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Abstract Using its semi simplicity and its matrix representation, we will give a classifica-
tion of primitive idempotent elements of the complex Clifford algebra Cl(p, q) which we use to
make some examples of Rota-Baxter operators on Cl(p, q). A study of Rota-Baxter operators on
Cl(p, q) is given.

1 Introduction

The notion of Clifford algebra was invented by William Kingdon Clifford (1845-1879). The
first occurrence of the result was issued in a talk in 1876, which was published posthumously
in 1882. In mathematics, a Clifford algebra is an algebra generated by a vector space with a
quadratic form, and it is a unital associative algebra. As F -algebras, they generalize the real
numbers, complex numbers, quaternions and several other hypercomplex number systems [6].
The theory of Clifford algebras is intimately connected with the theory of quadratic forms and
orthogonal transformations. It is well-known that Clifford algebras are defined by symmetric
bilinear forms [1, 12, 5]. Given a symmetric bilinear form B on a vector space E, one defines
the Clifford algebra Cl(E,B) to be the associative algebra generated by the elements of E ,
with relations vu + uv = 2B(u, v), u, v ∈ E. If B = 0 this is just the exterior algebra ∧(E),
see for example [4, 5, 14, 10], and in the general case the Clifford algebra can be regarded as
a deformation of the exterior algebra. The structures of the finite dimensional Clifford algebras
associated with non-degenerate quadratic forms have been well understood for a long period of
time. These Clifford algebras are either full matrix algebras or the direct sums of two full matrix
algebras [10, 14, 9, 16].

Clifford algebras have played an important role in a variety of fields including geometry,
describing electron spin, and the fundamental representations of the orthogonal groups etc. We
refer the readers to the introduction section of [18] for a discussion of the role played by Clif-
ford algebras in quantum mechanics. Clifford algebras and spinors have been used to describe
electromagnetic fields (Dirac- equation [8]), super symmetry, and celestial mechanics.

Given an algebra A and a scalar λ in a field F , a linear operator R : A −→ A is called a
Rota-Baxter operator (RB operator, shortly) on A of weight λ if the following identity

R(x)R(y) = R(R(x)y + xR(y) + λxy)

holds for all x, y ∈ A. The algebra A is called the Rota-Baxter algebra (RB algebra). The Rota-
Baxter algebras were introduced by Baxter [3], and then they were popularized by Rota and his
school [2]. The linear operators with the previous property were independently introduced in the
context of Lie algebras by Belavin and Drinfeld [2]. These operators were connected with the
so-called R-matrices which are solutions to the classical Yang-Baxter equation. Recently, some
applications of the Rota-Baxter algebras were found in such areas as the quantum field theory, the
Yang-Baxter equations, the cross products, the operads, the Hopf algebras, the combinatorics,
and the number theory.
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The present paper is organized as follows: After introduction, section 2 aims to revisit some
basic results of semi-simple algebras. In section 3, we will give a classification of primitive
idempotent elements of Cl(p, q) using its semi-simplicity. Also, examples are given. Further, in
section 4, we study Rota-Baxter operators on Cl(p, q). Some examples, using primitive idempo-
tent elements of Cl(p, q), are given.

2 Primitive idempotent elements of simple algebras

In this section, we review some algebraic preliminaries which will be needed below. We recall
the most fundamental properties of semi-simple algebras and their representations, and, we give
a characterization of such algebras when the basic field is algebraically closed.

Let F be a field and A an (associative) algebra (with identity) over F .
A minimal left (right) ideal of A is a left (right) ideal J 6= {0} such that {0} and J are the

only left ideals contained in J .
An element t of A is said to be an idempotent if t2 = t. Two idempotents f and h such that

hf = fh = 0 are called orthogonal. A non-zero idempotent element of A is said to be primitive
if it is not a sum of two non-zero orthogonal idempotents.

