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Abstract We consider the class BA of ordered regular semigroups in which each element
has a biggest associate x† = max{y|xyx = x}. We investigate those ordered regular semigroups
with biggest associates that are pointed in the sense, that the classes modulo Green’s relationsR,
L, D have biggest elements which, are idempotent. Such a semigroup is necessarily a semiband.
If the semigroup is also naturally ordered then, it is principally ordered. Generalisations of results
in pointed principally ordered regular semigroups are obtained: (1) description of the subalgebra
of (S,† ) generated by a pair of comparable idempotents that are D-related; (2) those D-classes
which are subsemigroups, are ordered rectangular bands.

1 Introduction

In [2] Blyth and Almeida Santos introduced the class of ordered regular semigroups with biggest
associates in the following way: when, in an ordered semigroup S, for each x ∈ S there exists
x† = max{y ∈ S|xyx = x} we say, that S is an ordered semigroup with biggest associates.
Note that the definition obviously implies that such a semigroup is regular.

We now list the basic properties of the unary operation x → x† in an ordered regular semi-
group with biggest associates S obtained in [2], that we shall require here.

(P1)
(
∀x ∈ S

)
x = xx†x

(P2) every x ∈ S has a biggest inverse, namely x0 = x†xx†

(P3)
(
∀x ∈ S

)
x0 ≤ x†

(P4)
(
∀x ∈ S

)
xx0 = xx† and x0x = x†x

(P5)
(
∀e ∈ E(S)

)
e ≤ e†

(P6)
(
∀e ∈ E(S)

)
e0 ∈ E(S) ⇐⇒ e† ∈ E(S)

(P7)
(
∀x ∈ S

)
x ≤ x00 ≤ x0† = x†† = x†0

(P8)
(
∀x ∈ S

)
x† = x†††

(P9)
(
∀x ∈ S

)
(x†x)†x† = x† = x†(xx†)†

As it is observed in [2], this class is a generalisation of the class of principally ordered regular
semigroups, which was introduced by Blyth and Pinto in [3] and whose basic properties can be
found in [1]. An ordered regular semigroup S is principally ordered, if for each x ∈ S there
exists x∗ = max{y ∈ S|xyx ≤ x}.

In [2], it is remarked that the class of principally ordered regular semigroups PO is strictly
contained in the class of ordered regular semigroup with biggest associates BA. In fact, for every
element x in a principally ordered regular semigroup, its biggest associate x† also exists and it is
equal to x∗.

An important property of a principally ordered regular semigroup S is, that every L-class
[x]L contains a biggest idempotent x∗x, and every R-class [x]R contains a biggest idempotent
xx∗.
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2 Main Theorem

In [4] Blyth and Pinto investigated those principally ordered regular semigroups for which the
classes modulo Green’s relations R, L, D have biggest elements, which are idempotent. In this
paper, we generalise this notion and many of the results in [4] to the class of ordered regular
semigroups with biggest associates.

Theorem 2.1. Let S be an ordered regular semigroup with biggest associates. The following
statements are equivalent:
(1) every L-class has a biggest element which is idempotent;
(2) (∀x ∈ S) x†x = max[x]L;
(3) every R-class has a biggest element which is idempotent;
(4) (∀x ∈ S) xx† = max[x]R;
(5) (∀x ∈ S) x2 ≤ x ≤ x†;
(6) (∀x ∈ S) x† = x†† ∈ E(S);
(7) (∀x ∈ S) x†x†† ≤ x†.

Moreover, if S satisfies any of the above conditions then,
(8) (∀x ∈ S) max[x†]R = x† = x†† = max[x†]L
(9) S is a semiband and Green’s relation H is equality;
(10) x ∈ S is completely regular if and only if, x ∈ E(S).

Proof. (3) =⇒ (4) : By (3) there exists an idempotent e in S such that
e = e2 = max[x]R

Since, ee† is the biggest idempotent in its R-class, we have using (P4) that
(e, ee†) ∈ R =⇒ e ≤ ee† = xx†

which means that xx† = max[x]R.

