On Property (\mathcal{A}) with respect to an ideal

A. Ait Ouahi, Y. Arssi and S. Bouchiba
Communicated by Najib Mahdou

MSC 2010 Classifications: Primary 13C13; Secondary 13A99.
Keywords and phrases: \mathcal{A}-ring; \mathcal{A}-ring with respect to an ideal; \mathcal{A}-module with respect to an ideal; zero divisor.

Abstract

The main goal of this paper is to introduce and study the notion of Property (\mathcal{A}) of a ring R or an R-module M with respect to an ideal I of R. The new notion turns out to be a weak form of the classic notion of an \mathcal{A}-ring, in the sense that, any R-module satisfying the Property (\mathcal{A}) satisfies as well the Property (\mathcal{A}) with respect to any ideal I of R. Moreover, we prove that if I is contained in the nilradical of R, then the notion of \mathcal{A}-module with respect to I and the notion of \mathcal{A}-module collapse. Also, we present an example of a ring R possessing an ideal $I \subseteq \mathrm{Z}(R)$ such that R is an \mathcal{A}-ring with respect to I while R is not an \mathcal{A}-ring. Finally, we totally characterize the rings R and the R-modules M satisfying the Proprety (\mathcal{A}) with respect to an ideal I as well as we investigate the behavior of the Property (\mathcal{A}) with respect to an ideal vis-à-vis the direct products of rings and modules.

1 Introduction

Throughout this paper, all rings are supposed to be commutative with unit element and all R modules are unital. Let R be a commutative ring and M an R-module. We denote by $\mathrm{Z}_{R}(M)=$ $\{r \in R: r m=0$ for some nonzero element $m \in M\}$ the set of zero divisors of R on M and by $\mathrm{Z}(R):=\mathrm{Z}_{R}(R)$ the set of zero divisors of the ring R. In [4], the notions of \mathcal{A}-module and $\mathcal{S} \mathcal{A}$-module are extensively studied. In fact, an R-module M satisfies Property (\mathcal{A}), or M is an \mathcal{A}-module over R (or \mathcal{A}-module if no confusion is likely), if for every finitely generated ideal I of R with $I \subseteq \mathrm{Z}_{R}(M)$, there exists a nonzero $m \in M$ with $I m=0$, or equivalently, ann $M(I) \neq 0$. M is said to satisfy strong Property (\mathcal{A}), or is an $\mathcal{S} \mathcal{A}$-module over R (or an $\mathcal{S A}$-module if no confusion is likely), if for any $r_{1}, \cdots, r_{n} \in \mathrm{Z}_{R}(M)$, there exists a nonzero $m \in M$ such that $r_{1} m=\cdots=r_{n} m=0$. The ring R is said to satisfy $\operatorname{Property}(\mathcal{A})$, or an \mathcal{A}-ring, (respectively, $\mathcal{S} \mathcal{A}$-ring) if R is an \mathcal{A}-module (resp., an $\mathcal{S} \mathcal{A}$-module). One may easily check that M is an $\mathcal{S} \mathcal{A}$ module if and only if M is an \mathcal{A}-module and $\mathrm{Z}_{R}(M)$ is an ideal of R. It is worthwhile reminding the reader that the Property (\mathcal{A}) for commutative rings was introduced by Quentel in [18] who called it Property (C) and Huckaba used the term Property (\mathcal{A}) in [13, 14]. In [11], Faith called rings satisfying Property (\mathcal{A}) McCoy rings. The Property (\mathcal{A}) for modules was introduced by Darani [9] who called such modules F-McCoy modules (for Faith McCoy terminology). He also introduced the strong Property (\mathcal{A}) under the name super coprimal and called a module M coprimal if $\mathrm{Z}_{R}(M)$ is an ideal. In [17], the strong Property (\mathcal{A}) for commutative rings was independently introduced by Mahdou and Hassani in [17] and further studied by Dobbs and Shapiro in [10]. Note that a finitely generated module over a Noetherian ring is an \mathcal{A}-module (for example, see [15, Theorem 82]) and thus a Noetherian ring is an \mathcal{A}-ring. Also, it is well known that a zero-dimensional ring R is an \mathcal{A}-ring as well as any ring R whose total quotient ring $Q(R)$ is zero-dimensional. In fact, it is easy to see that R is an \mathcal{A}-ring if and only if so is $Q(R)$ [9, Corollary 2.6]. Any polynomial ring $R[X]$ is an \mathcal{A}-ring [13] as well as any reduced ring with a finite number of minimal prime ideals [13]. In [6], we generalize a result of T.G. Lucas which states that if R is a reduced commutative ring and M is a flat R-module, then the idealization $R \ltimes M$ is an \mathcal{A}-ring if and only if R is an \mathcal{A}-ring [16, Proposition 3.5]. In effect, we drop the reduceness hypotheses and prove that, given an arbitrary commutative ring R and any submodule M of a flat R-module $F, R \ltimes M$ is an \mathcal{A}-ring (resp., $\mathcal{S \mathcal { A }}$-ring) if and only if R is an \mathcal{A}-ring (resp., $\mathcal{S} \mathcal{A}$-ring). In [7], we present an answer to a problem raised by D.D. Anderson and S. Chun in [4] on characterizing when is the idealization $R \ltimes M$ of a ring R on an R-module M an \mathcal{A}-ring (resp., an $\mathcal{S} \mathcal{A}$-ring) in terms of module-theoretic properties of R and M. Also,
we were concerned with presenting a complete answer to an open question asked by these two authors which reads the following: What modules over a given ring R are homomorphic images of modules satisfying the strong Property (\mathcal{A}) ? [4, Question 4.4 (1)]. The main theorem of [8] extends a result of Hong, Kim, Lee and Ryu in [12] which proves that a direct product $\prod R_{i}$ of rings is an \mathcal{A}-ring if and only if so is any R_{i}. In this regard, we show that if $\left\{R_{i}\right\}_{i \in I}$ is a family of rings and $\left\{M_{i}\right\}_{i \in I}$ is a family of modules such that each M_{i} is an R_{i}-module, then the direct product $\prod_{i \in I} M_{i}$ of the M_{i} is an \mathcal{A}-module over $\prod_{i \in I} R_{i}$ if and only if each M_{i} is an \mathcal{A}-module over $R_{i}, i \in I$. Finally, our main concern in [1] is to introduce and investigate a new class of rings lying properly between the class of \mathcal{A}-rings and the class of $\mathcal{S A}$-rings. The new class of rings, termed the class of $\mathcal{P S} \mathcal{A}$-rings, turns out to share common characteristics with both \mathcal{A}-rings and $\mathcal{S A}$-rings. Numerous properties and characterizations of this class are given as well as the module-theoretic version of $\mathcal{P S} \mathcal{A}$-rings is introduced and studied. For further works related to the Property (\mathcal{A}) and $(\mathcal{S A})$, we refer the reader to $[2,3,4,5,12,16]$.

