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Abstract In this note, we consider a complex sequence 〈Un〉n∈N which have a similar struc-
ture with Jacobsthal sequence and we nominate this sequence as a complex combined Jacobsthal-
Akin sequence or simply combined Jacobsthal-Akin sequence. After that we study a binomial
form 〈Xn〉n∈N of 〈Un〉n∈N and we call 〈Xn〉n∈N as binomial sequence. Finally we delineate a
matrix sequence 〈Zn〉n∈N of the binomial sequence 〈Xn〉n∈N.

1 Introduction

Many more authors worked on the generalizations of Fibonacci sequences [1] by various angles
or patterns. Especially some of them employed matrix methods as well as introduced complex
plane concept for the study of generalizations of Fibonacci numbers.

Horadam [2] in 1963 introduced the concept of complex Fibonacci numbers. Jordan [3] in
1965 considered a Gaussian Fibonacci sequence 〈GFn〉 and established some results between
Gaussian Fibonacci sequence and classical Fibonacci sequence. Gaussian Fibonacci numbers
are recursively defined by

GFn = GFn−1 +GFn−2, n ≥ 2 and GF0 = i, GF1 = 1 (1.1)

Later on Berzsenyi [4], Harman [5] and Pethe [6] used different approaches of extensions of
Fibonacci numbers on the complex plane.

Now we give some literature where the authors studied the generalizations of Jacobsthal num-
bers and Jacobsthal-Lucas numbers (see [7]). Asci and Gurel [7] delineated and studied Gaussian
Jacobsthal and Gaussian Jacobsthal-Lucas numbers. These numbers are given, respectively, as

GJn+1 = GJn + 2GJn−1, n ≥ 1 and GJ0 =
i

2
, GJ1 = 1 (1.2)

Gjn+1 = Gjn + 2Gjn−1, n ≥ 1 and Gj0 = 2− i

2
, Gj1 = 1 + 2i. (1.3)

Again Asci ans Gurel [8] examined Gaussian Jacobsthal and Gaussian Jacobsthal-Lucas poly-
nomials.

In [10] defined a sequence 〈bn〉n∈Z0
(Z0 is the set of non-negative numbers) as the binomial

transform of the sequence 〈an〉n∈Z0
if

bn =
n∑

k=0

ak (1.4)

and Wani et al. [11] obtained the binomial form of Fibonacci-Like sequence.. A trend has been
going on from several past years that many authors added parameters s and t in the classical
Fibonacci, Jacobsthal sequences etc in the recurrence relation system of these sequences and
then designate these sequences as (s, t)-type sequences. Uygun [9] presented (s, t)-Jacobsthal
sequence 〈̂n (s, t)〉 and (s, t)-Jacobsthal-Lucas sequence 〈ĉn (s, t)〉 such that

̂n (s, t) = ŝn−1 (s, t) + 2t̂n−2 (s, t) , n ≥ 2 and ̂0 (s, t) = 0, ̂1 (s, t) = 1 (1.5)
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ĉn (s, t) = sĉn−1 (s, t) + 2tĉn−2 (s, t) , n ≥ 2 and ĉ0 (s, t) = 2, ĉ1 (s, t) = s (1.6)

where s > 0, t 6= 0 and s2 + 8t > 0.
Since 2008 several authors explored the recurrence relations of Fibonacci sequences, general-

ized Fibonacci sequences and other second order sequences into the sequences known as matrix
sequences that is, the sequences in which the terms of the sequences are in the form of matrices
and the elements of matrices are the terms of general sequences. In 2008 Civciv and and Turk-
men [12] presented (s, t)-Fibonacci sequence 〈Fn (s, t)〉 and (s, t)-Fibonacci matrix sequence
〈Fn (s, t)〉 and obtained various properties for these sequences. These sequences 〈Fn (s, t)〉 and
〈Fn (s, t)〉 are delineated by

Fn+1 (s, t) = sFn (s, t) + tFn−1 (s, t) n ≥ 1 and F0 (s, t) = 0, F1 (s, t) = 1 (1.7)

Fn+1 (s, t) = sFn (s, t) + tFn−1 (s, t) , n ≥ 1 (1.8)

with F0 (s, t) =

[
1 0

0 1

]
, F1 (s, t) =

[
s 1

t 0

]
and s > 0, t 6= 0, s2 + 4t > 0.