(4) =⇒ (5) : Since (4) holds for any element in S, we have in particular using (P8) that

(α) x† ≤ x†x†† and x†† ≤ x††x††† = x††x†

Then, using (α) repeatedly we have
x† = x†x††x† ≤ x†x††x†x† ≤ x†x††x†x†x† = x†x†x† ≤ x†x††x†x† = x†x† ≤ x†x††x† = x†

from which we obtain that x†x†x† = x† and therefore x† ≤ x††.
By (4) we have that x ≤ xx†, and therefore on one hand

xx††x ≤ xx†x††x ≤ xx†x††x†x = x = xx†x ≤ xx††x
from which, we obtain x = xx††x which gives us by (P7) that x ≤ x†† ≤ x†.
On the other hand,

x ≤ xx† =⇒ xx ≤ xx†x =⇒ x2 ≤ x
(5) =⇒ (6) : For any x ∈ S we have using (5) repeatedly that

x†x†† ≤ x†x††† = x†x† ≤ x† = x†x††x† ≤ x†x††x†† ≤ x†x†† =⇒ x† = x†x†† ∈ E(S)
We also have that x† ≤ x†† ≤ x††† = x†, which implies that x† = x††.

(6) =⇒ (3) : For any x ∈ S we have using (P7) that
x†x ≤ x†x†† = x†x† = x† =⇒ xx†x ≤ xx† =⇒ x ≤ xx†

Now, considering y ∈ [x]R we have that y = yy†y ≤ yy†y†† = yy†y† = yy† = xx† which gives
us that xx† = max[x]R.

(1) =⇒ (2) =⇒ (5) =⇒ (6) =⇒ (1) : Are proved similarly.

(7) =⇒ (6) : From (7) we have that
x†x†† ≤ x† =⇒ x†x††x† ≤ x†x† =⇒ x† ≤ x†x†

and
x†x†† ≤ x† =⇒ x††x†x††x†† ≤ x††x†x†† =⇒ x††x†† ≤ x††

Replacing x by x† in the last inequality, we obtain that x†††x††† ≤ x††† that is x†x† ≤ x† and
we conclude that x† is an idempotent. From this fact, we obtain x†x†x† = x† and therefore
x† ≤ x††. Replacing x by x† gives x†† ≤ x††† = x†, and therefore x† = x†† which proves (6).
(6) =⇒ (7) : We have that

xx†x††x = xx†x†x = xx†x = x =⇒ x†x†† ≤ x†
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Suppose now that the above conditions are satisfied.

(8) : We have by (6) that x† = x†† ∈ E(S) which implies x† = x††x† and therefore by (4)
x† = x††x††† = max[x††]R = max[x†]R

Dually, we obtain that x† = max[x†]L
(9) : For every x ∈ S we have by (6), that x† is an idempotent and x = xx†x = xx† · x†x,
which means that every element of S is a product of two idempotents, whence S is a semiband.
Moreover, if xHy then

x = xx†x = xx† · x†x = yy† · y†y = yy†y = y

whence H reduces to equality.

(10) : If x ∈ S is completely regular, then there exists x′ ∈ V (x) such that xx′ = x′x. Then, by
(5) x′ = x′xx′ = x′x′x = (x′)2x ≤ x′x from which it follows that

x = xx′x ≤ xx′xx = x2

and consequently x ∈ E(S). The converse is clear.

Definition 2.2. We shall say that an ordered regular semigroup with biggest associates is pointed,
whenever it satisfies any of the seven equivalent properties of Theorem 2.1.

Let us present now some basic properties that hold in such a semigroup.

Theorem 2.3. If S is an ordered regular pointed semigroup with biggest associates then,
(1) (∀x ∈ S) (x†x)† = x† = (xx†)†

(2) (∀x ∈ S) x0 = x00 ∈ E(S)
(3) (∀x ∈ S) x0 = max[xx†]L = max[x†x]R
Proof. Consider a general element x in S.
(1) : We have that

xx† · x† · xx† = x(x†x†) · xx† = xx†xx† = xx† =⇒ x† ≤ (xx†)†

Now, using (P9)
x · (xx†)† · x = xx†x(xx†)†x ≤ xx†x†(xx†)†x = xx†(x†(xx†)†)x = xx†x†x = x

and
x = xx†x ≤ x(xx†)†x

imply that x·(xx†)† ·x = xwhich means that (xx†)† ≤ x† and, therefore (xx†)† = x†. Similarly,
we can see that (x†x)† = x†

(2) and (3) : We have by (1), that
x0 = x†xx† = x†x(x†x)† = max[x†x]R

dually x0 = max[xx†]L. Finally, from (P7) we obtain

x00 = x0†x0x0† = x††x†xx†x†† = x†x†xx†x† = x†xx† = x0

It follows from the definition that in a ordered regular pointed semigroup with biggest asso-
ciates, the classes modulo Green’s relation R and L have biggest elements which, are idempo-
tent. In the next Theorem we show that the same is true for Green’s relation D.

