MATRIX SEQUENCE OF THE BINOMIAL FORM OF THE COMPLEX COMBINED JACOBSTHAL-AKIN SEQUENCE

A. A. Wani, G. C. Morales and N. A. Malik
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 11B37, 11B39; Secondary 11B83, 15A15, 05A10.
Keywords and phrases: Jacobsthal sequences, Jacobsthal-Like sequence, binomial form and matrix sequence.

Abstract

In this note, we consider a complex sequence $\left\langle U_{n}\right\rangle_{n \in \mathbb{N}}$ which have a similar structure with Jacobsthal sequence and we nominate this sequence as a complex combined JacobsthalAkin sequence or simply combined Jacobsthal-Akin sequence. After that we study a binomial form $\left\langle X_{n}\right\rangle_{n \in \mathbb{N}}$ of $\left\langle U_{n}\right\rangle_{n \in \mathbb{N}}$ and we call $\left\langle X_{n}\right\rangle_{n \in \mathbb{N}}$ as binomial sequence. Finally we delineate a matrix sequence $\left\langle Z_{n}\right\rangle_{n \in \mathbb{N}}$ of the binomial sequence $\left\langle X_{n}\right\rangle_{n \in \mathbb{N}}$.

1 Introduction

Many more authors worked on the generalizations of Fibonacci sequences [1] by various angles or patterns. Especially some of them employed matrix methods as well as introduced complex plane concept for the study of generalizations of Fibonacci numbers.

Horadam [2] in 1963 introduced the concept of complex Fibonacci numbers. Jordan [3] in 1965 considered a Gaussian Fibonacci sequence $\left\langle G F_{n}\right\rangle$ and established some results between Gaussian Fibonacci sequence and classical Fibonacci sequence. Gaussian Fibonacci numbers are recursively defined by

$$
\begin{equation*}
G F_{n}=G F_{n-1}+G F_{n-2}, \quad n \geq 2 \text { and } G F_{0}=i, G F_{1}=1 \tag{1.1}
\end{equation*}
$$

Later on Berzsenyi [4], Harman [5] and Pethe [6] used different approaches of extensions of Fibonacci numbers on the complex plane.

Now we give some literature where the authors studied the generalizations of Jacobsthal numbers and Jacobsthal-Lucas numbers (see [7]). Asci and Gurel [7] delineated and studied Gaussian Jacobsthal and Gaussian Jacobsthal-Lucas numbers. These numbers are given, respectively, as

$$
\begin{align*}
& G J_{n+1}=G J_{n}+2 G J_{n-1}, \quad n \geq 1 \text { and } G J_{0}=\frac{i}{2}, G J_{1}=1 \tag{1.2}\\
& G j_{n+1}=G j_{n}+2 G j_{n-1}, \quad n \geq 1 \text { and } G j_{0}=2-\frac{i}{2}, G j_{1}=1+2 i \tag{1.3}
\end{align*}
$$

Again Asci ans Gurel [8] examined Gaussian Jacobsthal and Gaussian Jacobsthal-Lucas polynomials.

In [10] defined a sequence $\left\langle b_{n}\right\rangle_{n \in \mathbb{Z}_{0}}$ (\mathbb{Z}_{0} is the set of non-negative numbers) as the binomial transform of the sequence $\left\langle a_{n}\right\rangle_{n \in \mathbb{Z}_{0}}$ if

$$
\begin{equation*}
b_{n}=\sum_{k=0}^{n} a_{k} \tag{1.4}
\end{equation*}
$$

and Wani et al. [11] obtained the binomial form of Fibonacci-Like sequence.. A trend has been going on from several past years that many authors added parameters s and t in the classical Fibonacci, Jacobsthal sequences etc in the recurrence relation system of these sequences and then designate these sequences as (s, t)-type sequences. Uygun [9] presented (s, t)-Jacobsthal sequence $\left\langle\hat{\jmath}_{n}(s, t)\right\rangle$ and (s, t)-Jacobsthal-Lucas sequence $\left\langle\hat{c}_{n}(s, t)\right\rangle$ such that

$$
\begin{equation*}
\hat{\jmath}_{n}(s, t)=s \hat{\jmath}_{n-1}(s, t)+2 t \hat{\jmath}_{n-2}(s, t), \quad n \geq 2 \text { and } \hat{\jmath}_{0}(s, t)=0, \hat{\jmath}_{1}(s, t)=1 \tag{1.5}
\end{equation*}
$$

$$
\begin{equation*}
\hat{c}_{n}(s, t)=s \hat{c}_{n-1}(s, t)+2 t \hat{c}_{n-2}(s, t), \quad n \geq 2 \text { and } \hat{c}_{0}(s, t)=2, \hat{c}_{1}(s, t)=s \tag{1.6}
\end{equation*}
$$

where $s>0, t \neq 0$ and $s^{2}+8 t>0$.
Since 2008 several authors explored the recurrence relations of Fibonacci sequences, generalized Fibonacci sequences and other second order sequences into the sequences known as matrix sequences that is, the sequences in which the terms of the sequences are in the form of matrices and the elements of matrices are the terms of general sequences. In 2008 Civciv and and Turkmen [12] presented (s, t)-Fibonacci sequence $\left\langle F_{n}(s, t)\right\rangle$ and (s, t)-Fibonacci matrix sequence $\left\langle\mathcal{F}_{n}(s, t)\right\rangle$ and obtained various properties for these sequences. These sequences $\left\langle F_{n}(s, t)\right\rangle$ and $\left\langle\mathcal{F}_{n}(s, t)\right\rangle$ are delineated by

$$
\begin{gather*}
F_{n+1}(s, t)=s F_{n}(s, t)+t F_{n-1}(s, t) \quad n \geq 1 \text { and } F_{0}(s, t)=0, F_{1}(s, t)=1 \tag{1.7}\\
\mathcal{F}_{n+1}(s, t)=s \mathcal{F}_{n}(s, t)+t \mathcal{F}_{n-1}(s, t), \quad n \geq 1 \tag{1.8}
\end{gather*}
$$