Again Civciv and Turkmen [13] delineated (s, t)-Lucas matrix sequence which is defined as
follows:

Fn+1 (s, t) = sFn (s, t) + tFn−1 (s, t) n ≥ 1 and F0 (s, t) = 0, F1 (s, t) = 1 (1.9)

Ln+1 (s, t) = sLn (s, t) + tLn−1 (s, t) , n ≥ 1 (1.10)

with L0 (s, t) =

[
s 2

2t −s

]
, L1 (s, t) =

[
s2 + 2t s

st 2t

]
and s > 0, t 6= 0, s2 + 4t > 0.

The main motive of this article to obtain the matrix sequence of the binomial form of the Com-
bined Jacobsthal-Akin sequence.

2 Combined Jacobsthal-Akin Sequence

Definition 2.1. [7] The Jacobsthal and Jacobsthal-Lucas sequences 〈Jn〉 and 〈jn〉 are respec-
tively given by the following recurrence relations:

Jn = Jn−1 + 2Jn−2, n ≥ 2 and J0 = 0, J1 = 1 (2.1)

jn = jn−1 + 2jn−2, n ≥ 2 and J0 = 2, J1 = 1 (2.2)

The nth terms of both the sequences are mentioned by the ensuing relations:

Jn =
αn − βn

α− β
(2.3)

jn = αn + βn (2.4)

where α = 2 and β = −1.

Definition 2.2. For s, t ∈ Z+ and i
(
=
√
−1
)
, the combined Jacobsthal-Akin sequence 〈Un〉n∈N

is recurrently defined by

Un = iUn−1 + 2Un−2, n ≥ 2 (2.5)

with seeds U0 = s− 2t and U1 = i (s− t)
The first few terms of the the combined Jacobsthal-Akin sequence 〈Un〉n∈N are given by

U0 = s− 2t, U1 = i (s− t) , U2 = s− 3t, U3 = i (3s− 5t) , U4 = − (s+ t)

and so on.
Let θ and ϑ be the two complex roots of the characteristic equation u2− iu−2 = 0 of 〈Un〉. The
values of θ and ϑ are determined by

θ =

√
7 + i

2
and ϑ =

−
(√

7− i
)

2
(2.6)
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Theorem 2.3. For n ∈ Z0, the nth term of the combined Jacobsthal-Akin sequence is delineated
as

Un = s
θn+1 − ϑn+1

θ − ϑ
− t (θn + ϑn) (2.7)

Proof. Its proof can be easily seen by using induction method.

Now let

Ûn =
θn+1 − ϑn+1

θ − ϑ
(2.8)

is called Jacobsthal-Like sequence.
and

Un = θn + ϑn (2.9)

is called Jacobsthal-Lucas-Like sequence.
Clearly from the equations (2.8) and (2.9) Jacobsthal-Akin sequence 〈Un〉 is the combination of
two sequences such as jacobsthal-Like sequence (2.8) and Jacobsthal-Lucas-Like sequence (2.9)
and so the sequence 〈Un〉 is called combined Jacobsthal-Akin sequence.

3 Binomial Form of Combined Jacobsthal-Akin sequence 〈Wn〉

In the present section first of all we express combined Jacobsthal-Akin sequence 〈Un〉 in terms
of binomial form 〈Xn〉 and we call 〈Xn〉 as binomial sequence. After that we obtain a recur-
rence relation for 〈Xn〉. Furthermore we obtain binomial forms or binomial sequences of the
Jacobsthal-Like and Jacobsthal-Lucas-Like sequences.

Definition 3.1. For n ∈ Z0, the binomial form of the combined Jacobsthal-Like sequence 〈Un〉
is defined by

Xn =
n∑
l=0

(
n

l

)
Ul (3.1)

Lemma 3.2. For n ∈ Z0, the following property holds for 〈Xn〉:

Xn+1 =
n∑
l=0

(
n

l

)(
Ul + Ul+1

)
(3.2)

Proof. Its proof can be easily obtained by using the relation

(
n+ 1

l

)
=

(
n

l

)
+

(
n

l − 1

)

Theorem 3.3. (Recurrence relation for 〈Un〉) For s, t ∈ Z+ and i
(
=
√
−1
)
, the binomial

recurrence relation 〈Xn〉 of the combined Jacobsthal-Akin sequence 〈Un〉 is given by

Xn+1 = (2 + i)Xn + (1− di)Xn−1, n ≥ 1 (3.3)

with X0 = s− 2t and X1 = (s− 2t) + i (s− t)