The algebra A is said to be simple if the only bi-ideals of A are {0} and itself. It is said to be
semi-simple if it is isomorphic to a direct sum of simple algebras. Clearly every simple algebra
is semi-simple.

A is said to be semi-prime algebra if {0} is the only bi-ideal J of A with J2 = {0}. It is
well-known that semi-simple algebras are semi-prime [7].

The results of this section have obvious duals obtained by interchanging the roles of the right
and left ideals.

Lemma 2.1. Let I be a left ideal of a semi-simple algebra A with I2 = {0}. Then, I = {0}.

Proof. Set K = IA. K is a bi-ideal of A with I ⊂ K and K2 = {0}. Since A is a semi-simple
algebra, then A is semi-prime. So, K = {0} and so, I = {0}. 2

Proposition 2.2. Let I be a minimal left ideal of a semi-simple algebra A. Then, there exists a
non-zero primitive idempotent element t of A such that, I = At. Where At = {at/a ∈ A}.

Proof. By the previous lemma, I2 6= {0}, since I 6= {0}. Then, there exists x ∈ I such that
Ix 6= {0} and so, Ax 6= {0}. Since Ix is a non-zero left ideal of A contained in I , the minimality
of I gives I = Ix and there exists t ∈ I \{0} with x = tx, also tx = t2x. So, t2− t ∈ I ∩ker(x),
where ker(x) = {a ∈ A/ax = 0}. Since I ∩ ker(x) is a left ideal contained in I and I is not
contained in ker(x), the minimality of I gives I ∩ ker(x) = {0} and so, t2 = t. At is a non-zero
left ideal contained in I . Then I = At. on the other hand, if t = f + h, with f and h are two
orthogonal idempotents of A, then At = Af ⊕ Ah. By minimality of I = At, we have f or h is
vanish. Hence, we get the result. 2

Proposition 2.3. Let t be a non-zero idempotent of a semi-simple algebra A. Then, the left ideal
At is minimal if and only if t is primitive.

Proof. Suppose that t is primitive. Let I be a minimal left ideal of A contained in At. By
Proposition 2.2, there exists a primitive idempotent t′ ∈ A such that I = At′. Firstly, t′t = t′,
since t′ ∈ At, and tt′ 6= 0, since {0} 6= At′ ⊂ Att′. On the other hand, t = tt′+(t− tt′); sum of
two orthogonal idempotents. Thus, necessarily t = tt′, since t is primitive. So, t ∈ At′ and so,
At = At′. It follows that At is minimal.
Conversely, it is easy. 2

Corollary 2.4. Let t be a primitive idempotent element of A. Then, every non-zero idempotent of
At is primitive.

Proof. Let t′ be a non-zero idempotent element of At. It is easy to see that At = At′. Thus, At′
is a minimal left ideal of A. By Proposition 2.3, t′ is primitive. 2
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Proposition 2.5. Let t be a non-zero idempotent element of a semi-simple algebraA. Then, t is
primitive if and only if tAt is a division algebra; that is every non-zero element of tAt has a
two-sided inverse.

Proof. =⇒ Evidently tAt is an algebra with unit element t. Let txt 6= 0. Since txt ∈ Atxt, then,
{0} 6= Atxt ⊂ At. The minimality of At gives Atxt = At and there exists y ∈ A with ytxt = t.
Thus, (tyt)(txt) = t2 = t. We have proved that each non-zero element of tAt has a left inverse,
and therefore tAt is a division algebra.
⇐= Let J be a left ideal of A with {0} 6= J ⊂ At. By Lemma 2.1, we have J2 6= {0},
and so there exist elements at, bt ∈ J such that atbt 6= 0. It follows that tbt is a non-zero
element of the division algebra tAt. Hence, there exists c ∈ tAt such that ctbt = t. Thus,
At = Actbt ⊂ Abt ⊂ J , and so, At is a minimal left ideal. The Proposition 2.5 achieves the
proof. 2

Lemma 2.6. Let A be an associative unit complex algebra of finite-dimensional. Then, A is a
division algebra if and only if A = C.1.

