UNIQUENESS THEOREM FOR MEROMORPHIC FUNCTIONS AND DIFFERENTIAL POLYNOMIALS SHARE ONE VALUE WITH FINITE WEIGHT

Rajeshwari S., Husna V., and Nagarjun V.
Communicated by H. M. Srivastava

MSC 2010 Classifications: Primary 30D35
Keywords and Phrases: Uniqueness, Meromorphic functions, Differential Polynomials.

Abstract

In this present research article, we investigate the uniqueness problems of meromorphic functions concerning differential polynomials sharing a value with finite weight and give some results which improves and generalizes the several earlier results of Jin-Dong Li [10].

1 Introduction

Throughout of this article, we shall use the following standard notations of Nevanlinna's Value Distribution Theory such as $T(r, f), m(r, f), N(r, f), \bar{N}(r, f)$ etc... see Haymann [1], Yang [2], and Yi and Yang [3]. A meromorphic function $g(z)$ is said to be rational if and only if $T(r, g)=O(\log r)$, otherwise, $g(z)$ is called a transcendental meromorphic function. Let $f(z)$ be transcendental meromorphic function, defined in the complex plane \mathbb{C}. We denote by $S(r, f)$ any quantity satisfying

$$
S(r, f)=o\{T(r, f)\}, \text { as } r \longrightarrow \infty, r \notin E
$$

where E is a subset of positive real numbers of finite linear measure, not necessarily the same at each occurence.

For any constant a we define,

$$
\Theta(a, f)=1-\varlimsup_{r \rightarrow \infty} \frac{\bar{N}\left(r, \frac{1}{f-a}\right)}{T(r, f)} .
$$

where $\bar{N}\left(r, \frac{1}{f-a}\right)$ is the reduced counting function which counts zeros of $f(z)-a$ in $|z| \leq$ r, counted only once. Let $f(z)$ and $g(z)$ be non-constant two meromorphic functions. Let a be any finite complex number. If $f(z)-a$ and $g(z)-a$ have the same zeros with the same multiplicities then we say that $f(z)$ and $g(z)$ share the value $a \mathrm{CM}$ (Counting Multiplicities) and we say that $f(z)$ and $g(z)$ share the value a IM (Ignoring Multiplicity) if we do not consider the multiplicities.

Definition 1.1. (see [12]) A meromorphic function $b(z)(\not \equiv 0, \infty)$ defined in \mathbb{C} is called a "small function" with respect to $f(z)$ if $T(r, b(z))=S(r, f)$.

Definition 1.2. (see [12]) Let k be a positive integer, for any constant a in the complex plane \mathbb{C}. We denote
(i) by $N_{k)}\left(r, \frac{1}{f-a}\right)$ the counting function of a-points of $f(z)$ with multiplicity $\leq k$.
(ii) by $N_{(k}\left(r, \frac{1}{f-a}\right)$ the counting function of a-points of $f(z)$ with multiplicity $\geq k$.

Similarly, the reduced counting functions $\bar{N}_{k)}\left(r, \frac{1}{f-a}\right)$ and $\bar{N}_{(k}\left(r, \frac{1}{f-a}\right)$ are defined.

Recently, Jin-Dong Li [10] proved the following theorems.
Theorem 1.3. (see [10]) Let $f(z)$ and $g(z)$ be two non-constant meromorphic functions, and let n, k be two positive integers with $n>3 k+11$. If $\Theta(\infty, f)>\frac{2}{n},\left[f^{n}(z)(f(z)-1)\right]^{(k)}$ and $\left[g^{n}(z)(g-1)\right]^{(k)}$ share $1(1,2)$ then $f(z) \equiv g(z)$ or $\left[f^{n}(z)(f(z)-1)\right]^{(k)}\left[g^{n}(z)(g(z)-1)\right]^{(k)} \equiv 1$.