Proof. Since

Xn+1 =
n∑
l=0

(
n

l

)(
Ul + Ul+1

)

= U0 + U1 +
n∑
l=1

(
n

l

)(
Ul + Ul+1

)
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= U0 + U1 +
n∑
l=1

(
n

l

)(
Ul + iUl + 2Ul−1

)
By Eqn. (2.5)

= U0 + U1 +
n∑
l=1

(
n

l

)[
(1 + i)Ul + 2Ul−1

]

= (1 + i)
n∑
l=1

(
n

l

)
Ul + 2

n∑
l=1

(
n

l

)
Ul−1 + U0 + U1

= (1 + i)
n∑
l=1

(
n

l

)
Ul + (1 + i)U0 + 2

n∑
l=1

(
n

l

)
Ul−1 − (1 + i)U0 + U0

+ U1

= (1 + i)
n∑
l=0

(
n

l

)
Ul + 2

n∑
l=1

(
n

l

)
Ul−1 − iU0 + U1

= (1 + i)Xn + 2
n∑
l=1

(
n

l

)
Ul−1 − iU0 + U1 By Eqn. (3.1) (3.4)

By replacing n by n− 1, we get

Xn = (1 + i)Xn−1 + 2
n−1∑
l=1

(
n− 1

l

)
Ul−1 − iU0 + U1

= iXn−1 +
n−1∑
l=0

(
n− 1

l

)
Ul + 2

n−1∑
l=1

(
n− 1

l

)
Ul−1 − iU0 + U1

= iXn−1 +
n∑
l=1

(
n− 1

l − 1

)
Ul−1 + 2

[(
n− 1

1

)
U0 +

(
n− 1

2

)
U1 +

(
n− 1

3

)

U2 + · · ·+

(
n− 1

n− 1

)
Un−2 +

(
n− 1

n

)
Un−1

]
− iU0 + U1

After using the fact

(
n− 1

n

)
= 0, we have

Xn = iXn−1 +
n∑
l=1

(
n− 1

l − 1

)
Ul−1 + 2

n∑
l=1

(
n− 1

l

)
Ul−1 − iU0 + U1

Xn = iXn−1 +
n∑
l=1

[(
n− 1

l − 1

)
+ 2

(
n− 1

l

)]
Ul−1 − iU0 + U1

= iXn−1 +
n∑
l=1

[(
n− 1

l − 1

)
+ 2

(
n− 1

l

)
+ 2

(
n− 1

l − 1

)
− 2

(
n− 1

l − 1

)]
Ul−1

− iU0 + U1

= iXn−1 +
n∑
l=1

[
(1− 2)

(
n− 1

l − 1

)
+ 2

(
n

l

)]
Ul−1 − iU0 + U1

= iXn−1 −
n∑
l=1

(
n− 1

l − 1

)
Ul−1 + 2

n∑
l=1

(
n

l

)
Ul−1 − iU0 + U1
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= iXn−1 −
n−1∑
l=0

(
n− 1

l

)
Ul + 2

n∑
l=1

(
n

l

)
Ul−1 − iU0 + U1

= iXn−1 −Xn−1 + 2
n∑
l=1

(
n

l

)
Ul−1 − iU0 + U1 By Eqn. (3.1)

= (i− 1)Xn−1 + 2
n∑
l=1

(
n

l

)
Ul−1 − iU0 + U1

Thus

Xn − (i− 1)Xn−1 = 2
n∑
l=1

(
n

l

)
Ul−1 − iU0 + U1

Hence from the equation (3.4), we get

Xn+1 = (1 + i)Xn +Xn − (i− 1)Xn−1

= (2 + i)Xn + (1− i)Xn−1

as required.

First few terms of the binomial sequence 〈Xn〉 defined in equation (3.3) are as under
X0 = (s− 2t) , X1 = (s− 2t) + i (s− t) , X2 = (2s− 6t) + i (2s− 2t) , X3 = (4s− 13t) +
i (6s− 9t) , X4 = (6s− 25t) + i (16s− 27t) and so on.
Clearly v2 − (2 + i) v − (1− i) = 0 is the characteristic equation of 〈Xn〉 . Suppose that γ and
δ be its two roots and are given as

γ =
(2 + i) +

√
(2 + i)

2
+ 4 (1− i)

2

=

√
7 + i+ 2

2

=

√
7 + i

2
+ 1

= θ + 1 (3.5)