with $\mathcal{F}_{0}(s, t)=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], \mathcal{F}_{1}(s, t)=\left[\begin{array}{ll}s & 1 \\ t & 0\end{array}\right]$ and $s>0, t \neq 0, s^{2}+4 t>0$.
Again Civciv and Turkmen [13] delineated (s, t)-Lucas matrix sequence which is defined as follows:

$$
\begin{equation*}
F_{n+1}(s, t)=s F_{n}(s, t)+t F_{n-1}(s, t) \quad n \geq 1 \text { and } F_{0}(s, t)=0, F_{1}(s, t)=1 \tag{1.9}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{L}_{n+1}(s, t)=s \mathcal{L}_{n}(s, t)+t \mathcal{L}_{n-1}(s, t), \quad n \geq 1 \tag{1.10}
\end{equation*}
$$

with $\mathcal{L}_{0}(s, t)=\left[\begin{array}{cc}s & 2 \\ 2 t & -s\end{array}\right], \mathcal{L}_{1}(s, t)=\left[\begin{array}{cc}s^{2}+2 t & s \\ s t & 2 t\end{array}\right]$ and $s>0, t \neq 0, s^{2}+4 t>0$.
The main motive of this article to obtain the matrix sequence of the binomial form of the Combined Jacobsthal-Akin sequence.

2 Combined Jacobsthal-Akin Sequence

Definition 2.1. [7] The Jacobsthal and Jacobsthal-Lucas sequences $\left\langle J_{n}\right\rangle$ and $\left\langle j_{n}\right\rangle$ are respectively given by the following recurrence relations:

$$
\begin{gather*}
J_{n}=J_{n-1}+2 J_{n-2}, \quad n \geq 2 \text { and } J_{0}=0, J_{1}=1 \tag{2.1}\\
j_{n}=j_{n-1}+2 j_{n-2}, \quad n \geq 2 \text { and } J_{0}=2, \quad J_{1}=1 \tag{2.2}
\end{gather*}
$$

The $n^{\text {th }}$ terms of both the sequences are mentioned by the ensuing relations:

$$
\begin{align*}
& J_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \tag{2.3}\\
& j_{n}=\alpha^{n}+\beta^{n} \tag{2.4}
\end{align*}
$$

where $\alpha=2$ and $\beta=-1$.
Definition 2.2. For $s, t \in \mathbb{Z}^{+}$and $i(=\sqrt{-1})$, the combined Jacobsthal-Akin sequence $\left\langle U_{n}\right\rangle_{n \in \mathbb{N}}$ is recurrently defined by

$$
\begin{equation*}
U_{n}=i U_{n-1}+2 U_{n-2}, \quad n \geq 2 \tag{2.5}
\end{equation*}
$$

with seeds $U_{0}=s-2 t$ and $U_{1}=i(s-t)$
The first few terms of the the combined Jacobsthal-Akin sequence $\left\langle U_{n}\right\rangle_{n \in \mathbb{N}}$ are given by

$$
U_{0}=s-2 t, U_{1}=i(s-t), U_{2}=s-3 t, U_{3}=i(3 s-5 t), U_{4}=-(s+t)
$$

and so on.
Let θ and ϑ be the two complex roots of the characteristic equation $u^{2}-i u-2=0$ of $\left\langle U_{n}\right\rangle$. The values of θ and ϑ are determined by

$$
\begin{equation*}
\theta=\frac{\sqrt{7}+i}{2} \quad \text { and } \quad \vartheta=\frac{-(\sqrt{7}-i)}{2} \tag{2.6}
\end{equation*}
$$

Theorem 2.3. For $n \in \mathbb{Z}_{0}$, the $n^{\text {th }}$ term of the combined Jacobsthal-Akin sequence is delineated as

$$
\begin{equation*}
U_{n}=s \frac{\theta^{n+1}-\vartheta^{n+1}}{\theta-\vartheta}-t\left(\theta^{n}+\vartheta^{n}\right) \tag{2.7}
\end{equation*}
$$

Proof. Its proof can be easily seen by using induction method.
Now let

$$
\begin{equation*}
\widehat{U}_{n}=\frac{\theta^{n+1}-\vartheta^{n+1}}{\theta-\vartheta} \tag{2.8}
\end{equation*}
$$

is called Jacobsthal-Like sequence.
and

$$
\begin{equation*}
\bar{U}_{n}=\theta^{n}+\vartheta^{n} \tag{2.9}
\end{equation*}
$$

is called Jacobsthal-Lucas-Like sequence.
Clearly from the equations (2.8) and (2.9) Jacobsthal-Akin sequence $\left\langle U_{n}\right\rangle$ is the combination of two sequences such as jacobsthal-Like sequence (2.8) and Jacobsthal-Lucas-Like sequence (2.9) and so the sequence $\left\langle U_{n}\right\rangle$ is called combined Jacobsthal-Akin sequence.

3 Binomial Form of Combined Jacobsthal-Akin sequence $\left\langle\boldsymbol{W}_{\boldsymbol{n}}\right\rangle$

In the present section first of all we express combined Jacobsthal-Akin sequence $\left\langle U_{n}\right\rangle$ in terms of binomial form $\left\langle X_{n}\right\rangle$ and we call $\left\langle X_{n}\right\rangle$ as binomial sequence. After that we obtain a recurrence relation for $\left\langle X_{n}\right\rangle$. Furthermore we obtain binomial forms or binomial sequences of the Jacobsthal-Like and Jacobsthal-Lucas-Like sequences.

