Selberg Type Inequalities in 2-*-semi inner product space and its applications

Nordine Bounader
Communicated by H. M. Srivastava

MSC 2010 Classifications: 46L08, 47A63, 46C59, 46C50 .
Keywords and phrases: Selberg's inequality, $2^{*}-$ semi inner product space, Bessel inequality, Cauchy-Schwarz inequality.

The authors would like to thank the editor Ayman Badawi and the Professor H. M. Srivastava for their valuable comments and suggestions, which improved the quality of my paper.

Abstract. In this paper, we prove a type of Selberg type inequality in a $2-^{*}-$ semi inner product A-module over a C^{*}-algebra A.

1 Introduction and Preliminaries

The theory of 2-metric space and linear 2-normed space were first introduced by Gahler in 1963 [13]. Since then, many authors, Freese et al. Gahler, Cho et al., and Gunamwan et al., have developed extensively topogical and geometric structures of 2-inner product spaces, 2-normed spaces, 2-metric spaces, semi-2-normed spaces, semi-2-metric spaces (see[7, 14, 17, 20, 21, 22]).
The finitely generated modules equipped with inner products over a C^{*}-algebra was first considered by Mallios [19]. Recently, meany researchers have studied geometric properties of Hilbert C^{*}-modules and 2^{*}-semi inner product A-module spaces. For example, Dragomir, Khorsavi and Moslehian [5], K. Kubo, F. Kubo and Y. Seo [18] showed several variants of the Selberg inequality and these generalizations in the framework of a Hilbert C^{*}-modules. B. Mohebbi Najmabadi and T. L. Shateri [21] showed several variants of the Cauchy Schwarz inequality in the framework of a $2-^{*}$-semi inner product A-module over C^{*}-algebra. We showed in $[2,16]$ the Selberg inequality and its generalisation in a Hilbert C^{*}-modules. The aim of the paper is to extend the Selberg inequality from Hilbert spaces and Hilbert C^{*}-module spaces to 2^{*}-semi inner product A-module spaces over a C^{*}-algebra A. Which is a simultaneous extensions of the Cauchy-Schwartz inequality, the Bessel inequality, the Bombieri inequality and the BoasBellman inequality in a 2 -* * - inner product A-module over a C^{*}-algebra A. Moreover we gave a $2-^{*}$-semi inner product A-module over a C^{*}-algebra version of a refinement of the Selberg inequality.
First we recall some definitions and we review some inequalities.
Definition 1.1. Let A be a C^{*}-algebra with unit. An element $a \in A$ is positive and we write $a \geq 0$, if $a=a^{*}$ and $S p(a)=\{\lambda \mid a-\lambda I$ is not invertible $\} \subseteq \mathbb{R}_{+}$. The set of all positive elements of A is denoted by A^{+}. If $a, b \in A$ then $a \leq b$ means that $b-a \in A^{+}$.
For every $a \in A$, we denoted the absolute value of a by $|a|=\left(a^{*} a\right)^{\frac{1}{2}}$.

Definition 1.2. [19]A complex linear space X is said to be an inner product A-module (or preHilbert A-module) if X is a right A-module together with a C^{*}-valued map $(x, y) \rightarrow\langle x, y\rangle$: $X \times X \rightarrow A$ such that
(i) $\langle x, \alpha y+\beta z\rangle=\alpha\langle x, y\rangle+\beta\langle x, z\rangle$ for all $x, y, z \in X, \alpha, \beta \in \mathbb{C}$
(ii) $\langle x, y a\rangle=\langle x, y\rangle a$ for all $x, y, \in X, a \in A$
(iii) $\langle x, y\rangle=\langle y, x\rangle^{*}$ for all $x, y, \in X$,
(iv) $\langle x, x\rangle \geq 0$ for all $x \in X$, and $\langle x, x\rangle=0$ then $x=0$.

We alwas assume that the linear structures of A and X are compatible. We write $\|x\|=$
$\|\langle x, x\rangle\|^{\frac{1}{2}}$, where the latter norm denotes the C^{*}-norm of A. If an linear product A-module X is complete with respect to its norm, then X is called C^{*}-module.

Definition 1.3. Let X be a right A-module were A is a C^{*}-algebra. An A-combination of $x_{1}, x_{2}, \ldots x_{n}$ in X is written as follows:

$$
\sum_{1}^{n} x_{i} a_{i}=x_{1} a_{1}+x_{2} a_{2}+x_{n} a_{n}, a_{i} \in A
$$

and $x_{1}, x_{2}, \ldots x_{n}$ are called A-independent if the equation $x_{1} a_{1}+x_{2} a_{2}+x_{n} a_{n}=0$ has exactly one solution, namely $a_{1}=a_{2}=\ldots=a_{n}=0$; otherwise, we say $x_{1}, x_{2}, \ldots x_{n}$ are A-dependent. The maximum number of element in X, that are A-independent, is called A-rank of X.