Similarly

δ = ϑ+ 1 (3.6)

Some noticeable points about γ and δ are

γ + δ = 2 + i, γδ = i− 1 = − (1− i) and γ − δ =
√

7 (3.7)

Now to obtain the binomial forms or binomial sequences of the Jacobsthal-Like 〈Ûn〉 and
Jacobsthal-Lucas-Like 〈Un〉 sequences we should prove the following result:

Theorem 3.4. For n ∈ Z0, the nth term of 〈Xn〉 is given by

Xn = s

(
γn+1 − δn+1

γ − δ
− γn − δn

γ − δ

)
− t
(
γn + δn

)
(3.8)

Proof. Let us consider a square matrix X =

[
2 + i 1− i

1 0

]
and u be the eigenvalue of X . Then

by Cayley Hamilton theorem the characteristic equation of X is given by the equation:∣∣∣X − uI∣∣∣ = 0
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∣∣∣∣∣2 + i− u 1− i

1 u

∣∣∣∣∣ = 0

u2 − (2 + i)u− (1− i) = 0

Let γ and δ be the characteristic roots as well as eigenvalues of the matrix X . The eigenvectors

corresponding to γ and δ are

[
γ

1

]
and

[
δ

1

]
respectively. Let V1 =

[
γ δ

1 1

]
be the matrix of

the eigenvectors. Since your matrix V1 =

[
γ δ

1 1

]
, the its inverse is

(
γ − δ

)−1
[

1 −δ

−1 γ

]
and

V2 =

[
γ 0

0 δ

]
is the diagonal matrix. Then by the process of diagonalization of matrices, we

achieve

Xn = V1V
n

2 V
−1

1

= (γ − δ)−1

[
γ δ

1 1

][
γn 0

0 δn

][
1 −γ

−1 δ

]

= (γ − δ)−1

[
γn+1 − δn+1 −δγn+1 + γδn+1

γn − δn −δγn + γδn

]

Since

[
Xn+1

Xn

]
= Xn

[
X1

X0

]
, we have

[
Xn+1

Xn

]
= (γ − δ)−1

[
γn+1 − δn+1 −δγn+1 + γδn+1

γn − δn −δγn + γδn

][
X1

X0

]

= (γ − δ)−1

[
X1γ

n+1 −X1δ
n+1 −X0δγ

n+1 +X0γδ
n+1

X1γ
n −X1δ

n −X0δγ
n +X0γδ

n

]

Thus

Xn =
X1γ

n −X1δ
n −X0δγ

n +X0γδ
n

γ − δ

=
1

γ − δ

[(
X1 − δX0

)
γn +

(
γX0 −X1

)
δn
]

Let

Xn =
1

γ − δ (
V3 + V4)

where

V3 =
(
X1 − δX0

)
γn

=
[
s (1 + i)− t (2 + i)− δ (s− 2t)

]
=
(
is+ s− it− 2t− δs+ 2δt

)
γn

= isγn + sγn − sδγn − itγn − 2tγn + 2δtγn

= isγn + sγn − s (2 + i− γ) γn − itγn − 2tγn + 2t (2 + i− γ) γn

By Eqn. (3.7)
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= isγn + sγn − 2sγn − isγn + sγn+1 − itγn − 2tγn + 4tγn + i2tγn − 2tγn+1

= −sγn + sγn+1 + itγn + 2tγn − 2tγn+1

= sγn+1 − sγn + tγn
(
2 + i− 2γ

)
= sγn+1 − sγn + tγn

(
γ + δ − 2γ

)
By Eqn. (3.7)

= sγn+1 − sγn − tγn (γ − δ)

Similarly
V4 = −sδn+1 + sδn − tδn (γ − δ)

Therefore

Xn =
1

γ − δ

[
sγn+1 − sγn − tγn (γ − δ)− sδn+1 + sδn − tδn (γ − δ)

]
=

1
γ − δ

[
sγn+1 − sδn+1 − sγn + sδn − tγn (γ − δ)− tδn (γ − δ)

]

= s

(
γn+1 − δn+1

γ − δ
− γn − δn

γ − δ

)
− t
(
γn + δn

)
Hence the result.