Theorem 2.4. Let S be an ordered regular pointed semigroup with biggest associates. Green’s
relation D is given by

(x, y) ∈ D ⇐⇒ x0 = y0

and x0 = max[x]D.

Proof. Let x and y be D-related elements of S. Since D is the composition of R and L, there
exists z ∈ S such that xLzRy. Then, x†x = z†z and zz† = yy† which imply by Theorem 2.3(3)
that,

x0 = max[x†x]R = max[z†z]R = z0

and similarly
y0 = max[yy†]L = max[zz†]L = z0

from which we conclude that, x0 = y0. Conversely, if x, y ∈ S are such that x0 = y0, then
xLx†xRx0 = y0Lyy†Ry, that is xDy. Consequently, (x, y) ∈ D if and only if, x0 = y0.

Finally, by Theorem 2.1(2,4) x ≤ xx† ≤ x†xx† = x0 and x0 = max[x]D.
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3 Natural Order

The next result is a source of examples of ordered regular pointed semigroups with biggest
associates. With that in mind, we recall that the natural order ≤n on the idempotents of a
regular semigroup is defined by

e ≤n f ⇐⇒ e = ef = fe

and that an ordered regular semigroup (T ;≤) is said to be naturally ordered if, the order ≤
extends the natural order in the sense that if e ≤n f then, e ≤ f . In this case, a fundamental
property (see, for example [1, Theorem 13.11]) is that if e ≤ f then, e = efe. In particular, if T
has a biggest idempotent ξ, then eξe = e, for all e ∈ E(S).

Theorem 3.1. If T is a naturally ordered regular semigroup with a biggest idempotent ξ then,
the semiband 〈E(T )〉 is an ordered regular pointed semigroup with biggest associates.

Proof. We first observe that if ξ is the biggest idempotent of T , it is necessarily the biggest
idempotent of 〈E(T )〉, in fact its biggest element.
Let e = e1e2 · · · en ∈ 〈E(T )〉, with e1, e2, ..., en ∈ E(T ). From the observation previous to this
theorem’s statement we can say that, in particular that e1ξe1 = e1 and consequently,

eξe = e1e2 · · · enξe1e2 · · · en ≤ e1ξ · · · ξξe1e2 · · · en = e1ξe1e2 · · · en = e1e2 · · · en = e

Fitz-Gerald in [5] proved that 〈E(T )〉 is a regular semigroup. Thus, there exists
y = z1z2...zm ∈ 〈E(T )〉,

with z1, z2, · · ·, zm ∈ E(T ) such that
e = eye = e1e2 · · · enz1z2 · · · zme1e2 · · · en ≤ e1e2 · · · enξ · · · ξe1e2 · · · en = eξe

and we conclude that, eξe = e that is, each element of 〈E(T )〉 has a biggest associate more
specifically

(∀e ∈ 〈E(S)〉) e† = ξ

which implies in particular that e ≤ e†.
Furthermore, since ξ is the biggest element of 〈E(T )〉), we have that e1 ≤ ξ and

e2 = e1e2 · · · ene1e2 · · · en = e1e2 · · · ene1e1e2 · · · en = ee1e ≤ eξe = e

Thus, it follows by Theorem 2.1(5) that 〈E(T )〉 is an ordered regular pointed semigroup with
biggest associates.

In the next results we are going to analyse the existence and the effect of the presence of
maximal idempotents or maximal elements, and in particular of a biggest idempotent. We start
with a result in a general ordered regular semigroup with biggest associates.

Lemma 3.2. An ordered regular semigroup with biggest associates has at most, one idempotent
that is a maximal element.