Definition 3.1. For $n \in \mathbb{Z}_{0}$, the binomial form of the combined Jacobsthal-Like sequence $\left\langle U_{n}\right\rangle$ is defined by

$$
\begin{equation*}
X_{n}=\sum_{l=0}^{n}\binom{n}{l} U_{l} \tag{3.1}
\end{equation*}
$$

Lemma 3.2. For $n \in \mathbb{Z}_{0}$, the following property holds for $\left\langle X_{n}\right\rangle$:

$$
\begin{equation*}
X_{n+1}=\sum_{l=0}^{n}\binom{n}{l}\left(U_{l}+U_{l+1}\right) \tag{3.2}
\end{equation*}
$$

Proof. Its proof can be easily obtained by using the relation $\binom{n+1}{l}=\binom{n}{l}+\binom{n}{l-1} \quad \square$
Theorem 3.3. (Recurrence relation for $\left\langle U_{n}\right\rangle$) For $s, t \in \mathbb{Z}^{+}$and $i(=\sqrt{-1})$, the binomial recurrence relation $\left\langle X_{n}\right\rangle$ of the combined Jacobsthal-Akin sequence $\left\langle U_{n}\right\rangle$ is given by

$$
\begin{equation*}
X_{n+1}=(2+i) X_{n}+(1-d i) X_{n-1}, \quad n \geq 1 \tag{3.3}
\end{equation*}
$$

with $X_{0}=s-2 t$ and $X_{1}=(s-2 t)+i(s-t)$
Proof. Since

$$
\begin{aligned}
X_{n+1} & =\sum_{l=0}^{n}\binom{n}{l}\left(U_{l}+U_{l+1}\right) \\
& =U_{0}+U_{1}+\sum_{l=1}^{n}\binom{n}{l}\left(U_{l}+U_{l+1}\right)
\end{aligned}
$$

$$
\begin{align*}
& =U_{0}+U_{1}+\sum_{l=1}^{n}\binom{n}{l}\left(U_{l}+i U_{l}+2 U_{l-1}\right) \quad \text { By Eqn. (2.5) } \tag{2.5}\\
& =U_{0}+U_{1}+\sum_{l=1}^{n}\binom{n}{l}\left[(1+i) U_{l}+2 U_{l-1}\right] \\
& =(1+i) \sum_{l=1}^{n}\binom{n}{l} U_{l}+2 \sum_{l=1}^{n}\binom{n}{l} U_{l-1}+U_{0}+U_{1} \\
& =(1+i) \sum_{l=1}^{n}\binom{n}{l} U_{l}+(1+i) U_{0}+2 \sum_{l=1}^{n}\binom{n}{l} U_{l-1}-(1+i) U_{0}+U_{0} \\
& \quad+U_{1} \\
& =(1+i) \sum_{l=0}^{n}\binom{n}{l} U_{l}+2 \sum_{l=1}^{n}\binom{n}{l} U_{l-1}-i U_{0}+U_{1} \\
& =(1+i) X_{n}+2 \sum_{l=1}^{n}\binom{n}{l} U_{l-1}-i U_{0}+U_{1} \tag{3.4}
\end{align*} \quad \text { By Eqn. (3.1) }
$$

By replacing n by $n-1$, we get

$$
\begin{aligned}
& X_{n}=(1+i) X_{n-1}+2 \sum_{l=1}^{n-1}\binom{n-1}{l} U_{l-1}-i U_{0}+U_{1} \\
&=i X_{n-1}+\sum_{l=0}^{n-1}\binom{n-1}{l} U_{l}+2 \sum_{l=1}^{n-1}\binom{n-1}{l} U_{l-1}-i U_{0}+U_{1} \\
&=i X_{n-1}+\sum_{l=1}^{n}\binom{n-1}{l-1} U_{l-1}+2\left[\binom{n-1}{1} U_{0}+\binom{n-1}{2} U_{1}+\binom{n-1}{3}\right. \\
&\left.\quad U_{2}+\cdots+\binom{n-1}{n-1} U_{n-2}+\binom{n-1}{n} U_{n-1}\right]-i U_{0}+U_{1}
\end{aligned}
$$

After using the fact $\binom{n-1}{n}=0$, we have

$$
\begin{aligned}
& X_{n}=i X_{n-1}+\sum_{l=1}^{n}\binom{n-1}{l-1} U_{l-1}+2 \sum_{l=1}^{n}\binom{n-1}{l} U_{l-1}-i U_{0}+U_{1} \\
& X_{n}=i X_{n-1}+\sum_{l=1}^{n}\left[\binom{n-1}{l-1}+2\binom{n-1}{l}\right] U_{l-1}-i U_{0}+U_{1} \\
&= i X_{n-1}+\sum_{l=1}^{n}\left[\binom{n-1}{l-1}+2\binom{n-1}{l}+2\binom{n-1}{l-1}-2\binom{n-1}{l-1}\right] U_{l-1} \\
& \quad-i U_{0}+U_{1} \\
&=i X_{n-1}+\sum_{l=1}^{n}\left[(1-2)\binom{n-1}{l-1}+2\binom{n}{l}\right] U_{l-1}-i U_{0}+U_{1} \\
&=i X_{n-1}-\sum_{l=1}^{n}\binom{n-1}{l-1} U_{l-1}+2 \sum_{l=1}^{n}\binom{n}{l} U_{l-1}-i U_{0}+U_{1}
\end{aligned}
$$

$$
\begin{align*}
& =i X_{n-1}-\sum_{l=0}^{n-1}\binom{n-1}{l} U_{l}+2 \sum_{l=1}^{n}\binom{n}{l} U_{l-1}-i U_{0}+U_{1} \\
& =i X_{n-1}-X_{n-1}+2 \sum_{l=1}^{n}\binom{n}{l} U_{l-1}-i U_{0}+U_{1} \tag{3.1}\\
& =(i-1) X_{n-1}+2 \sum_{l=1}^{n}\binom{n}{l} U_{l-1}-i U_{0}+U_{1}
\end{align*}
$$