Definition 1.4. [21] Let A be a C^{*}-algebra and X be a linear space by A-rank greater than 1 , which is also a right A-module. We define a function $\langle., \mid\rangle:. X \times X \times X \rightarrow A$, which satisfies the following properties:
$\left(T_{1}\right)\langle x, x \mid y\rangle=0$ if only if $x=y a$ for $a \in A$;
$\left(T_{2}\right)\langle x, x \mid y\rangle \geq 0$ for all $x, y \in X$;
$\left(T_{3}\right)\langle x, x \mid y\rangle=\langle y, y \mid x\rangle$ for all $x, y \in X$:
$\left(T_{4}\right)\langle x, y \mid z\rangle=\langle y, x \mid z\rangle^{*}$ for all $x, y, z \in X$:
$\left(T_{5}\right)\langle x a, y b \mid z\rangle=a^{*}\langle x, y \mid z\rangle b$ for all $x, y, z \in X$ and $a, b \in A$:
$\left(T_{6}\right)\langle\alpha x, y \mid z\rangle=\bar{\alpha}\langle x, y \mid z\rangle$ for all $x, y, z \in X$ and $\alpha \in \mathbb{C}$;
$\left(T_{7}\right)\langle x+y, z \mid w\rangle=\langle x, z \mid w\rangle+\langle y, z \mid w\rangle$ for all $x, y, z, w \in X$.
Then the fonction $\langle., . \mid$.$\rangle is called 2-^{*}$-inner product and $(X,\langle., . \mid\rangle$.$) is called 2-^{*}$-inner product space. If X satisfies all conditions for a $2-^{*}$-inner product except the second part of condition $\left(T_{1}\right)$, then we call X is 2^{*}-semi inner product space.

Example 1.5. [21] Let A be an unital commutative C^{*} - algebra and X be a pre-Hilbert A-module with inner product $\langle., . \mid$.$\rangle . Define$
$\langle., . \mid\rangle:. X \times X \times X \rightarrow A$ by $\langle x, y \mid z\rangle=\langle x, y\rangle\langle z, z\rangle-\langle x, z\rangle\langle z, y\rangle$.
Then $(X,\langle., . \mid\rangle$.$) is a 2^{*}-$ semi inner product space.
Sine $\langle x, x \mid z\rangle$ is positive element in A, there is a positive square root of $\langle x, x \mid z\rangle$ denoted by $|x, z|$ and $\|x, z\|=\|\langle x, x \mid z\rangle\|^{\frac{1}{2}}$.

The Selberg type inequality. Let y_{1}, \ldots, y_{n} be nonzero vectors in a Hilbert space X with inner product \langle,$\rangle . Then, for all x \in X$,

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{\left|\left\langle x, y_{j}\right\rangle\right|^{2}}{\sum_{k=1}^{n}\left|\left\langle y_{j}, y_{k}\right\rangle\right|} \leq\|x\|^{2} \tag{1.1}
\end{equation*}
$$

In [8], the Selberg inequality is refined as follows: if $\left\langle y, y_{j}\right\rangle=0$ for given $\left\{y_{j}\right\}$, then

$$
\begin{equation*}
|\langle x, y\rangle|^{2}+\sum_{j=1}^{n} \frac{\left|\left\langle x, y_{j}\right\rangle\right|^{2}}{\sum_{k=1}^{n}\left|\left\langle y_{j}, y_{k}\right\rangle\right|}\|y\|^{2} \leq\|x\|^{2}\|y\|^{2} \tag{1.2}
\end{equation*}
$$

holds for all $x \in X$.
It might be useful to observe that, out of (1.1), one may get the following inequality

1. For $n=1$ and $y=y_{1}$ the Cauchy-Schwarz inequality

$$
\begin{equation*}
\langle x, y\rangle \leq\|x \mid\|\|y\| . \tag{1.3}
\end{equation*}
$$

2. For y_{1}, \ldots, y_{n}, be orthogonal sequence of vectors, the Bessel inequality

$$
\begin{equation*}
\sum_{j=1}^{n}\left|\left\langle x, y_{j}\right\rangle\right|^{2} \leq\|x\|^{2} \tag{1.4}
\end{equation*}
$$

3 The Bonbieri inequality

$$
\begin{equation*}
\sum_{j=1}^{n}\left|\left\langle x, y_{j}\right\rangle\right|^{2} \leq\|x\|^{2} \max _{1 \leq j \leq n} \sum_{k=1}^{n}\left|\left\langle y_{j}, y_{k}\right\rangle\right| . \tag{1.5}
\end{equation*}
$$

4 The Boas-Bellman inequality in [4]

$$
\begin{equation*}
\sum_{j=1}^{n}\left|\left\langle x, y_{j}\right\rangle\right|^{2} \leq\|x\|^{2}\left(\max _{1 \leq j \leq n}\left\|y_{j}\right\|^{2}+(n-1) \max _{j \neq k}\left|\left\langle y_{j}, y_{k}\right\rangle\right|\right) . \tag{1.6}
\end{equation*}
$$

The following lemma is useful to prove the Selberg inequality in a $2-*$-semi inner product A-module over a C^{*}-algebra A.
Lemma 1.6. [18]
If $a \in A$, then the operator matrix on $A \oplus A$

$$
B=\left(\begin{array}{cc}
\left|a^{*}\right| & -a \\
-a^{*} & |a|
\end{array}\right)
$$

is positive, and $\binom{\xi}{\nu} \in N(B)$ if only if $\left|a^{*}\right| \xi=a \nu$ where $N(B)$ is the kernel of B.