Proof. Suppose that A is a division algebra. Let a ∈ A. The morphism

{
C[X]

ϕ−→ A

P 7−→ P (a)

is non injective (dimensional-reasons). It’s kernel is so, a non-zero ideal of C[X], then there is
on non-zero unitary polynomial of minimal degree P in ker(ϕ). P is necessary an irreducible
polynomial of C[X], then P = X − α for some α ∈ C and so, a = α.1.
Conversely, if A = C.1 then, evidently, A is a division algebra. 2

Remark 2.7. The previous result is true if we substitute the field of complex numbers C with
another algebraically closed field.

Corollary 2.8. Let t be a non-zero idempotent element of a semi-simple complex algebraA. Then,
t is primitive if and only if tAt = C.t.

Proof. By Proposition 2.5 and the previous lemma. 2

Throughout this section, A denotes a semi-simple algebra of finite-dimension.
The set that we denote P , of primitive idempotent elements of A can be provided with the
equivalence relation R given by tRt′ if and only if At = At′. So, there exists t1, ..., tr ∈ P such
that A = ⊕ri=1Ati, which are called representatives of the equivalence classes, with respect to
R.

Proposition 2.9. There exists a pairwise orthogonal primitive idempotents e1, ..., er ∈ P such
that:

(i) 1 =
∑r
i=1 ei.

(ii) A = ⊕ri=1Aei.

Proof. Choose t1, ..., tr ∈ P such that A = ⊕ri=1Ati. Then, there exists a unique non-zero
element (e1, ..., er) ∈ At1 × ...×Atr such that 1 =

∑r
i=1 ei. Moreover, for all j ∈ {1, ..., r}, by

uniqueness of the decomposition of ej , we have

ej = ej1 =
r∑
i=1

ejei = e2
j +

∑
i 6=j

ejei︸︷︷︸
=0

= e2
j .

Corollary 2.4 achieves the proof. 2

Remark 2.10.

(i) The number r is uniquely determined. Moreover, we have, r = 1 if and only if A = F , if
and only if 1 is the only primitive idempotent element of A.
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(ii) A = ⊕ri,jeiAej .

(iii) Let a and b be two elements of the algebra A. We shall decompose them in accordance with
the decomposition of 1: a =

∑
i,j aij and b =

∑
i,j bij , where aij = eiaej , bij = eibej .

Then, a + b =
∑
i,j(aij + bij) and ab =

∑
i,k

∑
k,j aikbkj . This allows the element a to

be written in the matrix-form (aij). We have just established that the addition and multipli-
cation of these elements translates in this interpretation into the addition and multiplication
of the matrices defined in the usual way.

Assume that F is algebraically closed, and let t be a primitive idempotent element of a simple
finite dimensional algebra A over F . Then, the natural map ρ : A −→ EndF (At) defining the
action of A on At is injective. Indeed, since the kernel is a bi-ideal, A is simple.

By Burnside’s lemma [15], ρ is surjective, and therefore, an isomorphism which is called a
spinor representation of A, the corresponding minimal left ideal is called a spinor space of A. It
follows that A is isomorphic to M(n, F ) for some integer n ≥ 1.
Thus, we have the following result:

Proposition 2.11. Assume that A is simple. Let e1, . . . , er ∈ A are the pairwise orthogonal
primitive idempotents such that 1 =

∑r
i=1 ei. Then,

r = dim(Ae1) = dim(Ae2) = · · · = dim(Aer) =
√

dim(A).

Proof. Since A = ⊕ri=1Aei then, dim(A) =
∑r
i=1 dim(Aei). On the other hand, by Burnside’s

lemma [15], A ∼= End(Aei), for all i ∈ {1, . . . , r} then, dim(A) = (dim(Aei))
2. So, we get the

result. 2

Remark 2.12. For a simple algebra A over F (algebraically closed) it is easy to see that:

1. dimA is, necessarily, a square integer.