Thus

$$
X_{n}-(i-1) X_{n-1}=2 \sum_{l=1}^{n}\binom{n}{l} U_{l-1}-i U_{0}+U_{1}
$$

Hence from the equation (3.4), we get

$$
\begin{aligned}
X_{n+1} & =(1+i) X_{n}+X_{n}-(i-1) X_{n-1} \\
& =(2+i) X_{n}+(1-i) X_{n-1}
\end{aligned}
$$

as required.
First few terms of the binomial sequence $\left\langle X_{n}\right\rangle$ defined in equation (3.3) are as under $X_{0}=(s-2 t), X_{1}=(s-2 t)+i(s-t), X_{2}=(2 s-6 t)+i(2 s-2 t), X_{3}=(4 s-13 t)+$ $i(6 s-9 t), X_{4}=(6 s-25 t)+i(16 s-27 t)$ and so on.
Clearly $v^{2}-(2+i) v-(1-i)=0$ is the characteristic equation of $\left\langle X_{n}\right\rangle$. Suppose that γ and δ be its two roots and are given as

$$
\begin{align*}
\gamma= & \frac{(2+i)+\sqrt{(2+i)^{2}+4(1-i)}}{2} \\
& =\frac{\sqrt{7}+i+2}{2} \\
& =\frac{\sqrt{7}+i}{2}+1 \\
& =\theta+1 \tag{3.5}
\end{align*}
$$

Similarly

$$
\begin{equation*}
\delta=\vartheta+1 \tag{3.6}
\end{equation*}
$$

Some noticeable points about γ and δ are

$$
\begin{equation*}
\gamma+\delta=2+i, \quad \gamma \delta=i-1=-(1-i) \text { and } \gamma-\delta=\sqrt{7} \tag{3.7}
\end{equation*}
$$

Now to obtain the binomial forms or binomial sequences of the Jacobsthal-Like $\left\langle\widehat{U}_{n}\right\rangle$ and Jacobsthal-Lucas-Like $\left\langle\bar{U}_{n}\right\rangle$ sequences we should prove the following result:
Theorem 3.4. For $n \in \mathbb{Z}_{0}$, the $n^{\text {th }}$ term of $\left\langle X_{n}\right\rangle$ is given by

$$
\begin{equation*}
X_{n}=s\left(\frac{\gamma^{n+1}-\delta^{n+1}}{\gamma-\delta}-\frac{\gamma^{n}-\delta^{n}}{\gamma-\delta}\right)-t\left(\gamma^{n}+\delta^{n}\right) \tag{3.8}
\end{equation*}
$$

Proof. Let us consider a square matrix $X=\left[\begin{array}{cc}2+i & 1-i \\ 1 & 0\end{array}\right]$ and u be the eigenvalue of X. Then by Cayley Hamilton theorem the characteristic equation of X is given by the equation:

$$
|X-u I|=0
$$

$$
\begin{aligned}
\left|\begin{array}{cc}
2+i-u & 1-i \\
1 & u
\end{array}\right| & =0 \\
u^{2}-(2+i) u-(1-i) & =0
\end{aligned}
$$

Let γ and δ be the characteristic roots as well as eigenvalues of the matrix X. The eigenvectors corresponding to γ and δ are $\left[\begin{array}{l}\gamma \\ 1\end{array}\right]$ and $\left[\begin{array}{l}\delta \\ 1\end{array}\right]$ respectively. Let $V_{1}=\left[\begin{array}{ll}\gamma & \delta \\ 1 & 1\end{array}\right]$ be the matrix of the eigenvectors. Since your matrix $V_{1}=\left[\begin{array}{ll}\gamma & \delta \\ 1 & 1\end{array}\right]$, the its inverse is $(\gamma-\delta)^{-1}\left[\begin{array}{cc}1 & -\delta \\ -1 & \gamma\end{array}\right]$ and $V_{2}=\left[\begin{array}{ll}\gamma & 0 \\ 0 & \delta\end{array}\right]$ is the diagonal matrix. Then by the process of diagonalization of matrices, we achieve

$$
\begin{aligned}
X^{n} & =V_{1} V_{2}^{n} V_{1}^{-1} \\
& =(\gamma-\delta)^{-1}\left[\begin{array}{ll}
\gamma & \delta \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\gamma^{n} & 0 \\
0 & \delta^{n}
\end{array}\right]\left[\begin{array}{cc}
1 & -\gamma \\
-1 & \delta
\end{array}\right] \\
& =(\gamma-\delta)^{-1}\left[\begin{array}{cc}
\gamma^{n+1}-\delta^{n+1} & -\delta \gamma^{n+1}+\gamma \delta^{n+1} \\
\gamma^{n}-\delta^{n} & -\delta \gamma^{n}+\gamma \delta^{n}
\end{array}\right]
\end{aligned}
$$

Since $\left[\begin{array}{c}X_{n+1} \\ X_{n}\end{array}\right]=X^{n}\left[\begin{array}{l}X_{1} \\ X_{0}\end{array}\right]$, we have

$$
\begin{aligned}
{\left[\begin{array}{c}
X_{n+1} \\
X_{n}
\end{array}\right] } & =(\gamma-\delta)^{-1}\left[\begin{array}{cc}
\gamma^{n+1}-\delta^{n+1} & -\delta \gamma^{n+1}+\gamma \delta^{n+1} \\
\gamma^{n}-\delta^{n} & -\delta \gamma^{n}+\gamma \delta^{n}
\end{array}\right]\left[\begin{array}{c}
X_{1} \\
X_{0}
\end{array}\right] \\
& =(\gamma-\delta)^{-1}\left[\begin{array}{c}
X_{1} \gamma^{n+1}-X_{1} \delta^{n+1}-X_{0} \delta \gamma^{n+1}+X_{0} \gamma \delta^{n+1} \\
X_{1} \gamma^{n}-X_{1} \delta^{n}-X_{0} \delta \gamma^{n}+X_{0} \gamma \delta^{n}
\end{array}\right]
\end{aligned}
$$