Theorem 1.4. (see [10]) Let $f(z)$ and $g(z)$ be two non-constant meromorphic functions, and let n, k be two positive integers with $n>5 k+14$. If $\Theta(\infty, f)>\frac{2}{n}$, $\left[f^{n}(z)(f(z)-1)\right]^{(k)}$ and $\left[g^{n}(z)(g(z)-1)\right]^{(k)}$ share $1(1,1)$ then $f(z) \equiv g(z)$ or $\left[f^{n}(z)(f(z)-1)\right]^{(k)}\left[g^{n}(z)(g(z)-1)\right]^{(k)} \equiv$ 1.

Now, we generalize the above results and obtained the following theorems.
Theorem 1.5. Let $f(z)$ and $g(z)$ be two non-constant meromorphic functions, $P(f)$ and $P(g)$ be a polynomials of degree m and let n, k be two positive integers with $t(n+m)>3 k+8$. If $\Theta(\infty, f)>\frac{2}{n+m},\left[f^{n} P(f)\right]^{(k)}$ and $\left[g^{n} P(g)\right]^{(k)}$ share $1(1,2)$, then either $\left[f^{n} P(f)\right]^{(k)}\left[g^{n} P(g)\right]^{(k)} \equiv$ 1 or $f(z)$ and $g(z)$ satisfy the algebraic equation $R(f, g)=0$ where

$$
R\left(w_{1}, w_{2}\right)=w_{1}^{m}\left(a_{m} w_{1}^{m}+a_{m-1} w_{1}^{m-1}+\ldots+a_{0}\right)-w_{2}^{m}\left(a_{m} w_{2}^{m}+a_{m-1} w_{2}^{m-1}+\cdots+a_{0}\right)
$$

Theorem 1.6. Let $f(z)$ and $g(z)$ be a non-constant meromorphic functions, $P(f)$ and $P(g)$ be a polynomials of degree m and let n, k be two positive integers with $t(n+m)>5 k+$ 10. If $\Theta(\infty, f)>\frac{2}{n+m}$, [$\left.f^{n} P(f)\right]^{(k)}$ and $\left[f^{n} P(f)\right]^{(k)}$ share $1(1,1)$ then $f(z) \equiv g(z)$ or $\left[f^{n} P(f)\right]^{(k)}\left[g^{n} P(g)\right]^{(k)} \equiv 1$.

2 Some Lemmas

To prove our result we need the following Lemmas.
Lemma 2.1. (see [1]) Let $f(z)$ be a non-constant meromorphic function, and let $a_{0}, a_{1}, \ldots, a_{n}$ be finite complex numbers such that $a_{n} \neq 0$. Then

$$
T\left(r, a_{n} f^{n}+a_{n-1} f^{n-1}+\ldots+a_{0}\right)=n T(r, f)+S(r, f)
$$

Lemma 2.2. (see [1]) Let $f(z)$ be a non-constant meromorphic function and k be a positive integer and c a non-zero finite complex number. Then

$$
\begin{aligned}
T(r, f) & \leq \bar{N}(r, f)+N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f^{(k)}-c}\right)-N\left(r, \frac{1}{f^{(k+1)}}\right)+S(r, f) \\
& \leq \bar{N}(r, f)+N_{k+1}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f^{(k)}-c}\right)-N_{0}\left(r, \frac{1}{f^{(k+1)}}\right)+S(r, f)
\end{aligned}
$$

where $N_{0}\left(r, \frac{1}{f^{(k+1)}}\right)$ is the counting function which only counts those points such that $f^{(k+1)}=0$ but note that $f\left(f^{(k)}-c\right) \neq 0$.