Again we know that the recurrence relation for 〈Xn〉 is a second order homogeneous linear
recurrence relation. Then the general solution or nth term of the binomial sequence 〈Xn〉 is also
given according to

Xn = Aγn +Bδn (3.9)

where A and B are constants and the values of A and B are as

A =
X1 − δX0

γ − δ
and B =

γX0 −X1

γ − δ
⇒ AB =

d(
γ − δ

)2 (3.10)

where d is the fixed quantity dependent only on X0 and X1.
Now we express the binomial sequence 〈Xn〉 in terms of two sequences 〈Mn〉 and 〈Nn〉, where

Mn =
γn − δn

γ − δ

= A1γ
n +B1δ

n, A1 =
M1 − δM0

γ − δ
, A2 =

γM0 −M1

γ − δ

⇒ A1A2 =
−1(

γ − δ
)2

(3.11)

and

Nn = γn + δn

= B1γ
n +B2δ

n, B1 =
N1 − δN0

γ − δ
, B2 =

γN0 −N1

γ − δ
⇒ B1B2 = 1

(3.12)

Clearly Mn+1−Mn is the binomial form or binomial sequence of the Jacobsthal-Like sequence〈
Ûn

〉
and 〈Nn〉 is the binomial form or binomial sequence of the Jacobsthal-Lucas-Like se-

quence
〈
Un

〉
.

4 Matrix Sequence of the Binomial Sequence 〈Xn〉

In this section we define a matrix sequence 〈Zn〉 by using binomial sequence 〈Xn〉 and so called
〈Zn〉 as binomial matrix sequence. In addition to this we give some results related to sequences
〈Xn〉, 〈Mn〉, 〈Nn〉 and 〈Zn〉.
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Definition 4.1. For i
(
=
√
−1
)
, the binomial matrix sequence 〈Zn〉n∈N is defined by the follow-

ing equation:

Zn+1 = (2 + i)Zn + (1− i)Zn−1, n ≥ 1 (4.1)

with Z0 =

[
4 + 3i 3− i

2 + i 1− i

]
and Z1 =

[
8 + 9i 7− i

4 + 3i 3− i

]

Some few initial few terms of the the binomial matrix sequence 〈Zn〉n∈N are given by

Z0 =

[
4 + 3i 3− i

2 + i 1− i

]
, Z1 =

[
8 + 9i 7− i

4 + 3i 3− i

]
, Z2 =

[
14 + 25i 17 + i

8 + 9i 7− i

]

Z3 =

[
20 + 65i 39 + 11i

14 + 25i 17 + i

]

and so on.
As we know that the elements of the binomial matrix sequence 〈Zn〉 are in the form of of matrices
and the entries of these matrices are the elements of binomial sequence 〈Xn〉. Now in the next
theorem we give the nth term of the binomial matrix sequence 〈Zn〉 in terms of the binomial
sequence 〈Xn〉.

Theorem 4.2. For n ∈ Z0, the nth term of the matrix sequence 〈Zn〉 is given by

Zn = d−1

X0Xn+4 −X1Xn+3
(
1− i

)(
X0Xn+3 −X1Xn+2

)
X0Xn+3 −X1Xn+2

(
1− i

)(
X0Xn+2 −X1Xn+1

)
 (4.2)

Proof. Let Z =

[
2 + i 1− i

1 0

]
be a square matrix correspond to the binomial matrix sequence

〈Zn〉 and assuredly

[
Zn+1

Zn

]
= Zn

[
Z1

Z0

]
. Then by similar manner from the proof of the Theorem

(3.4), we write

Zn =
Z1γ

n − Z1δ
n − Z0δγ

n + Z0γδ
n

γ − δ

=
1

γ − δ

[(
Z1 − δZ0

)
γn +

(
γZ0 − Z1

)
δn
]

=
1

γ − δ

[(
8 + 9i 7− i

4 + 3i 3− i

)
γn −

(
4 + 3i 3− i

2 + i 1− i

)
δγn +

(
4 + 3i 3− i

2 + i 1− i

)
γδn

−

(
8 + 9i 7− i

4 + 3i 3− i

)
δn

]
(4.3)

=
AB
(
γ − δ

)
d

[(
8 + 9i 7− i

4 + 3i 3− i

)
γn −

(
4 + 3i 3− i

2 + i 1− i

)
δγn +

(
4 + 3i 3− i

2 + i 1− i

)
γδn

−

(
8 + 9i 7− i

4 + 3i 3− i

)
δn

]
By Eqn. (3.10)