Proof. Let us consider the idempotents e and f and assume, that they are maximal elements of
S. We have that

f(ef)0e · e · f(ef)0e = f(ef)0e =⇒ e ≤ (f(ef)0e)†

and since e is maximal in S, we can conclude that e = (f(ef)0e)†. Similarly, we obtain that
f = (f(ef)0e)†.
Therefore, S has at most one idempotent that is a maximal element.

Theorem 3.3. Let S be an ordered regular pointed semigroup with biggest associates.
(1) An element x ∈ S is a maximal idempotent if and only if, it is a maximal element.
(2) S contains at most a maximal element.

Proof. (1) : Let us assume first, that e is a maximal idempotent of S. If x ∈ S is such that e ≤ x
then, by Theorem 2.1(5 and 6) we have that e ≤ x ≤ x† ∈ E(S), whence by the hypothesis
that e is maximal in E(S) gives e = x = x† which means, that e is a maximal element of S.
Conversely, if x ∈ S is a maximal element of S then, x ≤ x† gives x = x† ∈ E(S).
(2) : By (1) any maximal element of S has to be idempotent. Thus from Lemma 3.2, we can
conclude that such an element if it exists, has to be unique.
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By [2, Theorem 2] an ordered regular semigroup with biggest associates S is naturally or-
dered if and only if, the assignment x → x† is weakly antitone that is, if for any e, f ∈ E(S)
such that e ≤ f we obtain that f† ≤ e†. In this case, it is proved in [2, Theorem 4(2)] that (xx†)†
and (x†x)† are maximal idempotents for all x ∈ S. Using this fact in the case where S is pointed,
we obtain the following characterisation.

Theorem 3.4. Let S be an ordered regular pointed semigroup with biggest associates. The fol-
lowing statements are equivalent:
(1) S is naturally ordered;
(2) S has a biggest idempotent ξ and x† = ξ for every x ∈ S.

Proof. (1) =⇒ (2) : By [2, Theorem 4] we have for all x ∈ S, that (xx†)† and (x†x)† are
maximal idempotents. Therefore, by Theorem 2.3(1) we have that x† is a maximal idempotent
for all x ∈ S. By [2, Theorem 6], there exists in S a biggest idempotent ξ and we can conclude
that, ξ = x† for all x ∈ S.
(2) =⇒ (1) : Let e, f ∈ E(S) be such that e ≤n f . By (2) we have that e† = ξ = f† and we
can conclude that

e = ef = fef ≤ fe†f = ff†f = f

which means that S is naturally ordered.

Corollary 3.5. Let S be an ordered regular pointed semigroup with biggest associates. If S is
naturally ordered then Green’s relations D and J coincide.

Proof. By Theorem 3.4 (x2)† = ξ = x†. Then, x2 = x2(x2)†x2 = x2x†x2 = x3 and, conse-
quently x2 ∈ E(S). Thus, S is a group bound and it follows by [6, Theorem 1.2.20] that D and
J coincide.

Let us now see in the next Theorem the effect of assuming that an ordered regular pointed
semigroup with biggest associates is also, naturally ordered.

In order to obtain our result, we need to recall that a strong Dubreil-Jacotin semigroup (see
for example [1]) is an ordered semigroup S, for which there exists an ordered group G and an
epimorphism f : S → G that is residuated, in the sense that the pre-image under f of every
principal order ideal of G is a principal order ideal of S. In particular, the pre-image of the
negative cone N(G) = {x ∈ G|x ≤ 1} is a principal order ideal ξ↓ = {x ∈ S|x ≤ ξ} of S, the
so-called bimaximum element ξ being equiresidual in the sense that, for every x ∈ S the order
ideals {y ∈ S|xy ≤ ξ} and {y ∈ S|yx ≤ ξ} coincide, and have a greatest element denoted by
ξ : x. When S is regular, the bimaximum element ξ is the biggest idempotent of S and if, e is an
idempotent then, ξ : e = ξ.

Let us recall that PO is a strict subclass of BA. In the pointed situation next Theorem proves,
that these classes coincide if we impose the additional hypothesis that S is naturally ordered.

Theorem 3.6. Let S be an ordered regular pointed semigroup with biggest associates. If S is
naturally ordered then S is principally ordered, in which x∗ = x† for all x ∈ S.