2. There are
√

dimA-classes (types) of primitive idempotent elements in A.

3. Every ideal of A is of dimension ≥
√

dimA.

4. Every idempotent t ∈ A with dimAt =
√

dimA is primitive.

5. If A is semi-simple, then A ∼= ⊕si=1M(ni, F ), for some non negative integers s, n1, ..., ns.

Example 2.13. Let n be a non-zero integer. For all i ∈ {1, ..., n}, Ei denotes the matrix of
M(n,C) with the iith entry equal to 1 and all the rest are zero. By a simple calculus, we have
for all i ∈ {1, ..., n}, EiM(n,C)Ei = C.Ei. Thus, by Corollary 2.8, E1,..., En are a primitive
idempotent elements of M(n,C). They are the only (with respect to R) primitive idempotent
elements of M(n,C). Moreover, we have

∑n
i=1 Ei = In, where In is the matrix identity of

M(n,C).

3 Primitive idempotent elements of Cl(p, q)

Let us recall some basic results of the complex Clifford algebra Cl(p, q). Given p, q and n a non-
negative integers such that n = p + q. We denote Cl(p, q) the Clifford algebra of the quadratic
space Rp,q and Cl(p, q) = C ⊗ Cl(p, q) the complexifed algebra of Cl(p, q). If ei, 1 ≤ i ≤ n is
an orthonormal basis of Rp,q, then Cl(p, q) is generated by ei with relations

eiej + ejei = 2gije, 1 ≤ i, j ≤ n, (3.1)

where e is the unitary element of Cl(p, q), gii = 1 if 1 ≤ i ≤ p, gii = −1 if p+ 1 ≤ i ≤ n and
gij = 0 if i 6= j. It has basis

e, ei, ei1ei2 , ..., e1...en, 1 ≤ i1 < i2 < ... ≤ n,

with i, i1, ... are indexes from 1 to n. Thus Cl(p, q) is 2n-dimensional complex vector space
[10]. Throughout this paper e1, ..., en denote an orthonormal basis of Rp,q and eI will denote the
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product element ei1 . . . eik of Cl(p, q) for any I = {i1, . . . , ik} with 1 ≤ i1 < i2 . . . < ik ≤ n,
and e∅ := e. So, any Clifford algebra element X ∈ Cl(p, q) can be written in the following form

X = xe+
∑
I 6=∅

λIeI , (3.2)

where x, λI are complex constants.
Complex Clifford algebras Cl(p, q) of dimension 2n and different signatures (p, q), p+q = n

are isomorphic. Clifford algebras Cl(p, q) are isomorphic to the matrix algebras of complex
matrices. In the case of even n, these matrices are of order 2

n
2 . In the case of odd n, these

matrices are block diagonal of order 2
n+1

2 with 2 blocks of order 2
n−1

2 [16, 10]. Precisely, we
have the following well-known matrix-representations of complex Clifford algebras (of minimal
dimension)

Cl(Cn) ∼= Cl(p, q) ∼=

{
Mat(2

n
2 ,C) if n is even,

Mat(2
n−1

2 ,C)⊕Mat(2
n−1

2 ,C) if n is odd.

In particular, these Clifford algebras Cl(p, q) are a simple algebras (if n is even) or a semi-simple
algebras (if n is odd). Such a property allows us to give the following results.

Theorem 3.1. Let t be a non-zero idempotent element of the complex Clifford algebra Cl(p, q).
Then, the following properties are equivalent.

(i) t is primitive.

(ii) Cl(p, q)t is a minimal left ideal.

(iii) tCl(p, q)t = Ct.

(iv) tCl(p, q)t is division algebra.

(v) t is the only non-zero idempotent element of tCl(p, q)t.

(vi) (For even n) dim(Cl(p, q)t) = 2
n
2 .