The main goal of this paper is to introduce and investigate the new notions of an \mathcal{A}-ring and \mathcal{A}-module with respect to an ideal I of R. The new notion turns out to be a weak form of the classic notion of an \mathcal{A}-ring, in the sense that, any R-module satisfying the Property (\mathcal{A}) satisfies as well the Property (\mathcal{A}) with respect to any ideal I of R. Also, the introduced property stems from the lack of stability of $\mathrm{Z}(R)$ under the first operation "+" of R. In particular, we examine the ideals of R which satisfy the Property (\mathcal{A}) with respect to themselves. For instance, if R is Noetherian, then any ideal I is an \mathcal{A}-module with respect to itself. Also, if R is a ring and I is an ideal of R such that I is contained in the nilradical $\operatorname{Rad}(R)$ of R, then an R-module M is an \mathcal{A}-module with respect to I if and only if M is an \mathcal{A}-module. Moreover, through Example 4.5, we present an example of a ring R possessing an ideal $I \subseteq \mathrm{Z}(R)$ such that R is an \mathcal{A}-ring with respect to I while R is not an \mathcal{A}-ring. The main theorem of Section 3 totally characterizes when a ring R (resp., an R-module M) is an \mathcal{A}-ring (resp., an \mathcal{A}-module) with respect to a given ideal I. Finally, in Section 4, we investigate the behavior of the Property (\mathcal{A}) with respect to an ideal vis-à-vis the direct products of rings and modules. This allows us to generalize, via Theorem 4.1, a proposition of Hong-Kim-Lee-Ryu stating that the direct product $\prod R_{i}$ of a family of rings $\left(R_{i}\right)_{i}$ is an \mathcal{A}-ring if and only if each R_{i} is an \mathcal{A}-ring [12, Proposition 1.3].

2 The set of zero divisors with respect to an ideal

This section introduces and studies the set of zero divisors of a ring R (resp., an R-module M) with respect to a given ideal I of R denoted by $\mathrm{Z}^{I}(R)$ (resp., $\mathrm{Z}_{R}^{I}(M)$). We seek conditions under which the complement of $\mathrm{Z}^{I}(R)$ is a saturated multiplicative subset of R. In this regard, we prove that if R admits a finite number of maximal prime ideals, in particular if R is Noetherian, then $R \backslash \mathrm{Z}^{I}(R)$ is a saturated multiplicative subset of R. Also, we characterize the set of zero divisors of a direct product $R=\prod_{i \in \Lambda} R_{i}$ of the rings R_{i} with respect to an ideal I of R in terms of the set of zero divisors of R_{i} with respect to the projections of I on the rings R_{i}.

We begin by giving the definitions of the new concepts.
Definition 2.1. Let R be a ring and I an ideal of R. Let M be an R-module.
(i) An element x of R is said to be a zero divisor with respect to I if $x+I \subseteq \mathrm{Z}(R)$.
(ii) The set of all zero divisors with respect to I is denoted by $\mathrm{Z}^{I}(R)=\{x \in R: x+I \subseteq \mathrm{Z}(R)\}$.
(iii) An element x of R is said to be a zero divisor of M with respect to I if $x+I \subseteq \mathrm{Z}_{R}(M)$.
(iv) The set of all zero divisors of M with respect to I is denoted by $\mathbf{Z}_{R}^{I}(M)$.

Let R be a ring and M an R-module. Let $\operatorname{Spec}(\mathrm{Z}(R))$ (resp., $\operatorname{Max}(\mathrm{Z}(R))$) denote the set of prime ideals (resp., maximal ideals) of R contained in $\mathrm{Z}(R)$ and $\operatorname{Spec}\left(\mathrm{Z}_{R}(M)\right.$) (resp., $\operatorname{Max}\left(\mathrm{Z}_{R}(M)\right)$) denote the set of prime ideals (resp., maximal ideals) of R contained in $\mathrm{Z}_{R}(M)$. According to [15], $\operatorname{Max}\left(\mathrm{Z}_{R}(M)\right)$ stands for the set of the maximal primes of the R-module M. Also, let I be an ideal of R. Note that $\mathrm{Z}^{I}(R) \subseteq \mathrm{Z}(R)$ and $\mathrm{Z}_{R}^{I}(M) \subseteq \mathrm{Z}_{R}(M)$. If $I \subseteq \mathrm{Z}(R)$, then we denote by $\operatorname{Max}_{I}(\mathrm{Z}(R))$ the set of the maximal primes of R containing I, that is,

$$
\operatorname{Max}_{I}(\mathbf{Z}(R))=\{m \in \operatorname{Max}(\mathbf{Z}(R)): I \subseteq m\}
$$

Our first theorem characterizes the set of zero divisors with respect to an ideal and it provides conditions under which $R \backslash \mathrm{Z}^{I}(R)$ is a saturated multiplicative subset of a ring R.