Lemma 2.3. (see [8]) Let $f(z)$ be a non-constant meromorphic function, and let k be a positive integer. Suppose that $f^{(k)} \not \equiv 0$, then

$$
N\left(r, \frac{1}{f^{(k)}}\right) \leq N\left(r, \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f)
$$

Lemma 2.4. (see [11]) Let $f(z)$ be a non-constant meromorphic function and s, k be any two positive integers. Then

$$
N_{s}\left(r, \frac{1}{f^{(k)}}\right) \leq k \bar{N}(r, f)+N_{s+k}\left(r, \frac{1}{f}\right)+S(r, f)
$$

Clearly, $\bar{N}\left(r, \frac{1}{f^{(k)}}\right)=N_{1}\left(r, \frac{1}{f^{(k)}}\right)$.

Lemma 2.5. (see [1]) Let $f(z)$ be a transcendental meromorphic function, and let $a_{1}(z), a_{2}(z)$ be two meromorphic functions such that $T\left(r, a_{i}\right)=S(r, f), i=1,2 \ldots, n$. Then

$$
T(r, f) \leq \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f-a_{1}}\right)+\bar{N}\left(r, \frac{1}{f-a_{2}}\right)+S(r, f)
$$

Lemma 2.6. (see [10]) Let $f(z)$ and $g(z)$ be two non-constant meromorphic functions, and let $k \geq 1, l \geq 1$ be two positive integers. Suppose that $f^{(k)}$ and $g^{(k)}$ share $(1, l)$,
(i) If $l=2$ and

$$
\Delta_{1}=2 \Theta(\infty, f)+(k+2) \Theta(\infty, g)+\Theta(0, f)+\Theta(0, g)+\delta_{k+1}(0, f)+\delta_{k+1}(0, g)>k+7
$$

then either $f^{(k)} g^{(k)} \equiv 1$ or $f(z) \equiv g(z)$.
(ii) If $l=1$ and
$\Delta_{2}=(k+3) \Theta(\infty, f)+(k+2) \Theta(\infty, g)+\Theta(0, f)+\Theta(0, g)+2 \delta_{k+1}(0, f)+\delta_{k+1}(0, g)>2 k+9$.
then either $f^{(k)} g^{(k)} \equiv 1$ or $f(z) \equiv g(z)$.

3 Proof of Theorems

Proof of Theorem 1.5.

Proof. Let $F(z)=f^{n} P(f)$ and $G(z)=g^{n} P(g)$. We have from Lemma 2.6,

$$
\begin{align*}
& \Delta_{1}=2 \Theta(\infty, f)+(k+2) \Theta(\infty, g)+\Theta(0, f)+\Theta(0, g)+\delta_{k+1}(0, f)+\delta_{k+1}(0, g) . \tag{3.1}\\
& \bar{N}\left(r, \frac{1}{F}\right)=\bar{N}\left(r, \frac{1}{f^{n} P(f)}\right) \leq \frac{1}{t(n+m)} N\left(r, \frac{1}{F}\right) \leq \frac{1}{t(n+m)}(T(r, F)+O(1)) \tag{3.2}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
\Theta(0, f)=1-\varlimsup_{r \rightarrow \infty} \frac{N\left(r, \frac{1}{f}\right)}{T(r, f)} \geq 1-\frac{1}{t(n+m)} \tag{3.3}
\end{equation*}
$$

Similarly,

$$
\begin{align*}
\delta_{k+1}(0, g) & \geq 1-\frac{k+1}{t(n+m)} \tag{3.4}\\
\delta_{k+1}(0, f) & \geq 1-\frac{k+1}{t(n+m)} \tag{3.5}\\
\Theta(\infty, f) & \geq 1-\frac{1}{t(n+m)} \tag{3.6}\\
\Theta(\infty, g) & \geq 1-\frac{1}{t(n+m)} \tag{3.7}
\end{align*}
$$

From the inequalities (3.3)-(3.7), we get,

$$
\begin{align*}
\Delta_{1} & \geq 2\left(1-\frac{1}{t(n+m)}\right)+(k+2)\left(1-\frac{1}{t(n+m)}\right)+\left(1-\frac{1}{t(n+m)}\right)+\left(1-\frac{1}{t(n+m)}\right) \\
& +2\left(1-\frac{k+1}{t(n+m)}\right) . \tag{3.8}
\end{align*}
$$

Since $t(n+m)>3 k+8$, we get $\Delta_{1}>k+7$. Considering that $F^{(k)}$ and $G^{(k)}$ share $(1,2)$, then by Lemma 2.6 we deduce that either $F^{(k)} G^{(k)} \equiv 1$ or $F \equiv G$.