Proof. From Theorem 2.1(6) we have for every x ∈ S, that x† ∈ E(S). We can conclude from
[2, Theorem 6] that S, has a biggest idempotent ξ. From Theorem 3.4 we have that x ≤ x† = ξ,
which allows us to conclude that ξ is the biggest element of S.
Now, for every x ∈ S, we have that

ξx ≤ ξξ = ξ =⇒ ξ ∈ {y ∈ S|yx ≤ ξ}
and

xξ ≤ ξξ = ξ =⇒ ξ ∈ {y ∈ S|xy ≤ ξ}
from which we obtain that ξ is equiresidual with ξ : x = ξ. By [1, Corollary to Theorem 13.4],
S is a strong Dubreil-Jacotin semigroup and therefore by [1, Theorem 13.28] we can conclude
that S is principally ordered.
For any x ∈ S we have that

xx∗x = x =⇒ x∗ ∈ {y ∈ S|xyx = x} =⇒ x∗ ≤ x†
and

xx†x = x =⇒ x† ∈ {y ∈ S|xyx ≤ x} =⇒ x† ≤ x∗

from which we conclude that x∗ = x†.
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Since in an ordered regular semigroup with biggest associates S, the condition of being nat-
urally ordered implies that S is principally ordered, there is not much more to investigate under
this assumption, since as it can be seen in [1], naturally ordered and principally ordered regular
semigroups are already well known and studied.

4 Compacteness and Identity Element

Let us consider now the subset
S† = {x†|x ∈ S}.

This set is related to the subset S0 = {x0|x ∈ S} and to the set C = {x ∈ S|x† = x0} of compact
elements as follows.

Theorem 4.1. If S is an ordered regular pointed semigroup with biggest associates then,
S† = C ∩ S0.

Proof. We have using the identity x†† = x†0 that, S† ⊆ C. Similarly, x† = x††† = x††0 show
that, S† ⊆ S0.
Conversely, if x ∈ C ∩ S0 then, x† = x0 and x = x00 from which we obtain that

x = x00 = x†0 = x†† ∈ S†.

We now recall an example that can be found in [4, Example 1] which illustrates that S† is not
in general a subsemigroup of S.

Example 4.2. Let L be a lattice and consider the cartesian ordered set
L[2] = {(x, y) ∈ L× L|y ≤ x}

With respect to the multiplication defined by
(x, y)(a, b) = (x ∨ a, y ∧ b)

it is clear that L[2] is an ordered band. Since,
(x, y)(a, b)(x, y) = (x, y) ⇐⇒ (x ∨ a, y ∧ b) = (x, y)

we can conclude that a ≤ x and y ≤ b, and therefore (x, y)† = (x, x). Then, each element of
L[2] has a biggest associate and we can write

(L[2])† = {(x, x)|x ∈ L}
The fact that L[2] is a band implies in particular, that it is pointed.
Now,

(x, y)†(a, b)† = (x, x)(a, a) = (x ∨ a, x ∧ a)
which is an element of (L[2])† if and only if, x = a. Thus, (L[2])† is not a subsemigroup of L[2].

In the presence of an identity element 1 in an ordered regular pointed semigroup with biggest
associates S, it is possible to prove that the subset S† is a subsemigroup of S and has an inter-
esting description.

Theorem 4.3. Let S be an ordered regular pointed monoid with biggest associates and identity
element 1. Then,

S† = {x ∈ S|1 ≤ x}
and is a join semilattice in which x ∨ y = xy.

Proof. Let x ∈ S be such that 1 ≤ x. Then,

x† =

{
1x† ≤ xx† ≤ x†x† = x† =⇒ x† = xx†Rx
x†1 ≤ x†x ≤ x†x† = x† =⇒ x† = x†xLx

and therefore (x†, x) ∈ H, which by Theorem 2.1(9) gives us, since H is the equality relation,
that x = x† ∈ S†. Thus, {x ∈ S|1 ≤ x} ⊆ S†. Conversely, if x ∈ S† we have by Theorem 2.1(6)
that x† = x†† is an idempotent. Then,

x† · 1 · x† = x†x† = x† =⇒ 1 ≤ x†† = x†

which means that S† ⊆ {x ∈ S|1 ≤ x} and therefore S† = {x ∈ S|1 ≤ x}. For any elements
of S greater or equal than 1, it is obvious that their product is also greater or equal than 1, which
means that S† is a sub-band of S.
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Now, for any x, y ∈ S†, we immediately have that x = x · 1 ≤ xy and y = 1 · y ≤ xy,
which means that xy is an upper bound of x and y. If z ∈ S is an upper bound of {x, y} then,
1 ≤ x ≤ z implies that z ∈ S†. Thus, xy ≤ zz = z which implies that xy is the join of {x, y}.
Consequently, S† is a join semilattice in which x ∨ y = xy.