Theorem 2.2. Let R be a ring and I an ideal of R. Then

1) $\bigcup_{m \in \operatorname{Max}_{I}(\mathrm{Z}(R))} m \subseteq \mathrm{Z}^{I}(R)$.
2) If R admits a finite number of maximal primes, then $Z^{I}(R)=\bigcup_{(Z(R))} m$.

$$
m \in \operatorname{Max}_{I}(\mathrm{Z}(R))
$$

Proof. 1) It is clear.
2) Assume that $\operatorname{Max}(\mathrm{Z}(R))=\left\{P_{1}, P_{2}, \cdots, P_{n}\right\}$ is a finite set. Then $\mathrm{Z}(R)=P_{1} \cup P_{2} \cup \cdots \cup P_{n}$. Let $\operatorname{Max}_{I}(\mathrm{Z}(R))=\left\{P_{1}, P_{2}, \cdots, P_{t}\right\}$. Then $I \subseteq P_{1} \cap P_{2} \cap \cdots \cap P_{t}$ and $I \nsubseteq P_{t+1} \cup \cdots \cup P_{n}$. Suppose that $\mathrm{Z}^{I}(R) \nsubseteq P_{1} \cup \cdots \cup P_{t}$ and let $x \in \mathrm{Z}^{I}(R) \backslash P_{1} \cup \cdots \cup P_{t}$. Let $i \in I \backslash P_{t+1} \cup \cdots \cup P_{n}$. Let $x \in P_{t+1} \cap \cdots \cap P_{r} \backslash P_{r+1} \cup \cdots \cup P_{n}$ for some $r \in\{t+1, \cdots, n\}$. Note that, if $P_{r+1} \cap \cdots \cap P_{n}=(0)$, then, in particular, $P_{r+1} \cap \cdots \cap P_{n} \subseteq P_{1}$ and thus there exists $k \in\{r+1, \cdots, n\}$ such that $P_{k} \subseteq P_{1}$ so that $P_{k}=P_{1}$ which is absurd as $I \subseteq P_{1}$ while $I \nsubseteq P_{k}$. Hence $P_{r+1} \cap \cdots \cap P_{n} \neq(0)$. Let $y \in P_{r+1} \cap \cdots \cap P_{n} \backslash P_{t+1} \cup \cdots \cup P_{r}$. Consider $z:=x+y i$. Then $z \in \mathrm{Z}(R)$ as $x \in \mathrm{Z}^{I}(R)$. If $z \in P_{1} \cup P_{2} \cup \cdots \cup P_{t}$, then $x \in P_{1} \cup \cdots \cup P_{t}$ as $I \subseteq P_{1} \cap \cdots \cap P_{t}$. This leads to a contradiction since $x \notin P_{1} \cup \cdots \cup P_{t}$. If $z \in P_{t+1} \cup \cdots \cup P_{r}$, then $y i \in P_{t+1} \cup \cdots \cup P_{r}$ as $x \in P_{t+1} \cap \cdots \cap P_{r}$ which is absurd since $i, y \notin P_{t+1} \cup \cdots \cup P_{r}$. If $z \in P_{r+1} \cup \cdots \cup P_{n}$, then $x \in P_{r+1} \cup \cdots \cup P_{n}$ since $y \in P_{r+1} \cap \cdots \cap P_{n}$. This is absurd as $x \notin P_{r+1} \cup \cdots \cup P_{n}$. It follows that $Z^{I}(R) \subseteq P_{1} \cup \cdots \cup P_{t}$ and thus the desired equality holds comlpleting the proof.

Next, we deduce that in the setting of a Noetherian ring $R, R \backslash \mathrm{Z}^{I}(R)$ is a saturated multiplicative subset of R.

Corollary 2.3. If R is a Noetherian ring and I an ideal of R, then

$$
\mathrm{Z}^{I}(R)=\bigcup_{m \in \operatorname{Max}_{I}(\mathrm{Z}(R))} m
$$

Proof. It follows from Theorem 2.2 since by [15, Theorem 80], if R is Noetherian, then it admits a finite number of maximal primes.

The following theorem characterizes the set of zero divisors of a direct product $R=\prod_{i \in \Lambda} R_{i}$ of the rings R_{i} with respect to an ideal I of R in terms of the set of zero divisors of R_{i} with respect to the projections of I on the rings R_{i}.

Theorem 2.4. Let $\left(R_{j}\right)_{j \in \Lambda}$ be a family of rings and let $R:=\prod_{j \in \Lambda} R_{j}$. For each $j \in \Lambda$, let I_{j} be an ideal of R_{j} and let $I:=\prod_{j \in \Lambda} I_{j}$ be the resulting ideal of R. Let $x=\left(x_{j}\right)_{j} \in R$. Then $x \in \mathbf{Z}^{I}(R)$ if and only if there exists $j \in \Lambda$ such that $x_{j} \in \mathrm{Z}^{I_{j}}\left(R_{j}\right)$.

Proof. Assume that $x \in \mathrm{Z}^{I}(R)$. Then $x+I \subseteq \mathrm{Z}(R)$. Assume, by way of contradiction, that for each $j \in \Lambda$, there exists $i_{j} \in I_{j}$ such that $x_{j}+i_{j} \notin \mathbf{Z}\left(R_{j}\right)$. Let $z=\left(x_{j}+i_{j}\right)_{j}=x+\left(i_{j}\right)_{j}$ with $\left(i_{j}\right)_{j} \in I$. Then $z \in x+I$ and $z \notin \mathrm{Z}(R)$ which is absurd. It follows that there exists $j \in \Lambda$ such that $x_{j}+I_{j} \subseteq \mathrm{Z}\left(R_{j}\right)$, that is, $x_{j} \in \mathrm{Z}^{I_{j}}\left(R_{j}\right)$, as desired. The converse is direct completing the proof.

Next, we describe the finitely generated ideals contained in the set of zero divisors of a direct products $\prod_{i \in \Lambda} R_{i}$ of a family of rings R_{i} with respect to an ideal I of this direct product.

Theorem 2.5. Let $\left(R_{t}\right)_{t \in \Lambda}$ be a family of rings and $R=\prod_{t \in \Lambda} R_{t}$. Let I_{t} be an ideal of R_{t} for each $t \in \Lambda$ and $I=\prod_{t} I_{t}$ the resulting ideal of R. Let M_{t} be an R_{t}-module for each $t \in \Lambda$ and $M=\prod_{t \in \Lambda} M_{t}$. Let $J=\left(a_{1}, a_{2}, \cdots, a_{n}\right) R$ be a finitely generated ideal of R and $J_{t}=\left(a_{1 t}, a_{2 t}, \cdots, a_{n t}\right) R_{t}$ the projection of J on R_{t} for each $t \in \Lambda$, where $a_{k}=\left(a_{k t}\right)_{t \in \Lambda}$ for each $k=1,2, \cdots, n$. Then $J \subseteq \mathbf{Z}_{R}^{I}(M)$ if and only if there exists $t \in \Lambda$ such that $J_{t} \subseteq \mathrm{Z}_{R_{t}}^{I_{t}}\left(M_{t}\right)$.