2 MAIN RESULT

Lemma 2.1. Let be X a 2 -* *-semi inner product over a C^{*}-algebra A. If $x, y_{1}, \ldots, y_{n}, z \in X$ then

$$
\left(\begin{array}{ccc}
\left\langle y_{1}, y_{1} \mid z\right\rangle & \cdots & \left\langle y_{1}, y_{n} \mid z\right\rangle \tag{2.1}\\
& \ddots & \\
\left\langle y_{n}, y_{1} \mid z\right\rangle & \cdots & \left\langle y_{n}, y_{n} \mid z\right\rangle
\end{array}\right) \leq\left(\begin{array}{ccc}
\sum_{j=1}^{n}\left|\left\langle y_{j}, y_{1} \mid z\right\rangle\right| & & 0 \\
& \ddots & \\
0 & & \sum_{j=1}^{n}\left|\left\langle y_{j}, y_{n} \mid z\right\rangle\right|
\end{array}\right)
$$

Proof. We put $N=\left(\begin{array}{lll}\left\langle y_{1}, y_{1} \mid z\right\rangle & \cdots & \left\langle y_{1}, y_{n} \mid z\right\rangle \\ & \ddots & \\ \left\langle y_{n}, y_{1} \mid z\right\rangle & \cdots & \left\langle y_{n}, y_{n} \mid z\right\rangle\end{array}\right)$ and
$M=\left(\begin{array}{ccc}\sum_{j=1}^{n}\left|\left\langle y_{j}, y_{1} \mid z\right\rangle\right| & & 0 \\ 0 & \ddots & \\ 0 & & \sum_{j=1}^{n}\left|\left\langle y_{j}, y_{n} \mid z\right\rangle\right|\end{array}\right)$.
We have
$\left.M-N=\left(\begin{array}{ccc}\sum_{j=1}^{n}\left|\left\langle y_{j}, y_{1} \mid z\right\rangle\right|-\left\langle y_{1}, y_{1} \mid z\right\rangle & & -\left\langle y_{1}, y_{n} \mid z\right\rangle \\ -\left\langle y_{n}, y_{1} \mid z\right\rangle & \ddots & \\ & & \sum_{j=1}^{n}\left|\left\langle y_{j}, y_{n} \mid z\right\rangle\right|-\end{array}\left\langle y_{n}, y_{n} \mid z\right\rangle\right\rangle\right)$
then $M-N$ is the following form:
$\sum_{i, j=1}^{n}\left(\begin{array}{llll}0 & & & 0 \\ & \left|\left\langle y_{j}, y_{i} \mid z\right\rangle\right| & -\left\langle y_{i}, y_{j} \mid z\right\rangle & \\ & -\left\langle y_{j}, y_{i} \mid z\right\rangle & \left|\left\langle y_{i}, y_{j} \mid z\right\rangle\right| & \\ 0 & & & 0\end{array}\right)$
and for each pair $i, j, M-N$ it positive by lemma (1.6).
Now, we show the following Selberg type inequality in a 2 -* -semi inner product over a C^{*}-algebra.

Theorem 2.2. Let A be a $C^{*}-$ algebra and X be a 2 -* *-semi inner product over the C^{*}-algebra A. If $x, y_{1}, \ldots, y_{n}, z$ are nonzero vectors in X such that $\left|y_{1}, z\right|, \ldots,\left|y_{n}, z\right|$ are invertible, then

$$
\begin{equation*}
\sum_{i=1}^{n}\left\langle x, y_{i} \mid z\right\rangle\left(\sum_{j=1}^{n}\left|\left\langle y_{j}, y_{i} \mid z\right\rangle\right|\right)^{-1}\left\langle y_{i}, x \mid z\right\rangle \leq|x, z|^{2} . \tag{2.2}
\end{equation*}
$$

The equality in(2.2) holds if only if $x=\sum_{i=1}^{n} y_{i} a_{i}$ for some $a_{i} \in A$ and $i=1, \ldots, n$ such that for arbitrary $i \neq j,\left\langle y_{i}, y_{j} \mid z\right\rangle=0$ or $\left|\left\langle y_{j}, y_{i} \mid z\right\rangle\right| a_{i}=\left\langle y_{i}, y_{j} \mid z\right\rangle a_{j}$.