Example 4.4. In [4, Example 2] Blyth and Pinto presented a semigroup constructed using the
isotone mappings from a three element chain into itself, preserving the bottom element. It is
denoted by Res 3 and it can be defined by the following Hasse diagram and Cayley table:

u e f g a 0
u u u u g g 0
e u e f g a 0
f f f f a a 0
g u g 0 g 0 0
a f a 0 a 0 0
0 0 0 0 0 0 0

In this semiband, where e is the identity element, every element has a biggest associate namely,
0† = a† = f† = g† = u† = u and e† = e. Clearly, Res 3 is pointed with (Res3)† = {e, u} as a
subsemigroup.

5 D classes

Let us now look more closely to the D classes of an ordered regular pointed semigroup with
biggest associates, S. We first focus on the subalgebra of (S,† ) generated by {e, f} where e, f
are idempotents such that e ≤ f and (e, f) ∈ D.

The next two Theorems were obtained in [4, Theorems 9 and 10] in a pointed principally
ordered regular semigroup and are now generalised to ordered regular pointed semigroup with
biggest associates.

Theorem 5.1. Let S be an ordered regular pointed semigroup with biggest associates and e, f
idempotents of S, such that e ≤ f and eDf . If T is the subalgebra of (S,† ) generated by {e, f}
then T is a band having at most 10 elements. In the case where T has precisely 10 elements it is
represented by the Hasse diagram

in which elements joined by lines of positive slope areR-related, those joined by lines of negative
slope are L-related, and the vertical line also indicates ≤n.

Proof. Since eDf it follows from Theorem 2.4 that e0 = f0 whence using (P7),
e† = e††† = e0†† = f0†† = f††† = f†
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The elements of T are the finite products of the elements e, f and e† (which is equal to f†).
Moreover, since e ≤ f we have that every x ∈ T is such that e ≤ x ≤ e†. By [7, Theorem 7] we
can conclude that e and f are mutually inverses so, we obtain

f = fef ≤ fxf ≤ fe†f = ff†f = f =⇒ fTf = f

e = eee ≤ exe ≤ ee†e = e =⇒ eTe = e

ee† = eee† ≤ exe† ≤ ee†e† = ee† =⇒ eTe† = ee†

ff† = feff† ≤ fxf†f† ≤ fe†f†f† = ff†f†f† = ff† =⇒ fTf† = ff†

ef = eef ≤ exf = eexf ≤ efe†f = eff†f = ef =⇒ eTf = ef

Similarly, we can obtain that e†Te = e†e, f†Tf = f†f and fTe = fe.
Now, in order to conclude what e†Te† is equal to, let us consider an element y in e†Te† which is
of the form y = e†k1k2 · · · kne†, where k1, k2, ..., kn ∈ {e, f, e†}.
We need to consider several cases. If e ∈ {k1, k2, ..., kn} we have

e0 = e†ee† = e†ee · · · ee† ≤ e†k1k2 · · · kne† ≤ e†ee† = e0 =⇒ y = e0

If on the contrary, e /∈ {k1, k2, ..., kn} and also f /∈ {k1, k2, ..., kn} then we have that k1, k2, ..., kn
are all equal to e† and we conclude that y = e†k1k2 · · · kne† = e†.
Finally if e /∈ {k1, k2, ..., kn}, but f ∈ {k1, k2, ..., kn} then

y = e†k1k2 · · · kne† ≤ f†ff† = f0 = e0 = e†ee† ≤ e†k1k2 · · · kne† = y

Therefore, we can conclude that e†Te† = {e0, e†}.
Now, it follows from the above that T is a band that consist of at most 10 elements, with two D
classes De = T \ {e†} and De† = {e†} and is described by the above Hasse diagram.