Proof. The sufficient condition is direct. Let us now prove the necessary one. Assume that $J_{t} \nsubseteq \mathrm{Z}_{R_{t}}^{I_{t}}\left(M_{t}\right)$ for each $t \in \Lambda$. Then, for each $t \in \Lambda$, there exists $b_{t}=\alpha_{1 t} a_{1 t}+\alpha_{2 t} a_{2 t}+$ $\cdots+\alpha_{n t} a_{n t} \in J_{t}$ such that $b_{t} \notin \mathrm{Z}_{R_{t}}^{I_{t}}\left(M_{t}\right)$. Put $r_{k}=\left(\alpha_{k t}\right)_{t \in \Lambda}$ for $k=1, \cdots, n$. Now, take $x=r_{1} a_{1}+r_{2} a_{2}+\cdots+r_{n} a_{n}$. Then $x \in J$, as J is an ideal, and $x_{t}=b_{t}$ for each $t \in \Lambda$. Therefore $x_{t} \notin \mathbf{Z}_{R_{t}}^{I_{t}}\left(M_{t}\right)$ for each $t \in \Lambda$ and thus, by Theorem 2.4, $x \notin \mathbf{Z}_{R}^{I}\left(\prod_{t \in \Lambda} M_{t}\right)$. It follows that $J \nsubseteq \mathrm{Z}_{R}^{I}\left(\prod_{i} M_{i}\right)$. This proves the necessary condition completing the proof.

3 Property (\mathcal{A}) with respect to an ideal

This section introduces and investigates the new notions of an \mathcal{A}-ring and \mathcal{A}-module with respect to an ideal I of R. It turns out that any \mathcal{A}-ring (resp., any \mathcal{A}-module) is, in particular, an \mathcal{A}-ring (resp., an \mathcal{A}-module) with respect to any ideal I of R. The new property stems from the lack of stability of $\mathrm{Z}(R)$ under the first operation " + " of R. In particular, we examine those ideals of R which satisfy the Property (\mathcal{A}) with respect to themselves. For instance, if R is Noetherian, then any ideal I is an \mathcal{A}-module with respect to itself. The new notion turns out to be a weak form of the classic notion of an \mathcal{A}-ring, in the sense that, any R-module satisfying the Property (\mathcal{A}) satisfies as well the $\operatorname{Property}(\mathcal{A})$ with respect to any ideal I of R. Moreover, we prove that if I is contained in the nilradical of R, then the notion of \mathcal{A}-module with respect to I and the notion of \mathcal{A}-module collapse. Moreover, through Example 4.5, we present an example of a ring R admitting an ideal $I \subseteq \mathrm{Z}(R)$ such that R is an \mathcal{A}-ring with respect to I while R is not an \mathcal{A}-ring.

We begin by giving the definitions of the new concepts.
Definition 3.1. Let R be a ring and I an ideal of R. Let M be an R-module. Then
(i) R is said to be an \mathcal{A}-ring with respect to I if for each finitely generated ideal such that $J \subseteq \mathrm{Z}^{I}(R)$, we have $\operatorname{ann}_{R}(J) \neq(0)$.
(ii) M is said to be an \mathcal{A}-module with respect to I if for each finitely generated such that $J \subseteq \mathrm{Z}_{R}^{I}(M)$, we have $\operatorname{ann}_{M}(J) \neq(0)$.

The following proposition presents examples of (vacuous) \mathcal{A}-rings and \mathcal{A}-modules with respect to particular ideals.

Proposition 3.2. Let R be a ring, I an ideal of R and M an R-module.
(i) If $I \nsubseteq \mathrm{Z}(R)$, then R is (vacuously) an \mathcal{A}-ring with respect to I.
(ii) If I $\nsubseteq \mathrm{Z}_{R}(M)$, then M is (vacuously) an \mathcal{A}-module with respect to I.
(iii) R is (vacuously) an \mathcal{A}-ring with respect to R and M is (vacuously) an \mathcal{A}-module with respect to R.

Proof. 1) It suffices to note that, when $I \nsubseteq \mathrm{Z}(R)$, then $J+I \nsubseteq \mathrm{Z}(R)$ for any ideal J of R. Hence the statement (1) follows vacuously from Definition 3.1.
2) The proof is similar to that of (1).
3) It is direct from (2).

Let R be any ring which is not an \mathcal{A}-ring. Then R is an example of an \mathcal{A}-ring with respect to R which is not an \mathcal{A}-ring. Ahead, via Example 4.5, we provide a ring R and an ideal I with $I \subseteq \mathrm{Z}(R)$ such that R is an \mathcal{A}-ring with respect to I while R is not an \mathcal{A}-ring. This discussion proves that the notion of an \mathcal{A}-ring with respect to an ideal is weak form of the notion of an \mathcal{A}-ring.

We deduce from Proposition 3.2(2) the first case of an ideal of a ring R which is an \mathcal{A}-module with respect to itself.

Corollary 3.3. Let R be a ring and I an ideal of R such that $I \nsubseteq \mathrm{Z}_{R}(I)$. Then I is an \mathcal{A}-module with respect to itself.

The following two propositions records the fact that the $\operatorname{Property}(\mathcal{A})$ of a ring R is a particular case of the Property (\mathcal{A}) of R with respect to an ideal and that in the Noetherian setting any ideal I of R is an \mathcal{A}-module with respect to itself.

Proposition 3.4. Let R be a ring and M be an R-module. Then

1) The following assertions are equivalent:
a) R is an \mathcal{A}-ring;
b) R is an \mathcal{A}-ring with respect to (0).
2) The following assertions are equivalent:
a) M is an \mathcal{A}-module;
b) M is an \mathcal{A}-module with respect to (0).

Proof. It is direct from Definition 3.1.