Thus

$$
\begin{aligned}
X_{n} & =\frac{X_{1} \gamma^{n}-X_{1} \delta^{n}-X_{0} \delta \gamma^{n}+X_{0} \gamma \delta^{n}}{\gamma-\delta} \\
& =\frac{1}{\gamma-\delta}\left[\left(X_{1}-\delta X_{0}\right) \gamma^{n}+\left(\gamma X_{0}-X_{1}\right) \delta^{n}\right]
\end{aligned}
$$

Let

$$
X_{n}=\frac{1}{\gamma-\delta}\left(V_{3}+V_{4}\right)
$$

where

$$
\begin{aligned}
V_{3} & =\left(X_{1}-\delta X_{0}\right) \gamma^{n} \\
& =[s(1+i)-t(2+i)-\delta(s-2 t)] \\
& =(i s+s-i t-2 t-\delta s+2 \delta t) \gamma^{n} \\
& =i s \gamma^{n}+s \gamma^{n}-s \delta \gamma^{n}-i t \gamma^{n}-2 t \gamma^{n}+2 \delta t \gamma^{n} \\
& =i s \gamma^{n}+s \gamma^{n}-s(2+i-\gamma) \gamma^{n}-i t \gamma^{n}-2 t \gamma^{n}+2 t(2+i-\gamma) \gamma^{n}
\end{aligned}
$$

By Eqn. (3.7)

$$
\begin{align*}
& =i s \gamma^{n}+s \gamma^{n}-2 s \gamma^{n}-i s \gamma^{n}+s \gamma^{n+1}-i t \gamma^{n}-2 t \gamma^{n}+4 t \gamma^{n}+i 2 t \gamma^{n}-2 t \gamma^{n+1} \\
& =-s \gamma^{n}+s \gamma^{n+1}+i t \gamma^{n}+2 t \gamma^{n}-2 t \gamma^{n+1} \\
& =s \gamma^{n+1}-s \gamma^{n}+t \gamma^{n}(2+i-2 \gamma) \\
& =s \gamma^{n+1}-s \gamma^{n}+t \gamma^{n}(\gamma+\delta-2 \gamma) \quad \text { By Eqn. (3.7) } \tag{3.7}\\
& =s \gamma^{n+1}-s \gamma^{n}-t \gamma^{n}(\gamma-\delta)
\end{align*}
$$

Similarly

$$
V_{4}=-s \delta^{n+1}+s \delta^{n}-t \delta^{n}(\gamma-\delta)
$$

Therefore

$$
\begin{aligned}
X_{n} & =\frac{1}{\gamma-\delta}\left[s \gamma^{n+1}-s \gamma^{n}-t \gamma^{n}(\gamma-\delta)-s \delta^{n+1}+s \delta^{n}-t \delta^{n}(\gamma-\delta)\right] \\
& =\frac{1}{\gamma-\delta}\left[s \gamma^{n+1}-s \delta^{n+1}-s \gamma^{n}+s \delta^{n}-t \gamma^{n}(\gamma-\delta)-t \delta^{n}(\gamma-\delta)\right] \\
& =s\left(\frac{\gamma^{n+1}-\delta^{n+1}}{\gamma-\delta}-\frac{\gamma^{n}-\delta^{n}}{\gamma-\delta}\right)-t\left(\gamma^{n}+\delta^{n}\right)
\end{aligned}
$$

Hence the result.
Again we know that the recurrence relation for $\left\langle X_{n}\right\rangle$ is a second order homogeneous linear recurrence relation. Then the general solution or $n^{t h}$ term of the binomial sequence $\left\langle X_{n}\right\rangle$ is also given according to

$$
\begin{equation*}
X_{n}=A \gamma^{n}+B \delta^{n} \tag{3.9}
\end{equation*}
$$

where A and B are constants and the values of A and B are as

$$
\begin{equation*}
A=\frac{X_{1}-\delta X_{0}}{\gamma-\delta} \text { and } B=\frac{\gamma X_{0}-X_{1}}{\gamma-\delta} \Rightarrow A B=\frac{d}{(\gamma-\delta)^{2}} \tag{3.10}
\end{equation*}
$$

where d is the fixed quantity dependent only on X_{0} and X_{1}.
Now we express the binomial sequence $\left\langle X_{n}\right\rangle$ in terms of two sequences $\left\langle M_{n}\right\rangle$ and $\left\langle N_{n}\right\rangle$, where

$$
\begin{align*}
& M_{n}= \frac{\gamma^{n}-\delta^{n}}{\gamma-\delta} \\
&= A_{1} \gamma^{n}+B_{1} \delta^{n}, \quad A_{1}=\frac{M_{1}-\delta M_{0}}{\gamma-\delta}, \quad A_{2}=\frac{\gamma M_{0}-M_{1}}{\gamma-\delta} \tag{3.11}\\
& \quad \Rightarrow A_{1} A_{2}=\frac{-1}{(\gamma-\delta)^{2}}
\end{align*}
$$

and

$$
\begin{align*}
N_{n} & =\gamma^{n}+\delta^{n} \\
& =B_{1} \gamma^{n}+B_{2} \delta^{n}, \quad B_{1}=\frac{N_{1}-\delta N_{0}}{\gamma-\delta}, \quad B_{2}=\frac{\gamma N_{0}-N_{1}}{\gamma-\delta} \Rightarrow B_{1} B_{2}=1 \tag{3.12}
\end{align*}
$$

Clearly $M_{n+1}-M_{n}$ is the binomial form or binomial sequence of the Jacobsthal-Like sequence $\left\langle\widehat{U}_{n}\right\rangle$ and $\left\langle N_{n}\right\rangle$ is the binomial form or binomial sequence of the Jacobsthal-Lucas-Like sequence $\left\langle\bar{U}_{n}\right\rangle$.