Next, we consider the following two cases.
Case 1. $F^{(k)} G^{(k)} \equiv 1$, that is

$$
\begin{equation*}
\left[f^{n} P(f)\right]^{(k)}\left[g^{n} P(f)\right]^{(k)} \equiv 1 \tag{3.9}
\end{equation*}
$$

Case 2. $F \equiv G$, that is

$$
\begin{equation*}
f^{n} P(f)=g^{n} P(g) \tag{3.10}
\end{equation*}
$$

Suppose that $f \not \equiv g$, then we consider following two cases:
(i) Let $h=\frac{f}{g}$ be a constant. Then from (3.10) it follows that $h^{n} \neq 1, h^{n+m} \neq 1, h^{n+m-1} \neq 1$ and $a_{m} g^{n+m}\left(1-h^{n+m}\right)+\ldots+a_{0} g^{n}\left(1-h^{n}\right)=0$ which implies $h^{d}=1$ where $d=(n+m, n+$ $m-i \ldots n), a_{m-i} \neq 0$, for some $i=0,1 \ldots m$.
(ii) If h is not constant, then we know by (3.10) that f and g satisfy the algebraic equation $R(f, g)=0$, where

$$
R\left(w_{1}, w_{2}\right)=w_{1}^{m}\left(a_{m} w_{1}^{m}+a_{m-1} w_{1}^{m-1}+\ldots+a_{0}\right)-w_{2}^{m}\left(a_{m} w_{2}^{m}+a_{m-1} w_{2}^{m-1}+\ldots+a_{0}\right)
$$

It follows that,

$$
T(r, f)=T(r, g h)=(n+m) T(r, h)+S(r, f)
$$

On the other hand, by the second fundamental theorem of Nevanlinna we get,

$$
\bar{N}(r, f)=\sum_{j=1}^{N} \bar{N}\left(r, \frac{1}{h-a_{j}}\right) \geq(n+m-2) T(r, h)+S(r, f)
$$

where $a_{j}(\neq 1)(j=1,2 \ldots, n)$ are the distinct roots of the algebraic equation $h^{n+m}=1$. So, we have

$$
\begin{aligned}
\Theta(\infty, f) & =1-\varlimsup_{r \rightarrow \infty} \frac{\bar{N}(r, f)}{T(r, f)} \\
& \leq 1-\varlimsup_{r \rightarrow \infty} \frac{(n+m-2) T(r, g)+S(r, g)}{(n+m) T(r, h)} \\
& \leq 1-\frac{n+m-2}{n+m} \\
& \leq \frac{2}{n+m}
\end{aligned}
$$

which contradicts to the assumption that $\Theta(\infty, f)>\frac{2}{n+m}$. Thus $F \equiv G$. Hence the proof of Theorem 1.5.

Proof of Theorem 1.6.

Proof. From (3.3)-(3.7) and by Lemma 2.6, we get,

$$
\begin{aligned}
\Delta_{2} & \geq(k+3)\left(1-\frac{1}{t(n+m)}\right)+(k+2)\left(1-\frac{1}{t(n+m)}\right)+\left(1-\frac{1}{t(n+m)}\right)+\left(1-\frac{1}{t(n+m)}\right) \\
& +2\left(1-\frac{k+1}{t(n+m)}\right)+\left(1-\frac{k+1}{t(n+m)}\right)
\end{aligned}
$$

On simplyfying, the above expression, we get,

$$
\Delta_{2} \geq 5 k+10-\frac{5 k+10}{t(n+m)}
$$

Since $t(n+m)>5 k+10$, we get $\Delta_{1}>2 k+9$. Considering that $F^{(k)}$ and $G^{(k)}$ share $(1,1)$ then by Lemma 2.6, we deduce that either $F^{(k)} G^{(k)} \equiv 1$ or $F \equiv G$. Next, by proceeding as in Theorem 1.5, we obtain the conclusion of Theorem 1.6. Here we omit the details.