Proof. We put $a_{i}=\sum_{j=1}^{n}\left|\left\langle y_{j}, y_{i} \mid z\right\rangle\right|$ for $i=1, \ldots, n$. Since $\left|y_{1}, z\right|, \ldots,\left|y_{n}, z\right|$ are invertible, it follows that a_{i} is invertible in A. It follows from lemma (2.1) that
$\sum_{1 \leq i, j \leq n}\left\langle x, y_{i} \mid z\right\rangle a_{i}^{-1}\left\langle y_{i}, y_{j} \mid z\right\rangle a_{j}^{-1}\left\langle y_{j}, x \mid z\right\rangle$
$=\left(\left\langle x, y_{1} \mid z\right\rangle a_{1}^{-1} \ldots\left\langle x, y_{n} \mid z\right\rangle a_{n}^{-1}\right)\left(\begin{array}{ccc}\left\langle y_{1}, y_{1} \mid z\right\rangle & \cdots & \left\langle y_{1}, y_{n} \mid z\right\rangle \\ & \ddots & \\ \left\langle y_{n}, y_{1} \mid z\right\rangle & \cdots & \left\langle y_{n}, y_{n} \mid z\right\rangle\end{array}\right) \quad\left(\begin{array}{c}a_{1}^{-1}\left\langle y_{1}, x \mid z\right\rangle \\ \vdots \\ a_{n}^{-1}\left\langle y_{n}, x \mid z\right\rangle\end{array}\right)$
$\leq\left(\left\langle x, y_{1} \mid z\right\rangle a_{1}^{-1} \ldots\left\langle x, y_{n} \mid z\right\rangle a_{n}^{-1}\right) \quad\left(\begin{array}{ccc}a_{1} & \cdots & 0 \\ & \ddots & \\ 0 & \cdots & a_{n}\end{array}\right) \quad\left(\begin{array}{c}a_{1}^{-1}\left\langle y_{1}, x \mid z\right\rangle \\ \vdots \\ a_{n}^{-1}\left\langle y_{n}, x \mid z\right\rangle\end{array}\right)$
$=\sum_{i=1}^{n}\left\langle x, y_{i} \mid z\right\rangle a_{i}^{-1}\left\langle y_{i}, x \mid z\right\rangle$,
and this implies
$0 \leq\left\langle x-\sum_{i=1}^{n} y_{i} a_{i}^{-1}\left\langle y_{i}, x \mid z\right\rangle,\left[x-\sum_{i=1}^{n} y_{i} a_{i}^{-1}\left\langle y_{i}, x \mid z\right\rangle\right] \mid z\right\rangle$
$=\langle x, x \mid z\rangle-2 \sum_{i=1}^{n}\left\langle x, y_{i} \mid z\right\rangle a_{i}^{-1}\left\langle y_{i}, x \mid z\right\rangle+\sum_{i, j=1}^{n}\left\langle x, y_{i} \mid z\right\rangle a_{i}^{-1}\left\langle y_{i}, y_{j} \mid z\right\rangle a_{j}^{-1}\left\langle y_{j}, x \mid z\right\rangle$
$\leq\langle x, x \mid z\rangle-\sum_{i=1}^{n}\left\langle x, y_{i} \mid z\right\rangle a_{i}^{-1}\left\langle y_{j}, x \mid z\right\rangle$.
Hence we have the desired inequality (2.2).
The equality in (2.2) holds if only if the following equations are satisfied

$$
\begin{equation*}
x=\sum_{i=1}^{n} y_{i} a_{i}^{-1}\left\langle y_{i}, x \mid z\right\rangle \tag{2.3}
\end{equation*}
$$

and for arbitrary $i \neq j$

$$
\begin{align*}
& \quad\left(\begin{array}{ll}
\left.\left\langle x, y_{i} \mid z\right\rangle a_{i}^{-1}\left\langle x, y_{j} \mid z\right\rangle a_{j}^{-1}\right) & \left(\begin{array}{ll}
\left|\left\langle y_{j}, y_{i} \mid z\right\rangle\right| & -\left\langle y_{i}, y_{j} \mid z\right\rangle \\
-\left\langle y_{j}, y_{i} \mid z\right\rangle & \left|\left\langle y_{i}, y_{j} \mid z\right\rangle\right|
\end{array}\right)
\end{array}\binom{a_{i}^{-1}\left\langle y_{i}, x \mid z\right\rangle}{ a_{j}^{-1}\left\langle y_{j}, x \mid z\right\rangle}=0 .\right. \tag{2.4}\\
& \Leftrightarrow
\end{align*} \quad\left(\begin{array}{ll}
\left|\left\langle y_{j}, y_{i} \mid z\right\rangle\right| & -\left\langle y_{i}, y_{j} \mid z\right\rangle \\
-\left\langle y_{j}, y_{i} \mid z\right\rangle & \left|\left\langle y_{i}, y_{j} \mid z\right\rangle\right|
\end{array}\right)^{\frac{1}{2}} \quad\binom{a_{i}^{-1}\left\langle y_{i}, x \mid z\right\rangle}{ a_{j}^{-1}\left\langle y_{j}, x \mid z\right\rangle}=\binom{0}{0} .
$$