Proposition 3.5. Let R be a ring. Then

(i) Any \mathcal{A}-module M over R is an \mathcal{A}-module with respect to any ideal I of R. In particular, if R is an \mathcal{A}-ring, then R is an \mathcal{A}-ring with respect to any ideal I of R.
(ii) If R is Noetherian, then any ideal I of R is an \mathcal{A}-module and thus an \mathcal{A}-module with respect to itself.

Proof. 1) It is clear from Definition 3.1.
2) Assume that R is Noetherian. Then I is a Noetherian module over R. Therefore, by [4, Theorem 2.2(5)], I is an \mathcal{A}-module. Hence, by (1), I is an \mathcal{A}-module with respect to itself.

It is known that a ring R (resp., an R-module M) is an \mathcal{A}-ring (resp., an \mathcal{A}-module over R) if and only if the total quotient ring $Q(R)$ (resp., the total quotient module $Q(M)$) is an \mathcal{A}-ring (resp., an \mathcal{A}-module over $Q(R)$). Next, we handle the transfer of this result to the Property (\mathcal{A}) with respect to an ideal. Given a ring R and an R-module M, put $S:=R \backslash \mathrm{Z}(R)$ and $S_{R}(M):=R \backslash \mathrm{Z}_{R}(M)$.

Proposition 3.6. Let R be a ring and I an ideal of R. Let M be an R-module.

1) Assume that $I \subseteq \mathrm{Z}(R)$. Then the following assertions are equivalent.
a) R is an \mathcal{A}-ring with respect to I;
b) $Q(R)$ is an \mathcal{A}-ring with respect to $S^{-1} I$.
2) Assume that $I \subseteq \mathrm{Z}_{R}(M)$. Let $Q(M)=S_{R}(M)^{-1} M$ denote the total quotient module of M. Then the following assertions are equivalent.
a) M is an \mathcal{A}-module with respect to I;
b) $Q(M)$ is an \mathcal{A}-module with respect to $S_{R}(M)^{-1} I$.

Proof. 1) a) \Rightarrow b) Assume that R is an \mathcal{A}-ring with respect to I. Let K be a proper finitely generated ideal of $Q(R)$ such that $K+S^{-1} I \subseteq \mathrm{Z}(Q(R))$. Then there exists a finitely generated ideal $J \subseteq \mathrm{Z}(R)$ of R such that $K=S^{-1} J$. Hence $S^{-1}(J+I) \subseteq \mathrm{Z}(Q(R))$ and thus $J+I \subseteq \mathrm{Z}(R)$. Therefore, as R is an \mathcal{A}-ring with respect to I, ann $(J) \neq(0)$. It follows, since $K=S^{-1} J$, that $\operatorname{ann}_{Q(R)}(K) \neq(0)$. Consequently, $Q(R)$ is an \mathcal{A}-ring with respect to $S^{-1} I$, as desired.
b) \Rightarrow a) Assume that $Q(R)$ is an \mathcal{A}-ring with respect to $S^{-1} I$. Let $J \subseteq \mathrm{Z}(R)$ be a finitely generated ideal of R such that $J+I \subseteq \mathrm{Z}(R)$. Then $S^{-1}(J+I)=S^{-1} J+\bar{S}^{-1} I$ is a proper ideal of $Q(R)$. Hence, as $Q(R)$ is an \mathcal{A}-ring with respect to $S^{-1} I$, we get $\operatorname{ann}_{Q(R)}\left(S^{-1} J\right) \neq(0)$. It follows, as S consists of regular elements of R, that ann $(J) \neq(0)$. Consequently, R is an \mathcal{A}-ring with respect to I, as desired.
2) The proof is similar to that of (1).

Corollary 3.7. Let R be a ring and I an ideal of R such that $I \subseteq \mathrm{Z}_{R}(I)$. Then I is an \mathcal{A}-module with respect to itself if and only if the ideal $S_{R}(I)^{-1} I$ of $Q_{R}(I)$ is an \mathcal{A}-module with respect to itself.

Through the next bunch of results we seek conditions under which an R-module M is an \mathcal{A}-module with respect to an ideal I. Given a ring R, we denote by $\operatorname{Rad}(R)$ the nilradical of R.

Proposition 3.8. Let R be a ring and I an ideal of R. Assume that $I \subseteq \operatorname{Rad}(R)$. Let M be an R-module. Then M is an \mathcal{A}-module with respect to I if and only if M is an \mathcal{A}-module.

Proof. By Proposition 3.5, it suffices to prove the necessary statement. Assume that M is an \mathcal{A}-module with respect to I. Let J be a finitely generated ideal of R such that $J \subseteq \mathrm{Z}_{R}(M)$. Let $j \in J$ and $i \in I$. Then there exists $0 \neq m \in M$ such that $j m=0$ and there exists $n \in \mathbb{N}$ such that $i^{n}=0$. Let $r:=\max \left\{t \in \mathbb{N}: i^{t} m \neq 0\right\}$. Note that $0 \leq r \leq n-1$. Hence $(j+i) i^{r} m=0$ and $i^{r} m \neq 0$ so that $j+i \in \mathrm{Z}_{R}(M)$. It follows that $J+I \subseteq \mathrm{Z}_{R}(M)$ and thus $J \subseteq \mathrm{Z}_{R}^{I}(M)$. Hence $\operatorname{ann}_{M}(J) \neq(0)$. Consequently, M is an \mathcal{A}-module.

Corollary 3.9. Let R be a ring and I a nilpotent ideal of R, that is, there exists $n \geq 1$ such that $I^{n}=(0)$. Let M be an R-module. Then M is an \mathcal{A}-module with respect to I if and only if M is an \mathcal{A}-module.

Proof. I suffices to note that $I \subseteq \operatorname{Rad}(R)$ and then to apply Proposition 3.8.

Proposition 3.10. Let R be an $\mathcal{S A}$-ring. Put $I:=Z(R)$. Then I is an \mathcal{A}-module and thus I is an \mathcal{A}-module with respect to itself.