=
AB
(
γ − δ

)
d

[
a1 a2

a3 a4

]
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Here

a1 =
(
8 + 9i

)
γn −

(
4 + 3i

)
δγn +

(
4 + 3i

)
γδn −

(
8 + 9i

)
δn

= 8γn + 9γni− 4γn
(
2 + i− γ

)
− 3γni

(
2 + i− γ

)
+ 4δn

(
2 + i− γ

)
+ 3δni

(
2 + i− γ

)
− 8δn − 9δni

= 3γn − γni+ 4γn+1 + 3γn+1i− 3δn + δni− 4δn+1 − 3δn − 3δn+1i

= γn
[(

4 + 3i
)
γ +

(
3− i

)]
− δn

[(
4 + 3i

)
δ +

(
3− i

)]
Since

4 + 3i =
(
2 + i

)2
+
(
1− i

)
=
(
γ + δ

)2
+
(
γδ
)

and

3− i =
(
2 + i

)(
1− i

)
= −

(
γ + δ

)(
γδ
)

Hence, we get

a1 = γn
[(
γ + δ

)2
γ −

(
γδ
)
γ −

(
γ + δ

)(
γδ
)]
− δn

[(
γ + δ

)2
δ −

(
γδ
)
δ −

(
γ + δ

)(
γδ
)]

= γn+3 − δn+3

Therefore

AB
(
γ − δ

)
d

a1 =
AB
(
γ − δ

)
γn+3 −AB

(
γ − δ

)
δn+3

d

=
A
(
γX0 −X1

)
γn+3 −B

(
γX1 − δX0

)
δn+3

d
By Eqn. (3.10)

=
X0
(
Aγn+4 +Bδn+4

)
−X1

(
Aγn+3 +Bδn+3

)
d

=
X0Xn+4 −X1Xn+3

d

Now

a2 =
(
7− i

)
γn −

(
3− i

)
δγn +

(
3− i

)
γδn −

(
7− i

)
δn

= 7γn − iγn − 3γn
(
2 + i− γ

)
+ γni

(
2 + i− γ

)
+ 3δn

(
2 + i− δ

)
− δni

(
2 + i− δ

)
− 7δn + δni

= γn
[
−2i+ γ

(
3− i

)]
+ δn

[
2i− δ

(
3− i

)]
Since

−2i =
(
1− i

)(
1− i

)
=
(
γδ
)(
γδ
)

and

3− i =
(
2 + i

)(
1− i

)
= −

(
γ + δ

)(
γδ
)

This implies that

a2 =
(
1− i

)
γn
[
−γδ + γ

(
γ + δ

)]
+
(
1− i

)
δn
[
γδ − δ

(
γ + δ

)]
=
(
1− i

)(
γn+2 − δn+2

)
Therefore

AB
(
γ − δ

)
d

a2 =
(
1− i

)AB(γ − δ)γn+2 −AB
(
γ − δ

)
δn+2

d

=
(
1− i

)A(γX0 −X1
)
γn+2 −B

(
γX1 − δX0

)
δn+2

d
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By Eqn. (3.10)

=
(
1− i

)X0
(
Aγn+3 +Bδn+3

)
−X1

(
Aγn+2 +Bδn+2

)
d

=
(
1− i

)X0Xn+3 −X1Xn+2

d

Similarly

AB
(
γ − δ

)
d

a3 =
X0Xn+3 −X1Xn+2

d
and

AB
(
γ − δ

)
d

a4 =
(
1− i

)X0Xn+2 −X1Xn+1

d

Thus, we get

Zn = d−1

X0Xn+4 −X1Xn+3
(
1− i

)(
X0Xn+3 −X1Xn+2

)
X0Xn+3 −X1Xn+2

(
1− i

)(
X0Xn+2 −X1Xn+1

)


Lemma 4.3. For n ∈ Z0, we have

Mn =
X0Xn+1 −X1Xn

d
(4.4)

Theorem 4.4. For n ∈ Z0, the following result holds

Zn =

[
Mn+3

(
1− i

)
Mn+2

Mn+2
(
1− i

)
Mn+1

]
(4.5)

Proof. The proof of this theorem is clearly visible from the equations (4.2) and (4.4).