4 Matrix Sequence of the Binomial Sequence $\left\langle\boldsymbol{X}_{\boldsymbol{n}}\right\rangle$

In this section we define a matrix sequence $\left\langle Z_{n}\right\rangle$ by using binomial sequence $\left\langle X_{n}\right\rangle$ and so called $\left\langle Z_{n}\right\rangle$ as binomial matrix sequence. In addition to this we give some results related to sequences $\left\langle X_{n}\right\rangle,\left\langle M_{n}\right\rangle,\left\langle N_{n}\right\rangle$ and $\left\langle Z_{n}\right\rangle$.

Definition 4.1. For $i(=\sqrt{-1})$, the binomial matrix sequence $\left\langle Z_{n}\right\rangle_{n \in \mathbb{N}}$ is defined by the following equation:

$$
\begin{equation*}
Z_{n+1}=(2+i) Z_{n}+(1-i) Z_{n-1}, \quad n \geq 1 \tag{4.1}
\end{equation*}
$$

with $Z_{0}=\left[\begin{array}{cc}4+3 i & 3-i \\ 2+i & 1-i\end{array}\right]$ and $Z_{1}=\left[\begin{array}{cc}8+9 i & 7-i \\ 4+3 i & 3-i\end{array}\right]$
Some few initial few terms of the the binomial matrix sequence $\left\langle Z_{n}\right\rangle_{n \in \mathbb{N}}$ are given by

$$
\begin{aligned}
& Z_{0}=\left[\begin{array}{cc}
4+3 i & 3-i \\
2+i & 1-i
\end{array}\right], Z_{1}=\left[\begin{array}{ll}
8+9 i & 7-i \\
4+3 i & 3-i
\end{array}\right], Z_{2}=\left[\begin{array}{cc}
14+25 i & 17+i \\
8+9 i & 7-i
\end{array}\right] \\
& Z_{3}=\left[\begin{array}{cc}
20+65 i & 39+11 i \\
14+25 i & 17+i
\end{array}\right]
\end{aligned}
$$

and so on.
As we know that the elements of the binomial matrix sequence $\left\langle Z_{n}\right\rangle$ are in the form of of matrices and the entries of these matrices are the elements of binomial sequence $\left\langle X_{n}\right\rangle$. Now in the next theorem we give the $n^{t h}$ term of the binomial matrix sequence $\left\langle Z_{n}\right\rangle$ in terms of the binomial sequence $\left\langle X_{n}\right\rangle$.

Theorem 4.2. For $n \in \mathbb{Z}_{0}$, the $n^{\text {th }}$ term of the matrix sequence $\left\langle Z_{n}\right\rangle$ is given by

$$
Z_{n}=d^{-1}\left[\begin{array}{ll}
X_{0} X_{n+4}-X_{1} X_{n+3} & (1-i)\left(X_{0} X_{n+3}-X_{1} X_{n+2}\right) \tag{4.2}\\
X_{0} X_{n+3}-X_{1} X_{n+2} & (1-i)\left(X_{0} X_{n+2}-X_{1} X_{n+1}\right)
\end{array}\right]
$$

Proof. Let $Z=\left[\begin{array}{cc}2+i & 1-i \\ 1 & 0\end{array}\right]$ be a square matrix correspond to the binomial matrix sequence $\left\langle Z_{n}\right\rangle$ and assuredly $\left[\begin{array}{c}Z_{n+1} \\ Z_{n}\end{array}\right]=Z^{n}\left[\begin{array}{l}Z_{1} \\ Z_{0}\end{array}\right]$. Then by similar manner from the proof of the Theorem (3.4), we write

$$
\begin{align*}
& Z_{n}=\frac{Z_{1} \gamma^{n}-Z_{1} \delta^{n}-Z_{0} \delta \gamma^{n}+Z_{0} \gamma \delta^{n}}{\gamma-\delta} \\
& =\frac{1}{\gamma-\delta}\left[\left(Z_{1}-\delta Z_{0}\right) \gamma^{n}+\left(\gamma Z_{0}-Z_{1}\right) \delta^{n}\right] \\
& =\frac{1}{\gamma-\delta}\left[\left(\begin{array}{cc}
8+9 i & 7-i \\
4+3 i & 3-i
\end{array}\right) \gamma^{n}-\left(\begin{array}{cc}
4+3 i & 3-i \\
2+i & 1-i
\end{array}\right) \delta \gamma^{n}+\left(\begin{array}{cc}
4+3 i & 3-i \\
2+i & 1-i
\end{array}\right) \gamma \delta^{n}\right. \\
& \left.-\left(\begin{array}{ll}
8+9 i & 7-i \\
4+3 i & 3-i
\end{array}\right) \delta^{n}\right] \tag{4.3}\\
& =\frac{A B(\gamma-\delta)}{d}\left[\left(\begin{array}{cc}
8+9 i & 7-i \\
4+3 i & 3-i
\end{array}\right) \gamma^{n}-\left(\begin{array}{cc}
4+3 i & 3-i \\
2+i & 1-i
\end{array}\right) \delta \gamma^{n}+\left(\begin{array}{cc}
4+3 i & 3-i \\
2+i & 1-i
\end{array}\right) \gamma \delta^{n}\right. \\
& \left.-\left(\begin{array}{ll}
8+9 i & 7-i \\
4+3 i & 3-i
\end{array}\right) \delta^{n}\right] \tag{3.10}\\
& =\frac{A B(\gamma-\delta)}{d}\left[\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right]
\end{align*}
$$

Here

$$
\begin{aligned}
a_{1}= & (8+9 i) \gamma^{n}-(4+3 i) \delta \gamma^{n}+(4+3 i) \gamma \delta^{n}-(8+9 i) \delta^{n} \\
= & 8 \gamma^{n}+9 \gamma^{n} i-4 \gamma^{n}(2+i-\gamma)-3 \gamma^{n} i(2+i-\gamma)+4 \delta^{n}(2+i-\gamma) \\
& \quad+3 \delta^{n} i(2+i-\gamma)-8 \delta^{n}-9 \delta^{n} i \\
= & 3 \gamma^{n}-\gamma^{n} i+4 \gamma^{n+1}+3 \gamma^{n+1} i-3 \delta^{n}+\delta^{n} i-4 \delta^{n+1}-3 \delta^{n}-3 \delta^{n+1} i \\
= & \gamma^{n}[(4+3 i) \gamma+(3-i)]-\delta^{n}[(4+3 i) \delta+(3-i)]
\end{aligned}
$$