References

[1] W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
[2] L. Yang, Value distribution theory, translated and revised from the 1982 Chinese original, Springer-Verlag, Berlin, 1993.
[3] H. X. Yi and C. C. Yang, Uniqueness theory of Meromorphic functions, Science press Beijing, China, 1995.
[4] C. Y. Fang and M. L. Fang, Uniqueness of meromorphic functions and differential polynomials, Comput. Math. Appl. 44 (2002), no. 5-6, 607-617.
[5] M. L. Fang, Uniqueness and value-sharing of entire functions, Comput. Math. Appl. 44 (2002), no. 5-6, 823-831.
[6] L. Liu, Uniqueness of meromorphic functions and differential polynomials, Comput. Math. Appl. 56 (2008), no. 12, 3236-3245.
[7] W. C. Lin and H. X. Yi, Uniqueness theorems for meromorphic function, Indian J. Pure Appl. Math. 35 (2004), no. 2, 121-132.
[8] S. S. Bhoosnurmath and R. S. Dyavanal, Uniqueness and value-sharing of meromorphic functions, Comput. Math. Appl. 53 (2007), no. 8, 1191-1205.
[9] I. Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya mathematical journal vol. 161, pp 193-206, 2001.
[10] J. D. Li, Uniqueness of meromorphic functions and differential polynomials, Int. J. Math. Math. Sci. 2011, Art. ID 514218, 12 pp.
[11] T. Zhang and W. Lü, Uniqueness theorems on meromorphic functions sharing one value, Comput. Math. Appl. 55 (2008), no. 12, 2981-2992.
[12] S. S. Bhoosnurmath, B. Chakraborty and H. M. Srivastava, A note on the value distribution of differential polynomials, Commun. Korean Math. Soc. 34 (2019), no. 4, pp.1145-1155.
[13] V. Husna, S. Rajeshwari and S. H. Naveen Kumar, A note on uniqueness of transcendental entire functions concerning differential-difference polynomials of finite order, Electron. J. Math. Anal. Appl. 9 (2021), no. 1, 248-260.
[14] V. Husna, Results on difference polynomials of an entire function and its kth derivative shares a small function J. Phys.: Conf. Ser. 1597 (2020), 012026.
[15] P.W. Harina, V. Husna, Results on uniqueness of product of certain type of difference polynomials, Adv. Stud. Contemp. Math. 31 (2021), 67-74.
[16] Husna V. and Veena, Results on meromorphic and entire functions sharing CM and IM with their difference operators, J.Math.Comput. Sci.11(2021),No.4, 5012-5030.
[17] Husna V., Some results on uniqueness of meromorphic functions concerning differential polynomials, The Journal of Analysis, Vol. 29 April(2021).
[18] V. Husna, S. Rajeshwari and S.H. Naveen Kumar, Results on Uniqueness of product of certain type of shift polynomials, Poincare J. Anal. Appl. 7 (2020), 197-210.

Author information

Rajeshwari S., Husna V., and Nagarjun V.,
Corresponding author: Husna V.
Department of Mathematics, School of Engineering, Presidency University, Itgalpura, Rajanukunte, Yelahanka, Bengaluru-560 064, INDIA.
E-mail: rajeshwaripreetham@gmail.com, rajeshwari.s@presidencyuniversity.in
husnav43@gmail.com, husna@presidencyuniversity.in
phalguniar jun95@gmail.com
Received: July 23, 2020.
Accepted: June 3, 2021