Theorem 4.5. For n ∈ Z0, we have

Zn =
(
γ − δ

)−2

N0Nn+4 −N1Xn+3
(
1− i

)(
N0Nn+3 −N1Nn+2

)
N0Nn+3 −N1Nn+2

(
1− i

)(
N0Nn+2 −N1Nn+1

)
 (4.6)

Proof. By using Equation (4.3) from the proof of Theorem (4.2), we have

Zn =
1

γ − δ

[(
8 + 9i 7− i

4 + 3i 3− i

)
γn −

(
4 + 3i 3− i

2 + i 1− i

)
δγn +

(
4 + 3i 3− i

2 + i 1− i

)
γδn

−

(
8 + 9i 7− i

4 + 3i 3− i

)
δn

]

=
1

γ − δ

[
a1 a2

a3 a4

]

Since

a1 = γn+3 − δn+3

We have

a1

γ − δ
=

(
γ − δ

)(
γn+3 − δn+3

)(
γ − δ

)2
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=
B1B2

(
γ − δ

)(
γn+3 − δn+3

)(
γ − δ

)2 By Eqn. (3.12)

=
B1B2

(
γ − δ

)
γn+3 −B1B2

(
γ − δ

)
δn+3(

γ − δ
)2

=
B1
(
γN0 −N1

)
γn+3 −B2

(
N1 − δN0

)
δn+3(

γ − δ
)2 By Eqn. (3.12)

=
N0

(
B1γ

n+4 +B2δ
n+4
)
−N1

(
B1γ

n+3 +B2δ
n+3
)

(
γ − δ

)2

=
N0Nn+4 −N1Nn+3(

γ − δ
)2

Again

a2

γ − δ
=
(
1− i

)(γ − δ)(γn+2 − δn+2
)(

γ − δ
)2

=
(
1− i

)B1B2
(
γ − δ

)(
γn+2 − δn+2

)(
γ − δ

)2 By Eqn. (3.12)

=
(
1− i

)B1B2
(
γ − δ

)
γn+2 −B1B2

(
γ − δ

)
δn+2(

γ − δ
)2

=
(
1− i

)B1
(
γN0 −N1

)
γn+2 −B2

(
N1 − δN0

)
δn+2(

γ − δ
)2 By Eqn. (3.12)

=
(
1− i

)N0

(
B1γ

n+3 +B2δ
n+3
)
−N1

(
B1γ

n+2 +B2δ
n+2
)

(
γ − δ

)2

=
(
1− i

)N0Nn+3 −N1Nn+2(
γ − δ

)2

Equivalently

a3

γ − δ
=
N0Nn+3 −N1Nn+2(

γ − δ
)2 and

a4

γ − δ
=
(
1− i

)N0Nn+2 −N1Nn+1(
γ − δ

)2

Hence, we achieve

Zn =
(
γ − δ

)−2

N0Nn+4 −N1Xn+3
(
1− i

)(
N0Nn+3 −N1Nn+2

)
N0Nn+3 −N1Nn+2

(
1− i

)(
N0Nn+2 −N1Nn+1

)


Corollary 4.6. For n ∈ Z0, the ensuing results hold

X0Xn+2 −X1Xn+1 = dMn+1 (4.7)

N0Nn+2 −N1Nn+1 =
(
γ − δ

)2
Mn+1 (4.8)
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Corollary 4.7. Let n ≥ 0, the following properties hold

X0
(
Xn+4 +Xn+2

)
−X1

(
Xn+3 +Xn+1

)
= dNn+2 (4.9)

N0
(
Nn+4 +Nn+2

)
−N1

(
Nn+3 +Nn+1

)
=
(
γ − δ

)2
Nn+2 (4.10)

Proof. By equating corresponding terms of matrices from the Equations (4.2) and (4.5), we have

X0Xn+4 −X1Xn+3 = dMn+3

X0Xn+2 −X1Xn+1 = dMn+1

Adding together both the equations, we get

X0
(
Xn+4 +Xn+2

)
−X1

(
Xn+3 +Xn+1

)
= d

(
Mn+3 +Mn+1

)
=

d

γ − δ

(
γn+3 − δn+3 + γn+1 − δn+1

)
By Eqn. (3.11)

=
d

γ − δ

[
γn+1(γ2 + 1

)
− δn+1(δ2 + 1

)]
=

d

γ − δ

[
γn+2(γ − δ)+ δn+2(γ − δ)] By Eqn. (3.7)

= dNn+2 By Eqn. (3.12)

Hence the result.

Conclusion

In this paper we studied the matrix sequence of the binomial form of second order Jacobsthal-
Like sequence. In addition to this we obtained some basic results about the said matrix sequence.
As an extension of this article, future work will examine the matrix sequence of the binomial
form of other second order sequences or higher order sequences.
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