Since

$$
\begin{aligned}
4+3 i & =(2+i)^{2}+(1-i)=(\gamma+\delta)^{2}+(\gamma \delta) \text { and } \\
3-i & =(2+i)(1-i)=-(\gamma+\delta)(\gamma \delta)
\end{aligned}
$$

Hence, we get

$$
\begin{aligned}
a_{1} & =\gamma^{n}\left[(\gamma+\delta)^{2} \gamma-(\gamma \delta) \gamma-(\gamma+\delta)(\gamma \delta)\right]-\delta^{n}\left[(\gamma+\delta)^{2} \delta-(\gamma \delta) \delta-(\gamma+\delta)(\gamma \delta)\right] \\
& =\gamma^{n+3}-\delta^{n+3}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\frac{A B(\gamma-\delta)}{d} a_{1} & =\frac{A B(\gamma-\delta) \gamma^{n+3}-A B(\gamma-\delta) \delta^{n+3}}{d} \\
& =\frac{A\left(\gamma X_{0}-X_{1}\right) \gamma^{n+3}-B\left(\gamma X_{1}-\delta X_{0}\right) \delta^{n+3}}{d} \\
& =\frac{X_{0}\left(A \gamma^{n+4}+B \delta^{n+4}\right)-X_{1}\left(A \gamma^{n+3}+B \delta^{n+3}\right)}{d} \\
& =\frac{X_{0} X_{n+4}-X_{1} X_{n+3}}{d}
\end{aligned}
$$

By Eqn. (3.10)

Now

$$
\begin{aligned}
a_{2}= & (7-i) \gamma^{n}-(3-i) \delta \gamma^{n}+(3-i) \gamma \delta^{n}-(7-i) \delta^{n} \\
= & 7 \gamma^{n}-i \gamma^{n}-3 \gamma^{n}(2+i-\gamma)+\gamma^{n} i(2+i-\gamma)+3 \delta^{n}(2+i-\delta)-\delta^{n} i(2+i-\delta) \\
& \quad-7 \delta^{n}+\delta^{n} i \\
= & \gamma^{n}[-2 i+\gamma(3-i)]+\delta^{n}[2 i-\delta(3-i)]
\end{aligned}
$$

Since

$$
\begin{aligned}
& -2 i=(1-i)(1-i)=(\gamma \delta)(\gamma \delta) \text { and } \\
& 3-i=(2+i)(1-i)=-(\gamma+\delta)(\gamma \delta)
\end{aligned}
$$

This implies that

$$
\begin{aligned}
a_{2} & =(1-i) \gamma^{n}[-\gamma \delta+\gamma(\gamma+\delta)]+(1-i) \delta^{n}[\gamma \delta-\delta(\gamma+\delta)] \\
& =(1-i)\left(\gamma^{n+2}-\delta^{n+2}\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\frac{A B(\gamma-\delta)}{d} a_{2} & =(1-i) \frac{A B(\gamma-\delta) \gamma^{n+2}-A B(\gamma-\delta) \delta^{n+2}}{d} \\
& =(1-i) \frac{A\left(\gamma X_{0}-X_{1}\right) \gamma^{n+2}-B\left(\gamma X_{1}-\delta X_{0}\right) \delta^{n+2}}{d}
\end{aligned}
$$

By Eqn. (3.10)

$$
\begin{aligned}
& =(1-i) \frac{X_{0}\left(A \gamma^{n+3}+B \delta^{n+3}\right)-X_{1}\left(A \gamma^{n+2}+B \delta^{n+2}\right)}{d} \\
& =(1-i) \frac{X_{0} X_{n+3}-X_{1} X_{n+2}}{d}
\end{aligned}
$$

Similarly

$$
\begin{aligned}
\frac{A B(\gamma-\delta)}{d} a_{3} & =\frac{X_{0} X_{n+3}-X_{1} X_{n+2}}{d} \text { and } \\
\frac{A B(\gamma-\delta)}{d} a_{4} & =(1-i) \frac{X_{0} X_{n+2}-X_{1} X_{n+1}}{d}
\end{aligned}
$$

Thus, we get

$$
Z_{n}=d^{-1}\left[\begin{array}{ll}
X_{0} X_{n+4}-X_{1} X_{n+3} & (1-i)\left(X_{0} X_{n+3}-X_{1} X_{n+2}\right) \\
X_{0} X_{n+3}-X_{1} X_{n+2} & (1-i)\left(X_{0} X_{n+2}-X_{1} X_{n+1}\right)
\end{array}\right]
$$

Lemma 4.3. For $n \in \mathbb{Z}_{0}$, we have

$$
\begin{equation*}
M_{n}=\frac{X_{0} X_{n+1}-X_{1} X_{n}}{d} \tag{4.4}
\end{equation*}
$$

Theorem 4.4. For $n \in \mathbb{Z}_{0}$, the following result holds

$$
Z_{n}=\left[\begin{array}{ll}
M_{n+3} & (1-i) M_{n+2} \tag{4.5}\\
M_{n+2} & (1-i) M_{n+1}
\end{array}\right]
$$

Proof. The proof of this theorem is clearly visible from the equations (4.2) and (4.4).
Theorem 4.5. For $n \in \mathbb{Z}_{0}$, we have

$$
Z_{n}=(\gamma-\delta)^{-2}\left[\begin{array}{ll}
N_{0} N_{n+4}-N_{1} X_{n+3} & (1-i)\left(N_{0} N_{n+3}-N_{1} N_{n+2}\right) \tag{4.6}\\
N_{0} N_{n+3}-N_{1} N_{n+2} & (1-i)\left(N_{0} N_{n+2}-N_{1} N_{n+1}\right)
\end{array}\right]
$$