Proof. From the results of the above section, it suffice to prove that (v) =⇒ (i).
Assume that t is the only non-zero idempotent element of tCl(p, q)t. Set f and h two orthogonal
idempotent elements of Cl(p, q) such that t = f + h. It follows that, f and h are two idempotent
elements of tCl(p, q)t with f 6= h. So, f or h is zero, and so, t is primitive. 2

Remark 3.2. As the previous section, let P denotes the set of primitive idempotent elements of
Cl(p, q), and R the equivalent relation given by: ∀t, t′ ∈ P, tR t′ if and only if Cl(p, q)t =

Cl(p, q)t′. So, there is 2[
n+1

2 ] equivalence class representatives with respect to R.

Example 3.3. 1. In Cl(1, 1), every non-zero idempotent element t 6= 1 is primitive. For ex-
ample: t1 = 1

2(e−e1) and t2 = 1
2(e+e1) are two orthogonal primitive idempotent elements

with t1 + t2 = e. They are the only (with respect to R) primitive idempotent elements of
Cl(1, 1).

2. In Cl(1, 3), t1 = 1
4(e− e1)(e− ie2e3), t2 = 1

4(e− e1)(e+ ie2e3), t3 = 1
4(e+ e1)(e− ie2e3)

and t4 = 1
4(e+ e1)(e+ ie2e3) are four pairwise orthogonal primitive idempotent elements

of Cl(1, 3) with t1 + t2 + t3 + t4 = e. They are the only (with respect to R) primitive
idempotent elements of Cl(1, 3).

3. Assume that n ≥ 3. Set t0 = 1
2(e− e1) and tk = 1

2(e− i
bke2ke2k+1) for 1 ≤ k ≤ m, where

m = [n−1
2 ], bk = 0 for 2k = p and bk = 1 for 2k 6= p, with e, e1, ..., en are basis generators

of Cl(p, q) satisfying (3.1).
t0, t1, ..., tm are a pairwise commuting idempotent elements of Cl(p, q). Thus, their product:

t =
m∏
k=0

tk (3.3)
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is also an idempotent element of Cl(p, q). Furthermore, t is primitive.
Indeed: By a direct calculation, one obtains: t0e1t0 = tke2ktk = tke2k+1tk = 0 and further,
te1t = te2kt = te2k+1t = 0, for all k = 1, ...,m. Moreover, when n is even, we have
t0ent0 = 0, hence, tent = 0. So, for all k = 1, ..., n, tekt = 0. It follows that, tekt ∈ Ct,
for all k = 1, ..., n. By a similar calculation, we can verify that for any basis element eI
of Cl(p, q), teIt ∈ Ct. Consequently, tCl(p, q)t = Ct and so, t is primitive. (By Theorem
3.1).

Theorem 3.4. For even n, the primitive idempotent elements of Cl(p, q) are conjugated.
That is, for all t, t′ two primitive idempotent elements of Cl(p, q), there exists an invertible ele-
ment x of Cl(p, q) such that t′ = xtx−1.

Proof. Using the isomorphism between the Clifford algebra Cl(p, q) and the matrix algebra
M(2

n
2 ,C) it is enough to establish the result in M(2

n
2 ,C). Given a primitive idempotent matrix

T of M(2
n
2 ,C). By means of a similarly transformation, it can be transformed into its Jordan

form. Consequently, the idempotency implies that the Jordan form of T must be (up to basis
vector transformation) of the form E1 = diag(1, 0, ..., 0), (E1 is a primitive idempotent element
of M(2

n
2 ,C), (see Example 2.13). Thus, there exists S ∈ GL(2n

2 ,C) such that T = SE1S
−1.

So, we get the result. 2

Remark 3.5. For even n, the set P of primitive idempotent elements of Cl(p, q), can be given as
follows

P={xtx−1/x is an invertible element of Cl(p, q)},

for any primitive idempotent element t. For example t is the one given by Formula (3.3).