Hence it follows from lemma (1.6) the condition(2.6) is equivalent to the following (2.5) and (2.6): For arbitrary $i \neq j$

$$
\begin{equation*}
\left\langle y_{i}, y_{j} \mid z\right\rangle=0 \tag{2.5}
\end{equation*}
$$

or

$$
\begin{equation*}
\left\langle y_{j}, y_{i} \mid z\right\rangle a_{i}^{-1}\left\langle y_{j}, x \mid z\right\rangle=\left\langle y_{i}, y_{j} \mid z\right\rangle a_{j}^{-1}\left\langle y_{j}, x \mid z\right\rangle \tag{2.6}
\end{equation*}
$$

Conversely, suppose that $x=\sum_{i=1}^{n} y_{i} b_{i}$ for some $b_{i} \in A$ and for $i \neq j,\left\langle y_{i}, y_{j} \mid z\right\rangle=0$ or $\left|\left\langle y_{j}, y_{i} \mid z\right\rangle\right| b_{i}=\left\langle y_{i}, y_{j} \mid z\right\rangle b_{j}$. Then
$\sum_{i=1}^{n}\left\langle x, y_{i} \mid z\right\rangle\left(\sum_{j=1}^{n}\left|\left\langle y_{j}, y_{i} \mid z\right\rangle\right|\right)^{-1}\left\langle y_{i}, x \mid z\right\rangle=\sum_{i=1}^{n}\left\langle x, y_{i} \mid z\right\rangle\left(\sum_{j=1}^{n}\left|\left\langle y_{j}, y_{i} \mid z\right\rangle\right|\right)^{-1} \sum_{j=1}^{n}\left\langle y_{i}, y_{j} \mid z\right\rangle b_{j}$
$=\sum_{i=1}^{n}\left\langle x, y_{i} \mid z\right\rangle\left(\sum_{j=1}^{n}\left|\left\langle y_{j}, y_{i} \mid z\right\rangle\right|\right)^{-1} \sum_{j=1}^{n}\left|\left\langle y_{j}, y_{i} \mid z\right\rangle\right| b_{i}$
$=\sum_{i=1}^{n}\left\langle x, y_{i} \mid z\right\rangle\left(\sum_{j=1}^{n}\left|\left\langle y_{j}, y_{i} \mid z\right\rangle\right|\right)^{-1}\left(\sum_{j=1}^{n}\left|\left\langle y_{j}, y_{i}\right|\right) z\right\rangle \mid b_{i}$
$=\sum_{i=1}^{n}\left\langle x, y_{i} \mid z\right\rangle b_{i}$
$=\langle x, x \mid z\rangle$.
Whence the proof is complete.
B. Mohebbi Najmabadi and T.I.Shateri in [21], Theorem (2.1), showed if X is an $2-^{*}$ - semi inner product over a C^{*}-algebra, $x, y, z \in X$ and $|x, z| \in Z(A)$, then

$$
\begin{equation*}
|\langle x, y \mid z\rangle|^{2} \leq|x, z|^{2}|y, z|^{2} \tag{2.7}
\end{equation*}
$$

By Theorem (2.2), we have the following corollary, which is improvement of (2.2).
Corollary 2.3. Let X be a $2-^{*}$ - inner product over a C^{*}-algebra $A, x, y, z \in X$ such that $|y, z|$ is invertible in A then we have the Cauchy Schwarz inequality in $2-^{*}$-inner product over a C^{*}-algebra A as follow

$$
\begin{equation*}
\langle x, y \mid z\rangle\left(|y, z|^{2}\right)^{-1}\langle y, x \mid z\rangle \leq|x, z|^{2} \tag{2.8}
\end{equation*}
$$

Proof. By taking $n=1$ and $y=y_{1}$ in (2.2), we obtain the result.
N.S. Barnett, Y.J. Cho, S.S. Dragomir, S.M. Kang, And S.S. Kimg in [1] showed a version for 2 -inner product space of the Selberg inequality: If X is a 2 -inner product space and $x, y_{1}, \ldots, y_{n}, z \in X$ such that $\sum_{i=1}^{n}\left\|\left\langle y_{i}, y_{j} \mid z\right\rangle\right\| \neq 0$ then

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{\left|\left\langle x, y_{j} \mid z\right\rangle\right|^{2}}{\sum_{k=1}^{n}\left|\left\langle y_{j}, y_{k} \mid z\right\rangle\right|} \leq\langle x, x \mid z\rangle \tag{2.9}
\end{equation*}
$$