Proof. Let $J \subseteq \mathrm{Z}_{R}(I)$ be a nonzero finitely generated ideal of R. Then, as $J \subseteq \mathrm{Z}_{R}(I) \subseteq \mathrm{Z}(R)$ and R is an \mathcal{A}-ring, we get ann $(J) \neq(0)$ and thus there exists $a \in R \backslash\{0\}$ such that $a J=(0)$. As $J \neq(0)$, we get $a \in \mathrm{Z}(R)=I$. Then $\operatorname{ann}_{I}(J) \neq(0)$. It follows that I is an \mathcal{A}-module and thus I is an \mathcal{A}-module with respect to itself, as desired.

Proposition 3.11. Let R be an \mathcal{A}-ring and I an ideal of R. Assume that $\operatorname{ann}(I) \subseteq I$. Then I is an \mathcal{A}-module with respect to itself.

Proof. Let $J \subseteq \mathrm{Z}_{R}^{I}(I)$ be a nonzero finitely generated ideal of R. As $\mathrm{Z}_{R}^{I}(I) \subseteq \mathrm{Z}_{R}(I) \subseteq \mathrm{Z}(R)$ and R is an \mathcal{A}-ring, we get $\operatorname{ann}(J) \neq(0)$ and thus there exists $a \in R$ such that $a \neq 0$ and $a J=(0)$. If $a \in I$, then $\operatorname{ann}_{I}(J) \neq(0)$. Assume that $a \notin I$. Then, as ann $(I) \subseteq I$, we get $a \notin \operatorname{ann}(I)$. Hence there exists $i \in I$ such that $j:=a i \neq 0$. It follows that $j J=(0)$ and $j \in I \backslash\{0\}$, so that $\operatorname{ann}_{I}(J) \neq(0)$. Consequently, I is an \mathcal{A}-module with respect to itself.

Corollary 3.12. Let R be an \mathcal{A}-ring and I an ideal of R such that $\operatorname{ann}(I)=(0)$. Then I is an \mathcal{A}-module with respect to itself.

Corollary 3.13. Let R be an \mathcal{A}-ring and I an ideal of R. Assume that $\mathrm{Z}_{R}(I) \subseteq I$. Then I is an \mathcal{A}-module with respect to itself.

Proof. It is direct from Proposition 3.11 as $\operatorname{ann}(I) \subseteq \mathrm{Z}_{R}(I)$.

Next, we prove a sort of ascent behavior of the $\operatorname{Property}(\mathcal{A})$ with respect to an ideal.
Proposition 3.14. Let R be a ring and M an R-module. Let $I_{1} \subseteq I_{2}$ be ideals of R. Then
(i) If R is an \mathcal{A}-ring with respect to I_{1}, then R is an \mathcal{A}-ring with respect to I_{2}.
(ii) If M is an \mathcal{A}-module with respect to I_{1}, then M is an \mathcal{A}-module with respect to I_{2}.

Proof. 1) Assume that R is an \mathcal{A}-ring with respect to I_{1}. Let J be a finitely generated ideal of R such that $J \subseteq \mathrm{Z}^{I_{2}}(R)$. Then, as $I_{1} \subseteq I_{2}, J+I_{1} \subseteq J+I_{2} \subseteq \mathrm{Z}(R)$ and thus $J \subseteq \mathrm{Z}^{I_{1}}(R)$. Now, since R is an \mathcal{A}-ring with respect to I_{1}, it follows that $\operatorname{ann}(J) \neq(0)$. Therefore R is an \mathcal{A}-ring with respect to I_{2}, as desired.
2) It is similar to (1).

The following theorem and corollary characterize the \mathcal{A}-rings R (resp., \mathcal{A}-modules M) with respect to a given ideal I of R in the crucial case when $I \subseteq \mathrm{Z}(R)$ (resp., $I \subseteq \mathrm{Z}_{R}(M)$). Given a ring R and an ideal I of R, we denote by $\operatorname{Max}_{I}(R)$ the set of maximal ideals of R containing I and we denote by $\operatorname{Max}_{I}(\mathrm{Z}(R))$ the set of prime ideals of R which are maximal among the prime ideals in $\mathrm{Z}(R)$ and which contain I, in other words, the elements of $\operatorname{Max}_{I}(\mathrm{Z}(R))$ are the maximal primes of R containing I. Also, given an R-module M, let $\operatorname{Max}_{I}\left(\mathrm{Z}_{R}(M)\right)$ denote the set of prime ideals of R which are maximal among the prime ideals in $\mathrm{Z}_{R}(M)$ and which contain I.
Theorem 3.15. Let R be a ring and I an ideal of R.

1) Assume that $I \subseteq \mathrm{Z}(R)$ and that $Q(R)=R$. Then the following assertions are equivalent.
a) R is an \mathcal{A}-ring with respect to I;
b) For each proper finitely generated ideal J of R such that $I+J$ is a proper ideal of R, $\operatorname{ann}(J) \neq(0)$;
c) For each proper finitely generated ideal J of R such that $J \subseteq \underset{m \in \operatorname{Max}_{I}(R)}{ } m, \operatorname{ann}(J) \neq(0)$.
2) Let M be an R-module such that $I \subseteq \mathrm{Z}_{R}(M)$. Assume that $Q_{R}(M)=R$. Then the following assertions are equivalent.
a) M is an \mathcal{A}-module with respect to I;
b) For each finitely generated ideal J of R such that $I+J$ is a proper ideal of $R, \operatorname{ann}_{M}(J) \neq$ (0);
c) For each finitely generated ideal J of R such that $J \subseteq \bigcup_{m \in \operatorname{Max}_{I}(R)} m, \operatorname{ann}_{M}(J) \neq(0)$.

Lemma 3.16. Let R be a ring such that $Q(R)=R$. Let I be a proper ideal of R. Then, for each ideal J of $R, I+J$ is a proper ideal of R if and only if $J \subseteq \bigcup_{m \in \operatorname{Max}_{I}(R)} m$.
Proof. Let J be an ideal of R. Assume that $I+J$ is a proper ideal of R. Then there exists a maximal ideal of R such that $I+J \subseteq m$. Hence $m \in \operatorname{Max}_{I}(R)$ such that $J \subseteq m$. Therefore $J \subseteq \bigcup_{m \in \operatorname{Max}_{I}(R)} m$. Conversely, suppose that $J \subseteq \bigcup_{m \in \operatorname{Max}_{I}(R)} m$. Then $I+J \subseteq \bigcup_{m \in \operatorname{Max}_{I}(R)} m$ as $I \subseteq m$ for each $m \in \operatorname{Max}_{I}(R)$. Hence $I+J$ is a proper ideal of R since $1 \notin \underset{m \in \operatorname{Max}_{I}(R)}{\bigcup} m$. This completes the proof of the lemma.