Theorem 3.6. For even n, any primitive idempotent element of Cl(p, q) is necessarily of the
form given by Formula (3.3), for some generators γi of Cl(p, q) (instead of the ei) satisfying the
relation

γiγj + γjγi = 2gije, 1 ≤ i, j ≤ n. (3.4)

Proof. Let t′ be a primitive idempotent element of Cl(p, q). By the previous theorem, there exists
an invertible element x of Cl(p, q) such that t′ = x−1tx, where t denotes the primitive idempo-
tent element of Cl(p, q) given by Formula (3.3) in the example above. The family γi = x−1eix,
1 ≤ i ≤ n satisfies Relation (3.4). Hence, by Pauli’s Theorem (see [17]), γi are generator ele-
ments of Cl(p, q). Replacing the generators ei by the γi, Formula (3.3) gives t′. 2

Proposition 3.7. For even n, e2It, I ⊂ {1, ..., n2 } form a base for the minimal left ideal Cl(p, q)t.
Here, t is the primitive idempotent element given by (3.3) and 2I = {2k; k ∈ I}.

Proof. Let k ∈ {1, ..., n2 − 1}. We have

e2k+1tk = 1
2

(
e2k+1 + ibke2ke

2
2k+1

)
=

ibke2
2k+1

2

(
e2k +

1
ibke2

2k+1
e2k+1

)
= ibke2

2k+1
1
2

(
e2k +

ibk

i2bke2
2ke

2
2k+1

e2
2ke2k+1

)
= ibke2

2k+1
1
2

(
e2k − ibke2

2ke2k+1
)
, since, i2bke2

2ke
2
2k+1 = −1

=
(
ibke2

2k+1

)
e2ktk.

Hence, e2k+1t =
(
ibke2

2k+1

)
e2kt. On the other hand, e1t = −t = −e∅t. It follows that e2It form

a generating family of Cl(p, q)t. It is, therefore, a basis of Cl(p, q)t, (dimensional-reasons). 2

Remark 3.8. For odd n, there exists two orthogonal primitive idempotent elements t1, t2 of
Cl(p, q) such that P= P 1 ∪P 2 where P k = {xtkx−1;x is an invertible element of Cl(p, q)},
k = 1, 2, with P 1 ∩ P 2 = ∅. In particular t1 and t2 are not conjugated.
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In the rest of this section, we will need to consider Cl0(p, q) (resp Cl1(p, q)), the subspace
of Cl(p, q) spanned by products of even (resp. odd) number of the ei. Notice that Cl(p, q) =
Cl0(p, q)⊕Cl1(p, q) and hence, dim(Cl0(p, q)) = dim(Cl1(p, q)) = 2n−1. The following results
can be used to represent the Dirac-equation in the Minkowski space-time [8].

Proposition 3.9. Let t be the primitive idempotent element of Cl(p, q) given by Formula (3.3). If
n is even and q ≥ 3 then, the following two maps

Cl0(p, q)
ϕ0−→ Cl(p, q)t and Cl1(p, q) ϕ1−→ Cl(p, q)t

defined by multiplication by t from the right are surjective R-linear maps.

Proof. By Proposition 3.7, the R-linear space Cl(p, q)t has basis e2It, ie2It, I ⊂ {1, ..., n2 }.
It easy to see that, e2I or −e2Ie1 is an element of Cl0(p, q) which we denote x, we have ϕ0(x) =
e2It. On the other hand, we have en−2en−1 ∈ Cl0(Cl(p, q)) and so, xen−2en−1 ∈ Cl0(p, q).
Therefore, en−2en−1t(n−2

2 ) = en−2en−1
1
2 (e− ien−2en−1) = it(n−2

2 ), (since q ≥ 3), and so,
en−2en−1t = it. Thus, ϕ0(xen−2en−1) = ie2It. It follows that, ϕ0 is a surjective map. Similarly,
we show that ϕ1 is a surjective map. 2

Corollary 3.10. As R-vector spaces, we have

Cl0(1, 3) ∼= Cl(1, 3)t ∼= Cl1(1, 3) ∼= C4.