By Theorem (2.2), we have the following corollary.
Corollary 2.4. Let X be a $2-^{*}$-semi inner product space. If $x, y, y_{1} \ldots y_{n}, z \in X$ such that $\sum_{i=1}^{n}\left|\left\langle y_{i}, y_{j} \mid z\right\rangle\right| \neq 0$, then

$$
\sum_{j=1}^{n} \frac{\left|\left\langle x, y_{j} \mid z\right\rangle\right|^{2}}{\sum_{k=1}^{n}\left\|\left\langle y_{j}, y_{k} \mid z\right\rangle\right\|} \leq\langle x, x \mid z\rangle
$$

Proof. By assumption it follows that $\sum_{k=1}^{n}\left|\left\langle y_{j}, y_{k} \mid z\right\rangle\right|$ is invertible in A and hence

$$
\left(\sum_{k=1}^{n}\left|\left\langle y_{j}, y_{k} \mid z\right\rangle\right|\right)^{-1} \geq\left(\sum_{k=1}^{n} \|\left\langle y_{j}, y_{k} \mid z\right\rangle| |\right)^{-1}
$$

Therefore, Theorem (2.2) implies Corollary (2.4).

Moreover, in ([18]) Kyoko Kubo, fumio Kubo and Yuki Seo showed a Hilbert C^{*}-module version of fujii-Nakamoto type (1.2), wich is a refinement of (1.1) in a inner product C^{*}-module over a unital C^{*}-algebra: If X a inner product C^{*}-module over a unital C^{*} - algebra, $x, y, y_{1} \ldots y_{n}$ are nonzero vectors in X such that $y_{1} \ldots y_{n}$ are nonsingular, $\left\langle y, y_{i}\right\rangle=0$ for $i=1, \ldots, n$ and $\langle x, y\rangle=$ $u|\langle x, y\rangle|$ is a polar decomposition in $A, i, e, u \in A$ is a partial isometry, then

$$
\begin{equation*}
|\langle y, x\rangle| \leq u^{*}\langle y, y\rangle u \sharp\left(\langle x, x\rangle-\sum_{i=1}^{n}\left\langle x, y_{i}\right\rangle\left(\sum_{j=1}^{n}\left|\left\langle y_{j}, y_{i}\right\rangle\right|\right)^{-1}\left\langle y_{i}, x\right\rangle\right) \tag{2.10}
\end{equation*}
$$

were \sharp is the operator geometric defined by $a \sharp b:=a^{\frac{1}{2}}\left(a^{\frac{-1}{2}} b a^{\frac{-1}{2}}\right) a^{\frac{1}{2}}$ for a invertible.
We show a $2-^{*}$-semi inner product A-module over a C^{*}-algebra version of a refinement of the Selberg inequality due to fujii and Nakamoto, which is another version of (2.2).

Theorem 2.5. Let X be a $2-^{*}$-semi inner product over a C^{*}-algebra $A, x, y, y_{1}, \ldots, y_{n}$, z in X such that $|y, z|,\left|y_{1}, z\right|, \ldots,\left|y_{n}, z\right|$ are invertible such $\left\langle y, y_{i} \mid z\right\rangle=0$ for $i=1, \ldots, n$ then

$$
\begin{equation*}
\langle x, y \mid z\rangle\left(|y, z|^{2}\right)^{-1}\langle y, x \mid z\rangle+\sum_{i=1}^{n}\left\langle x, y_{i} \mid z\right\rangle\left(\sum_{j=1}^{n}\left|\left\langle y_{j}, y_{i} \mid z\right\rangle\right|\right)^{-1}\left\langle y_{i}, x \mid z\right\rangle \leq|x, z|^{2} \tag{2.11}
\end{equation*}
$$

Proof. We put

$$
u=x-\sum_{i=1}^{n} y_{i}\left(\sum_{j=1}^{n}\left\langle y_{j}, y_{i} \mid z\right\rangle\right)^{-1}\left\langle y_{i}, x \mid z\right\rangle
$$

We have from proof of theorem (2.2)
$|u, z|^{2}=\left|x-\sum_{i=1}^{n} y_{i}\left(\sum_{i=1}^{n}\left\langle y_{j}, y_{i} \mid z\right\rangle\right)^{-1}\left\langle y_{i}, x \mid z\right\rangle\right|^{2} \leq|x, z|^{2}-\sum_{i=1}^{n}\left\langle x, y_{i} \mid z\right\rangle\left(\sum_{j=1}^{n}\left|\left\langle y_{j}, y_{i} \mid z\right\rangle\right|\right)^{-1}\left\langle y_{i}, x \mid z\right\rangle$.
Since $\langle y, u \mid z\rangle=\langle y, x \mid z\rangle$ it follows that
$\langle x, y \mid z\rangle\left(|y, z|^{2}\right)^{-1}\langle y, x \mid z\rangle=\langle u, y \mid z\rangle\left(|y, z|^{2}\right)^{-1}\langle y, u \mid z\rangle \leq|u, z|^{2}$ by the Cauchy-Schwarz inequality (2.8), then
$\langle x, y \mid z\rangle\left(|y, z|^{2}\right)^{-1}\langle y, x \mid z\rangle+\sum_{i=1}^{n}\left\langle x, y_{j} \mid z\right\rangle\left(\sum_{j=1}^{n}\left|\left\langle y_{j}, y_{i} \mid z\right\rangle\right|\right)^{-1}\left\langle y_{i}, x \mid z\right\rangle \leq|x, z|^{2}$.