Example 5.2. Consider the ordered semigroup B2 of 2 × 2 matrices with entries in a boolean
algebra B, where the notation for the basic operations in B is a+ b (for a ∨ b) and ab (for a ∧ b).
With matrix multiplication it is shown in [1] that B2 is a regular semigroup. In [4, Example 3] it
is proved that

〈E(B2)〉 =

{[
a b

c d

]
| bc ≤ ad

}
is a pointed principally ordered regular semigroup with[

a b

c d

]∗
=

[
1 a′ + d′ + b

a′ + d′ + c 1

]
∈ E(B2)

and therefore, we can say that it is an ordered regular pointed semigroup with biggest associates
with [

a b

c d

]†
=

[
1 a′ + d′ + b

a′ + d′ + c 1

]
In B2 the elements

e =

[
a 0
0 0

]
, f =

[
a b

b b

]
where 0 < b < a < 1 are D-related idempotents for which e < f .
It can be verified like in [4, Example 4], that if |B|≥ 8 then, the subalgebra of 〈E(B2)〉 generated
by {e, f} has the Hasse diagram presented in Theorem 5.1.

In the next Theorem, we describe the structure of the D classes that are subsemigroups of an
ordered regular pointed semigroup with biggest associates. Note that in the previous Theorem,
the D class of e, is a subsemigroup of T .

Theorem 5.3. Let S be an ordered regular pointed semigroup with biggest associates. Given
e ∈ E(S) suppose that De is a subsemigroup of S. Then Le0 is a left zero semigroup, Re0 is a
right zero semigroup, and De is isomorphic to the ordered rectangular band Le0 ×Re0 .

Proof. We first note that from Theorem 2.4, two elements of S are D related if and only if,
they have the same biggest inverse and therefore by Theorem 2.1(6), the same biggest associate.
Considering e ∈ E(S) we have that eDe0 since e0 = e00. Let us take any element x in De. We
have by (P7) that
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x ≤ x00 = (x0)0 = (e0)0 = e00 = e0

which means that De has a biggest element e0, in particular it is its biggest idempotent.
If e, f are idempotents in De such that e ≤n f , we have since eDf that e† = f†, which implies

e = fe = fef ≤ fe†f = ff†f = f

and therefore we can conclude that De is a naturally ordered regular semigroup with a biggest
idempotent e0.
For any x, y ∈ De, we have that (xy)0 = e0 = e0e0 = y0x0, from which we conclude by [1,
Theorem 13.18] that e0 is a middle unit of De, that is, xe0y = xy. Now, let us consider an
arbitrary element x in De. Note that

x ∈ Le0 ⇐⇒ x0x = e0 ⇐⇒ x = xx0 ∈ De

and
x ∈ Re0 ⇐⇒ xx0 = e0 ⇐⇒ x = x0x ∈ De

from which we obtain for x, y ∈ Le0 that
xy = xx0y = xe0y = xy0y = xe0 = xx0 = x

and consequently Le0 is a left zero semigroup. Similarly, Re0 is a right zero semigroup, and
therefore we can consider the rectangular band

Le0 ×Re0 = {(xe0, e0y)|x, y ∈ De}
We can then consider the mapping ϑ : De → Le0 × Re0 defined by ϑ(x) = (xe0, e0x), which is
obviously isotone.
For (a, b) ∈ Le0 ×Re0 we have that ab ∈ De and therefore

ϑ(ab) = (abe0, e0ab) = (abb0, a0ab) = (ae0, e0b) = (aa0, b0b) = (a, b)

proves that ϑ is surjective. Moreover, since
ϑ(x) ≤ ϑ(y) ⇐⇒ xe0 ≤ ye0, e0x ≤ e0y ⇐⇒ x = xe0x ≤ ye0y = y

we can conclude that ϑ is an order isomorphism.
Finally, using the fact that e0 is a middle unit of De0 we obtain that ϑ is a morphism:

ϑ(x)ϑ(y) = (xe0, e0x)(ye0, e0y) = (xe0ye0, e0xe0y) = (xye0, e0xy) = ϑ(xy)

Thus, ϑ defines an ordered semigroup isomorphism De ' Le0 ×Re0 .
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