Proof. Since, dimR(Cl0(1, 3)) = dimR(Cl1(1, 3)) = dimR(Cl(1, 3)t) = dimR(C4) = 8. Then,
Proposition 3.9 gives the result. 2

4 Rota-Baxter operators on Cl(p, q)

Given an algebra A and a scalar λ in a field F , a linear operator R : A −→ A is called a
Rota-Baxter operator (RB operator, shortly) on A of weight λ if the following identity

R(x)R(y) = R(R(x)y + xR(y) + λxy) (4.1)

holds for all x, y ∈ A. The algebra A is called the Rota-Baxter algebra (RB algebra). The set of
RB on A is noted RB(A).

Example 4.1. 1. Given an algebra A of continuous functions on R, an integration operator
R(f)(x) :=

∫ x
0 f is an RB operator on A of weight zero.

2. consider the algebra of sequences in a F -algebra, with componentwise addition and multi-
plication. Define an operator R : (a1, a2, a3, ..., an, ...) 7−→ (0, a1, a1+a2, ...,

∑
k<n ak, ...).

R is a Rota-Baxter operator of weight 1.

3. A linear map Ra on the polynomial algebra F [x] defined as R(xn) = (xn+1−an+1)
n+1 is an

RB-operator on F [x] of weight zero, for any a ∈ F .

Proposition 4.2. Let A be an associative unital algebra.

1. A linear operator R ∈ RB(A) if and only if I − R ∈ RB(A), where I is the identity map.
In particular, 0, I ∈ RB(A).

2. Let R be an RB operator on A of weight λ. Then −R − λI is an RB operator of weight λ
and the operator λ−1R is an RB operator of weight 1, provided that λ 6= 0.

3. Let R be an RB operator of weight λ on A, and let ψ ∈ Aut(A). Then, Rψ = ψ−1Rψ is an
RB operator on A of weight λ.

Proposition 4.3. Assume that an algebra A is split as a vector space into the direct sum of two
subalgebras A1 and A2; A = A1 ⊕A2. Then

(i) An operatorR defined by the ruleR(x1+x2) = −λx2, x1 ∈ A1, x2 ∈ A2, is an RB operator
on A of weight λ.
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(ii) If A1 and A2 are ideals and R is an RB operator on A of weight λ, then PiR is an is
RB-operator of weight λ on Ai, i = 1, 2. Here Pi denotes the projection from A onto Ai.

(iii) If A1 and A2 are ideals, then for any RB operators Ri on Ai (i=1,2) with a same weight,
the linear map R : (x1, x2) 7−→ (R1(x1), R2(x2)) defines a RB operator on A.
NB: It is not true that every RB on A can be obtained from the above way (see [19]).

Proposition 4.4. Let A be an algebra and R : A −→ A be a linear isomorphism, then R is a
Rota-Baxter operator on A if and only if R−1 is a derivation on A.

Proof. For any x, y ∈ A,R is a Rota-Baxter operator onA if and only ifR(x)R(y) = R(R(x)y+
xR(y)), which is equivalent toR−1(uv) = uR1(v)+R1(u)v, where u = R(x), v = R(y). There-
fore, the conclusion follows. 2

Throughout this section, A denotes the Complex Clifford algebra Cl(p, q), (see Section 3).
Let t1, ..., tr are orthogonal idempotent elements of A such that e = ⊕ri=1ti. Set Aij = tiAtj ,
A0 = ⊕1≤i≤rAii, A− = ⊕1≤i<j≤rAij and A+ = ⊕1≤j<i≤rAij . By Theorem 3.1, we have
A0 = ⊕ri=1C.ti. In the rest of this section we will give some examples and some properties of
RB-operators on A.

Proposition 4.5. (i) For any idempotent element t of A, the map Rt : A −→ A : x 7−→ xt is a
RB operator on A of weight -1.