From Theorem (2.2) the following result of Bessel in a $2-^{*}$-inner product over a C^{*}-algebra A can be obtained.

Corollary 2.6. Let X be a $2-^{*}$ - inner product over a C^{*}-algebra. If $y_{1} \ldots y_{n}$ be a sequence of unit vectors in X such that $\left\langle y_{j}, y_{i} \mid z\right\rangle=0$ for $1 \leq j \neq i \leq n$ then

$$
\begin{equation*}
\left.\sum_{j=1}^{n}\left|\left\langle y_{j}, x \mid z\right\rangle\right|\right)^{2} \leq|x, z|^{2} \tag{2.12}
\end{equation*}
$$

Proof. We have $\left(\sum_{j=1}^{n}\left|\left\langle y_{j}, y_{i} \mid z\right\rangle\right|\right)^{-1}=1_{A}$; Thus the result follows immediately from inequality (2.2).

In [1] Theorem 7 N.S. Barnett, Y.J. Chof, S.S. Dragomir, S.M. Kang, And S.S. Kimg showed a 2 -inner product space version of Bombieri type (1.5):If $x, y_{1} \ldots y_{n}, z$ are vectors in a 2 -inner product space X such that $\left\|y_{1}, z\right\|, \ldots,\left\|y_{n}, z\right\|$ are nonzero then

$$
\begin{equation*}
\sum_{i=1}^{n}\left|\left\langle x, y_{i} \mid z\right\rangle\right|^{2} \leq|x, z|^{2} \max _{1 \leq j \leq n} \sum_{k=1}^{n}\left\|\left\langle y_{j}, y_{k} \mid z\right\rangle\right\| . \tag{2.13}
\end{equation*}
$$

We show a 2*-semi inner product version of Bombieri type inequality.
Corollary 2.7. Let X be a $2-^{*}$ - inner product over a C^{*}-algebra. If $x, y_{1} \ldots y_{n}$, z are nonzero vectors in X such that $\left|y_{1}, z\right|, \ldots,\left|y_{n}, z\right|$ are invertible then

$$
\begin{equation*}
\sum_{i=1}^{n}\left\langle x, y_{i} \mid z\right\rangle\left\langle y_{i}, x \mid z\right\rangle \leq|x, z|^{2} \max _{1 \leq j \leq n} \sum_{k=1}^{n}\left\|\left\langle y_{j}, y_{k} \mid z\right\rangle\right\| . \tag{2.14}
\end{equation*}
$$

Proof. Since for $j=1, \ldots, n$, we observe that

$$
\sum_{k=1}^{n}\left|\left\langle y_{j}, y_{k} \mid z\right\rangle\right| \leq \sum_{k=1}^{n}| |\left\langle y_{j}, y_{k} \mid z\right\rangle\left\|\leq \max _{1 \leq j \leq n} \sum_{k=1}^{n}\right\|\left\langle y_{j}, y_{k} \mid z\right\rangle \|
$$

then

$$
\frac{1}{\max _{1 \leq j \leq n} \sum_{k=1}^{n}\left\|\left\langle y_{j}, y_{k} \mid z\right\rangle\right\|} \leq\left(\sum_{k=1}^{n}\left|\left\langle y_{j}, y_{k} \mid z\right\rangle\right|\right)^{-1}
$$

We also have

$$
\frac{\sum_{i=1}^{n}\left\langle x, y_{i} \mid z\right\rangle\left\langle y_{i}, x \mid z\right\rangle}{\max _{1 \leq j \leq n} \sum_{k=1}^{n}\left\|\left\langle y_{j}, y_{k} \mid z\right\rangle\right\|} \leq \sum_{i=1}^{n}\left\langle x, y_{i} \mid z\right\rangle\left(\sum_{k=1}^{n}\left|\left\langle y_{j}, y_{k} \mid z\right\rangle\right|\right)^{-1}\left\langle y_{i}, x \mid z\right\rangle .
$$

Then by using theorem (2.2) we get

$$
\sum_{i=1}^{n}\left\langle x, y_{i} \mid z\right\rangle\left\langle y_{i}, x \mid z\right\rangle \leq|x, z|^{2} \max _{1 \leq j \leq n} \sum_{k=1}^{n}\left\|\left\langle y_{j}, y_{k} \mid z\right\rangle\right\| .
$$

Wich complete the proof of corollary

In a similar way we show a $2-{ }^{*}$-semi inner product version of Boas-Bellmann type inequality.

