let J be a finitely generated ideal of R such that I + J ⊆ Z(R).
It follows, applying (c), that ann(J) 6= (0). Consequently, R is an A-ring with respect to I , as
desired.
2) The proof is similar to the treatment of (1).

Our final result gives a characterization of A-rings and A-modules with respect to an ideal in
the general setting.

Corollary 3.17. Let R be a ring and I an ideal of R.
1) Assume that I ⊆ Z(R). Then the following assertions are equivalent.

a) R is an A-ring with respect to I;
b) For each finitely generated ideal J ⊆ Z(R) of R such that J ⊆

⋃
m∈MaxI (Z(R))

m, ann(J) 6=

(0).
2) Let M be an R-module such that I ⊆ ZR(M). Then the following assertions are equivalent.

a) M is an A-module with respect to I;
b) For each finitely generated ideal J ⊆ ZR(M) of R such that J ⊆

⋃
m∈MaxI (ZR(M))

m,

annM (J) 6= (0).

Proof. It follows easily from the combination of Theorem 3.15 and Proposition 3.6.
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4 Property (A) with respect to an ideal and direct product of rings and
modules

This section investigates the behavior of the Property (A) with respect to an ideal vis-à-vis the
direct products of rings and modules. Given a family of rings (Rk)k∈Λ, we characterize when
a direct product

∏
k

Mk is an A-module with respect to the ideal
∏
k

Ik with each Mk is an Rk-

module and each Ik is an ideal of Rk for any k ∈ Λ. This allows to generalize, via Theorem 4.1,
a result of Hong-Kim-Lee-Ryu stating that the direct product

∏
Ri of a family of rings (Ri)i is

an A-ring if and only if each Ri is an A-ring [12, Proposition 1.3].

We begin by announcing the main theorem of this section.

Theorem 4.1. Let (Rk)k∈Λ be a family of commutative rings. Let R =
∏
k∈Λ

Rk. Let Ik be an

ideal of Rk for each k ∈ Λ and let I :=
∏
Ik. Let Mk be an Rk-module for each k ∈ Λ and

M :=
∏
k

Mk. Then the following assertions are equivalent.

(i) M is an A-module with respect to I;

(ii) Mk is an A-module with respect to Ik for each k ∈ Λ.

Proof. 1) ⇒ 2) Assume that M is an A-module with respect to I . Fix t ∈ Λ and let J ⊆
ZRt(Mt) be a finitely generated ideal of Rt such that J + It ⊆ ZRt(Mt). Consider the ideal
K = JR + (· · · , 1, 1, 0Rt

, 1, 1, · · · )R of R. Then K is a finitely generated ideal of R and it
is easily checked that K ⊆ ZI

R(M) since J ⊆ ZIt
Rt
(Mt). Hence, since M is an A-module

with respect to I , there exists 0 6= m′ ∈ M such that Km′ = 0. Put m′ = (m′k)k. Then
(· · · , 1, 1, 0Rt , 1, 1, · · · )m′ = 0, as (· · · , 1, 1, 0Rt , 1, 1, · · · ) ∈ K, and thus m′k = 0 for each
k 6= t. It follows that m′t 6= 0 and Jm′t = (0), so that, annMt

(J) 6= (0). Consequently, Mk is an
A-module with respect to It, as desired.
2)⇒ 1) Assume that each Mk is an A-module with respect to Ik. Let J = (a1, a2, · · · , an)R ⊆
ZR(M) be a finitely generated ideal of R such that J ⊆ ZI

R(M). Let ak = (aki)i∈Λ for each
k = 1, · · · , n and let Ji := (a1i, a2i, · · · , ani)Ri the ith projection of J for each i ∈ Λ. Then, by
Theorem 2.5, there exists t ∈ Λ such that Jk ⊆ ZIt

Rt
(Mt). Since Mk is anA-module with respect

to Ik, we get that annMk
(Jk) 6= (0), that is, there exists 0 6= mk ∈ Mk such that Jkmk = (0).

Hence, it is easily verified that

J(· · · , 0, 0,mk, 0, 0, · · · ) ⊆ (
∏
i∈Λ

Ji)(· · · , 0, 0,mk, 0, 0, · · · )

= · · ·×(0)×(0)×Jkmk×(0)×(0)×· · · = (0),

that is, annM (J) 6= (0). Therefore M is an A-module with respect to I completing the proof of
the theorem.

Corollary 4.2. Let (Rk)k∈Λ be a family of commutative rings and R =
∏
k∈Λ

Rk. Let Ik be an

ideal of Rk for each k ∈ Λ and I :=
∏
Ik. Then R is an A-ring with respect to I if and only if

Rk is an A-ring with respect to Ik for each k ∈ Λ.

Corollary 4.3. Let R1 and R2 be rings. Let I1 and I2 be ideals of R1 and R2, respectively. Then
R1 ×R2 is an A-ring with respect to I1 × I2 if and only if R1 is an A-ring with respect to I1 and
R2 is an A-ring with respect to I2.

Corollary 4.4. Let (Rk)k∈Λ be a family of commutative rings. Let R =
∏
k∈Λ

Rk. Let Ik be an

ideal of Rk for each k ∈ Λ and let I :=
∏
Ik. Then I is an A-module with respect to itself if and

only if Ik is an A-module with respect to itself for each k ∈ Λ.

We close this paper by giving an example of a ring R and an ideal I such that I ⊆ Z(R) and
R is an A-ring with respect to I while R is not an A-ring.
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Example 4.5. Let S be a ring which is not an A-ring. Note that, by Proposition 3.2(3), S is an
A-ring with respect to S. Let T be a zero-dimensional ring and m a maximal ideal of T . Then T
is an A-ring, and in particular an A-ring with respect to m, and m ⊆ Z(T ). Let R := S × T and
I := S ×m. Note that I ⊆ Z(R). Moreover, by Corollary 4.3, R is an A-ring with respect to I
while, by [12, Proposition 1.3], R is not an A-ring as S is not so, as desired.
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