(ii) If t1, ..., tr are orthogonal idempotent elements of A, then for all k = 1, ..., r, Rk =∑k
i=1 Rti is an RB operator on A of weight -1.

(iii) Let t ∈ A such that t2 = −λt with λ ∈ C. The linear map Rt : x 7−→ xt is an RB operator
on A of weight λ.

(iv) Assume that n is odd. For any RB-operator R on A of weight zero, the operator given by
RΓ(x) = R(xΓ) is an RB-operator on A of weight zero. Here Γ = e1...en, where e1, ..., en
are any generators of A satisfying Relation (3.1).

Proof.

(i) Let t be an idempotent element of A. And let x, y ∈ A. We have Rt(xRt(y) + Rt(x)y −
xy) = ((xRt(y) +Rt(x)y − xy))t = (xyt+ xtyt− xyt) = xtyt = Rt(x)Rt(y). So, Rt is
a RB operator on A of weight -1.

(ii) Let t1, ..., tr are orthogonal idempotent elements of A. Since
∑k
i=1 ti is idempotent and∑k

i=1 Rti = R∑k
i=1 ti

, then, (i) gives the result.

(iii) By the same argument as (i).

(iv) It follows from Identity (4.1). 2

Proposition 4.6. If R0 is an RB-operator of weight λ on A0, then an operator R defined as

R(a− + a0 + a+) = R0(a0)− λa±, a± ∈ A±, a0 ∈ A0,

is an RB-operator on A of weight λ.

Proof. It follows from Formula 4.1. 2

Theorem 4.7. A linear operator R(ti) =
∑r
k=1 aiktk, aik ∈ C, is an RB-operator of weight 1 on

A0 if and only if the following conditions are satisfied:

aikajk = ajiaik + aijajk for i 6= j, aik(aik − 2aii − 1) = 0 for i = j. (4.2)

Proof. For any 1 ≤ i, j ≤ r,

R(ti)R(tj) = R(tiR(tj) +R(ti)tj + titj)

if and only if,
r∑
k=1

aiktk

r∑
l=1

ailtl = R

(
ti

r∑
k=1

ajktk +
r∑
k=1

aiktktj + δijti

)
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if and only if,
r∑
k=1

(
r∑
l=1

aikajltktl

)
= R(ajiti + aijtj + δijti)

if and only if,
r∑
k=1

aikajktk =
r∑
k=1

(ajiaik + aijajk + δijaik) tk

From which (4.2) follows. 2

Example 4.8. 1. For A = Cl(1, 1), we have A0 = C.t1 ⊕ C.t2, (see Example 3.3 (1)). By
conditions (4.2), an operator R0 defined as R0(ti) =

∑
aiktk is a Rota-Baxter operator on

A0 of weight 1 if ,and only if, one of the following cases is true:

a. a11 = a22 = −1 and (a12 = −1, a21 = 0 or a21 = −1, a12 = 0). That is{
R0(t1) = −t1 − t2 and R0(t2) = −t2, or
R0(t1) = −t1 − t2 and R0(t2) = −t1

b. a11 = a22 = 0 and (a12 = 1, a21 = 0, or a21 = 1, a12 = 0). That is{
R0(t1) = t2 and R0(t2) = 0, or
R0(t1) = 0 and R0(t2) = t1

On the other hand, we haveA− = C.t3 andA+ = C.t4 where t3 = e1e2 and t4 = (e1e2−e2).
Proposition 4.5 gives RB-operators on Cl(1, 1) of weight 1. Here, e1, e2 are generators of
A, with relation (3.1).

2. Let us consider A = Cl(1, 3). The following operator is an RB-operator of weight 1 on
A0 = ⊕4

i=1C.ti.

R0(t1) = 0, R0(t2) = −t2, R0(t3) = −t2 − t3, R0(t4) = −t2 − t3 − t4,

where t1, t2, t3 and t4 are defined by example 3.3 (2).
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