Corollary 2.8. Let X be a $2-^{*}$-inner product over a C^{*}-algebra. If x, y_{1}, \ldots, y_{n}, z are nonzero vectors in X such that $\left|y_{1}, z\right|, \ldots,\left|y_{n}, z\right|$ are invertible, then

$$
\begin{equation*}
\sum_{i=1}^{n}\left\langle x, y_{i} \mid z\right\rangle\left\langle y_{i}, x \mid z\right\rangle \leq|x, z|^{2}\left(\max _{1 \leq j \leq n}\left|y_{j}\right|^{2}+(n-1) \max _{k \neq j}\left\|\left\langle y_{j}, y_{k} \mid z\right\rangle\right\|\right) \tag{2.15}
\end{equation*}
$$

References

[1] Barnett, N.S. and Cho, Y.J. and Dragomir, S.S. and Kang, S.M. and Kim, S.S., Some Bombieri, Selberg and Heilbronn Type Inequalities in 2-Inner Product Spaces .(September 2003). Mathematics Preprint Archive Vol. 2003, Issue 9, pp 62-79. Available at SSRN: https://ssrn.com/abstract=3181498
[2] N. Bounader and A. Chabi , Selberg type inequalities in C^{*}-modules., Int.J. Analy.,7 (2013), 385- 391.
[3] F. R. Davison, C^{*}-algebra by exemple, Fields Ins. Monog; (1996).
[4] S. S. Dragomir, On the boas-bellman inequality in inner product spaces., arXiv:math:/0307132v [math.CA]9jul 2003 Aletheia University.
[5] S. S. Dragomir, M. Korsavi and M. S. Moslehian, Bessel type inequalities in Hilbert C^{*}-modules., arXiv:0905.4067v1[math.FA] 25 May 2009.
[6] M. Fujii, K. Kubo and S. Otani, A graph theoretical observation on the Selberg inequality., Math. Japan.,35(1990),381-385.
[7] R. Freese and S. Gahler,Remarks on semi-normed spaces., Math. Nachr. 105. 151-161 (1982)
[8] M. Fujii and R. Nakamoto, Simultaneous extensions of Selberg inequality and Heinz-Kato-Furuta inequality., Nihonkai. Math. J., 9(1998), 219-225.
[9] M. Fujii, Selberg inequality. 1991, 70-76.
[10] J.I Fujii,M. Fjii and Y.Seo, Operator inequalities on Hilbert C^{*}-modules via the Cauchy Schwarz., Math. Inq. Appl.17(2014),295-315
[11] J.I Fujii, M. Fujii, Moslehian and Y. SeoCauchy Schwarz inequality in semi-inner product C^{*}-module via polar composition.J.Math. Anal., 394 (2012), 835-840.
[12] T. Furuta, When does the equality of generalized Selberg inequality hold?., Nihonkai Math. J., 2 (1991),2529.
[13] S. Gahler, 2-metriche raume und ihre topologische struktur, Math. Nachr.26(1-4), 115-148(1963).
[14] S. Gahler, Lineare 2-normierte raume., Math. Nachr. 28, 1-43 (1965)
[15] A. Inoue, Locally C^{*}-algebras, Mem. Fac. Sci. Kyushu Univ. Ser. A 25, 197-235(1971)
[16] S. Kabbaj, A. Chahbi, A. Charifi, and N.Bounader The generalized of Selberg inequalities in C^{*}-module., Filomat. (2018), 1585-1592
[17] S. M. Gosali. and H. Gunawan, On b-orthgonality in 2-normed spaces., J. Indones. math. Soc. 16, 127132 (2009)
[18] K. Kubo, F.Kubo and Y.Seo, Selberg type inequalities in a Hilbert C^{*}-modules and its applications .,78 (2015),7-15 Proc. Amer. Math. Soc., 72 (1978), 297-300
[19] E. C. Lance, Hilbert C^{*}-modules, London Math.Soc. lecture Note Series 210, Cambridge Univ. Prss, 1995
[20] T. Mehdiabad Mahchari and A. Nazari, 2-Hilbert $C^{*}-$ modules and some Gruss inequalities in $A-$ 2-inner product spaces., Math. Inequal. Appl. 18(2),721-754(2015).
[21] B. Mohebbi Najmabadi and T.L. Shateri, On the Cauchy-Schwarz inequality and its reverces in 2 -* -semi inner product space., Arab. J. Math (2018)
[22] B. Mohebbi Najmabadi and T.L. Shateri , 2-inner product which takes values on a locally $C^{*}-$ algebra., Indian J. Math. Soc. 85 (1-2)218-226 (2018).

Author information

Nordine Bounader, Department of Mathematics, Faculty of Sciences, University of Ibn Tofail, Kenitra, 1400, Morocco.
E-mail: n.bounader@live.fr
Received: July 27, 2020.
Accepted: October 7, 2020.