Proof of Theorem 3.15. 1) a) $\Leftrightarrow \mathrm{b}$) It is clear from Definition 3.1 as $\mathrm{Z}(R)$ is the set of non invertible elements of R.
b) \Leftrightarrow c) It is straighforward by Lemma 3.16.
c) \Rightarrow a) Assume that (c) holds. Let J be a finitely generated ideal of R such that $I+J \subseteq \mathrm{Z}(R)$. It follows, applying (c), that $\operatorname{ann}(J) \neq(0)$. Consequently, R is an \mathcal{A}-ring with respect to I, as desired.
2) The proof is similar to the treatment of (1).

Our final result gives a characterization of \mathcal{A}-rings and \mathcal{A}-modules with respect to an ideal in the general setting.
Corollary 3.17. Let R be a ring and I an ideal of R.

1) Assume that $I \subseteq \mathrm{Z}(R)$. Then the following assertions are equivalent.
a) R is an \mathcal{A}-ring with respect to I;
b) For each finitely generated ideal $J \subseteq \mathrm{Z}(R)$ of R such that $J \subseteq \underset{m \in \operatorname{Max}_{I}(\mathrm{Z}(R))}{\bigcup} m$, ann $(J) \neq$ (0).
2) Let M be an R-module such that $I \subseteq \mathrm{Z}_{R}(M)$. Then the following assertions are equivalent.
a) M is an \mathcal{A}-module with respect to I;
b) For each finitely generated ideal $J \subseteq \mathrm{Z}_{R}(M)$ of R such that $J \subseteq \underset{m \in \operatorname{Max}_{I}\left(\mathrm{Z}_{R}(M)\right)}{ } m$, $\operatorname{ann}_{M}(J) \neq(0)$.
Proof. It follows easily from the combination of Theorem 3.15 and Proposition 3.6.

4 Property (\mathcal{A}) with respect to an ideal and direct product of rings and modules

This section investigates the behavior of the $\operatorname{Property}(\mathcal{A})$ with respect to an ideal vis-à-vis the direct products of rings and modules. Given a family of rings $\left(R_{k}\right)_{k \in \Lambda}$, we characterize when a direct product $\prod_{k} M_{k}$ is an \mathcal{A}-module with respect to the ideal $\prod_{k} I_{k}$ with each M_{k} is an R_{k} module and each I_{k} is an ideal of R_{k} for any $k \in \Lambda$. This allows to generalize, via Theorem 4.1, a result of Hong-Kim-Lee-Ryu stating that the direct product $\prod R_{i}$ of a family of rings $\left(R_{i}\right)_{i}$ is an \mathcal{A}-ring if and only if each R_{i} is an \mathcal{A}-ring [12, Proposition 1.3].

We begin by announcing the main theorem of this section.
Theorem 4.1. Let $\left(R_{k}\right)_{k \in \Lambda}$ be a family of commutative rings. Let $R=\prod_{k \in \Lambda} R_{k}$. Let I_{k} be an ideal of R_{k} for each $k \in \Lambda$ and let $I:=\prod I_{k}$. Let M_{k} be an R_{k}-module for each $k \in \Lambda$ and $M:=\prod_{k} M_{k}$. Then the following assertions are equivalent.
(i) M is an \mathcal{A}-module with respect to I;
(ii) M_{k} is an \mathcal{A}-module with respect to I_{k} for each $k \in \Lambda$.

Proof. 1) $\Rightarrow 2$) Assume that M is an \mathcal{A}-module with respect to I. Fix $t \in \Lambda$ and let $J \subseteq$ $\mathrm{Z}_{R_{t}}\left(M_{t}\right)$ be a finitely generated ideal of R_{t} such that $J+I_{t} \subseteq \mathrm{Z}_{R_{t}}\left(M_{t}\right)$. Consider the ideal $K=J R+\left(\cdots, 1,1,0_{R_{t}}, 1,1, \cdots\right) R$ of R. Then K is a finitely generated ideal of R and it is easily checked that $K \subseteq \mathrm{Z}_{R}^{I}(M)$ since $J \subseteq \mathrm{Z}_{R_{t}}^{I_{t}}\left(M_{t}\right)$. Hence, since M is an \mathcal{A}-module with respect to I, there exists $0 \neq m^{\prime} \in M$ such that $K m^{\prime}=0$. Put $m^{\prime}=\left(m_{k}^{\prime}\right)_{k}$. Then $\left(\cdots, 1,1,0_{R_{t}}, 1,1, \cdots\right) m^{\prime}=0$, as $\left(\cdots, 1,1,0_{R_{t}}, 1,1, \cdots\right) \in K$, and thus $m_{k}^{\prime}=0$ for each $k \neq t$. It follows that $m_{t}^{\prime} \neq 0$ and $J m_{t}^{\prime}=(0)$, so that, $\operatorname{ann}_{M_{t}}(J) \neq(0)$. Consequently, M_{k} is an \mathcal{A}-module with respect to I_{t}, as desired.
2) $\Rightarrow 1)$ Assume that each M_{k} is an \mathcal{A}-module with respect to I_{k}. Let $J=\left(a_{1}, a_{2}, \cdots, a_{n}\right) R \subseteq$ $\mathrm{Z}_{R}(M)$ be a finitely generated ideal of R such that $J \subseteq \mathrm{Z}_{R}^{I}(M)$. Let $a_{k}=\left(a_{k i}\right)_{i \in \Lambda}$ for each $k=1, \cdots, n$ and let $J_{i}:=\left(a_{1 i}, a_{2 i}, \cdots, a_{n i}\right) R_{i}$ the ith projection of J for each $i \in \Lambda$. Then, by Theorem 2.5, there exists $t \in \Lambda$ such that $J_{k} \subseteq \mathrm{Z}_{R_{t}}^{I_{t}}\left(M_{t}\right)$. Since M_{k} is an \mathcal{A}-module with respect to I_{k}, we get that $\operatorname{ann}_{M_{k}}\left(J_{k}\right) \neq(0)$, that is, there exists $0 \neq m_{k} \in M_{k}$ such that $J_{k} m_{k}=(0)$. Hence, it is easily verified that

$$
\begin{aligned}
J\left(\cdots, 0,0, m_{k}, 0,0, \cdots\right) \subseteq & \left(\prod_{i \in \Lambda} J_{i}\right)\left(\cdots, 0,0, m_{k}, 0,0, \cdots\right) \\
& =\cdots \times(0) \times(0) \times J_{k} m_{k} \times(0) \times(0) \times \cdots=(0)
\end{aligned}
$$

that is, $\operatorname{ann}_{M}(J) \neq(0)$. Therefore M is an \mathcal{A}-module with respect to I completing the proof of the theorem.

Corollary 4.2. Let $\left(R_{k}\right)_{k \in \Lambda}$ be a family of commutative rings and $R=\prod_{k \in \Lambda} R_{k}$. Let I_{k} be an ideal of R_{k} for each $k \in \Lambda$ and $I:=\prod I_{k}$. Then R is an \mathcal{A}-ring with respect to I if and only if R_{k} is an \mathcal{A}-ring with respect to I_{k} for each $k \in \Lambda$.

Corollary 4.3. Let R_{1} and R_{2} be rings. Let I_{1} and I_{2} be ideals of R_{1} and R_{2}, respectively. Then $R_{1} \times R_{2}$ is an \mathcal{A}-ring with respect to $I_{1} \times I_{2}$ if and only if R_{1} is an \mathcal{A}-ring with respect to I_{1} and R_{2} is an \mathcal{A}-ring with respect to I_{2}.

Corollary 4.4. Let $\left(R_{k}\right)_{k \in \Lambda}$ be a family of commutative rings. Let $R=\prod_{k \in \Lambda} R_{k}$. Let I_{k} be an ideal of R_{k} for each $k \in \Lambda$ and let $I:=\prod I_{k}$. Then I is an \mathcal{A}-module with respect to itself if and only if I_{k} is an \mathcal{A}-module with respect to itself for each $k \in \Lambda$.

We close this paper by giving an example of a ring R and an ideal I such that $I \subseteq \mathrm{Z}(R)$ and R is an \mathcal{A}-ring with respect to I while R is not an \mathcal{A}-ring.

Example 4.5. Let S be a ring which is not an \mathcal{A}-ring. Note that, by Proposition 3.2(3), S is an \mathcal{A}-ring with respect to S. Let T be a zero-dimensional ring and m a maximal ideal of T. Then T is an \mathcal{A}-ring, and in particular an \mathcal{A}-ring with respect to m, and $m \subseteq \mathrm{Z}(T)$. Let $R:=S \times T$ and $I:=S \times m$. Note that $I \subseteq \mathrm{Z}(R)$. Moreover, by Corollary 4.3, R is an \mathcal{A}-ring with respect to I while, by [12, Proposition 1.3], R is not an \mathcal{A}-ring as S is not so, as desired.

References

[1] A. Ait Ouahi, S. Bouchiba and M. El-Arabi, On proper strong Property (\mathcal{A}) for rings and modules, J. Algebra Appl. 19 (2020), no. 12, 2050239, 13 pp
[2] D. D. Anderson and S. Chun, The set of torsion elements of a module, Comm. Algebra 42 (2014) 1835-1843.
[3] D. D. Anderson and S. Chun, Zero-divisors, torsion elements, and unions of annihilators, Commun. Algebra 43 (2015) 76-83.
[4] D. D. Anderson and S. Chun, Annihilator conditions on modules over commutative rings, J. Alg. Applications, Vol. 16, no. 7 (2017) 1750143 (19 pages).
[5] D. D. Anderson and S. Chun, McCoy modules and related modules over commutative rings, 2017, Vol. 45, no. 6, 2593-2601.
[6] S. Bouchiba, On the vanishing of annihilators of modules, Commun. Algebra 48 (2020), no. 2, 879-890.
[7] S. Bouchiba, M. El-Arabi and M. Khaloui, When is the idealization $R \ltimes M$ an \mathcal{A}-ring?, J. Algebra Appl. 19 (2020), no. 12, 2050227, 14 pp.
[8] S. Bouchiba and M. El-Arabi, On Property (\mathcal{A}) for modules over direct products of rings, Quaestiones Mathematicae, to appear.
[9] A. Y. Darani, Notes on annihilator conditions in modules over commutative rings, An. Stinnt. Univ. Ovidius Constanta 18 (2010) 59-72.
[10] D. E. Dobbs and J. Shapiro, On the strong (A)-ring of Mahdou and Hassani, Mediterr. J. Math. 10 (2013) 1995-1997.
[11] C. Faith, Annihilator ideals, associated primes, and Kasch-McCoy commutative rings, Commun. Algebra 19 (1991) 1867-1892.
[12] C. Y. Hong, N. K. Kim, Y. Lee and S. T. Ryu, Rings with Property (A) and their extensions, J. Algebra 315 (2007) 612-628.
[13] J. A. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, Inc., New York and Basel, 1988.
[14] J. A. Huckaba and J. M. Keller, Annihilation of ideals in commutative rings, Pacific J. Math. 83 (1979) 375-379.
[15] I. Kaplansky, Commutative Rings, Polygonal Publishing House, Washington, New Jersey, 1994.
[16] T. G. Lucas, Two annihilator conditions: Property (A) and (A.C.), Commun. Algebra 14 (1986) 557580.
[17] N. Mahdou and A. R. Hassani, On strong (A)-rings, Mediterr. J. Math. 9 (2012) 393-402.
[18] Y. Quentel, Sur la compacité du spectre minimal d'un anneau, Bull. Soc. Math. France 99 (1971) 265-272.

Author information

A. Ait Ouahi, Y. Arssi and S. Bouchiba, Department of Mathematics, Faculty of Sciences, Moulay Ismail University of Meknes, Morocco.
E-mail: s.bouchiba@fs.umi.ac.ma

Received: October 22, 2020.
Accepted: January 7, 2021.