Proof. By using Equation (4.3) from the proof of Theorem (4.2), we have

$$
\begin{aligned}
Z_{n}= & \frac{1}{\gamma-\delta}\left[\left(\begin{array}{cc}
8+9 i & 7-i \\
4+3 i & 3-i
\end{array}\right) \gamma^{n}-\left(\begin{array}{cc}
4+3 i & 3-i \\
2+i & 1-i
\end{array}\right) \delta \gamma^{n}+\left(\begin{array}{cc}
4+3 i & 3-i \\
2+i & 1-i
\end{array}\right) \gamma \delta^{n}\right. \\
& \left.-\left(\begin{array}{cc}
8+9 i & 7-i \\
4+3 i & 3-i
\end{array}\right) \delta^{n}\right] \\
= & \frac{1}{\gamma-\delta}\left[\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right]
\end{aligned}
$$

Since

$$
a_{1}=\gamma^{n+3}-\delta^{n+3}
$$

We have

$$
\frac{a_{1}}{\gamma-\delta}=\frac{(\gamma-\delta)\left(\gamma^{n+3}-\delta^{n+3}\right)}{(\gamma-\delta)^{2}}
$$

$$
\begin{align*}
& =\frac{B_{1} B_{2}(\gamma-\delta)\left(\gamma^{n+3}-\delta^{n+3}\right)}{(\gamma-\delta)^{2}} \tag{3.12}\\
& =\frac{B_{1} B_{2}(\gamma-\delta) \gamma^{n+3}-B_{1} B_{2}(\gamma-\delta) \delta^{n+3}}{(\gamma-\delta)^{2}} \\
& =\frac{B_{1}\left(\gamma N_{0}-N_{1}\right) \gamma^{n+3}-B_{2}\left(N_{1}-\delta N_{0}\right) \delta^{n+3}}{(\gamma-\delta)^{2}} \tag{3.12}\\
& =\frac{N_{0}\left(B_{1} \gamma^{n+4}+B_{2} \delta^{n+4}\right)-N_{1}\left(B_{1} \gamma^{n+3}+B_{2} \delta^{n+3}\right)}{(\gamma-\delta)^{2}} \\
& =\frac{N_{0} N_{n+4}-N_{1} N_{n+3}}{(\gamma-\delta)^{2}}
\end{align*}
$$

Again

$$
\begin{aligned}
\frac{a_{2}}{\gamma-\delta} & =(1-i) \frac{(\gamma-\delta)\left(\gamma^{n+2}-\delta^{n+2}\right)}{(\gamma-\delta)^{2}} \\
& =(1-i) \frac{B_{1} B_{2}(\gamma-\delta)\left(\gamma^{n+2}-\delta^{n+2}\right)}{(\gamma-\delta)^{2}} \\
& =(1-i) \frac{B_{1} B_{2}(\gamma-\delta) \gamma^{n+2}-B_{1} B_{2}(\gamma-\delta) \delta^{n+2}}{(\gamma-\delta)^{2}} \\
& =(1-i) \frac{B_{1}\left(\gamma N_{0}-N_{1}\right) \gamma^{n+2}-B_{2}\left(N_{1}-\delta N_{0}\right) \delta^{n+2}}{(\gamma-\delta)^{2}} \quad \text { By Eqn. (3.12) } \\
& =(1-i) \frac{N_{0}\left(B_{1} \gamma^{n+3}+B_{2} \delta^{n+3}\right)-N_{1}\left(B_{1} \gamma^{n+2}+B_{2} \delta^{n+2}\right)}{(\gamma-\delta)^{2}} \\
& =(1-i) \frac{N_{0} N_{n+3}-N_{1} N_{n+2}}{(\gamma-\delta)^{2}}
\end{aligned}
$$

Equivalently

$$
\begin{gathered}
\frac{a_{3}}{\gamma-\delta}=\frac{N_{0} N_{n+3}-N_{1} N_{n+2}}{(\gamma-\delta)^{2}} \text { and } \\
\frac{a_{4}}{\gamma-\delta}=(1-i) \frac{N_{0} N_{n+2}-N_{1} N_{n+1}}{(\gamma-\delta)^{2}}
\end{gathered}
$$

Hence, we achieve

$$
Z_{n}=(\gamma-\delta)^{-2}\left[\begin{array}{ll}
N_{0} N_{n+4}-N_{1} X_{n+3} & (1-i)\left(N_{0} N_{n+3}-N_{1} N_{n+2}\right) \\
N_{0} N_{n+3}-N_{1} N_{n+2} & (1-i)\left(N_{0} N_{n+2}-N_{1} N_{n+1}\right)
\end{array}\right]
$$

Corollary 4.6. For $n \in \mathbb{Z}_{0}$, the ensuing results hold

$$
\begin{align*}
& X_{0} X_{n+2}-X_{1} X_{n+1}=d M_{n+1} \tag{4.7}\\
& N_{0} N_{n+2}-N_{1} N_{n+1}=(\gamma-\delta)^{2} M_{n+1} \tag{4.8}
\end{align*}
$$

Corollary 4.7. Let $n \geq 0$, the following properties hold

$$
\begin{align*}
& X_{0}\left(X_{n+4}+X_{n+2}\right)-X_{1}\left(X_{n+3}+X_{n+1}\right)=d N_{n+2} \tag{4.9}\\
& N_{0}\left(N_{n+4}+N_{n+2}\right)-N_{1}\left(N_{n+3}+N_{n+1}\right)=(\gamma-\delta)^{2} N_{n+2} \tag{4.10}
\end{align*}
$$

Proof. By equating corresponding terms of matrices from the Equations (4.2) and (4.5), we have

$$
\begin{aligned}
& X_{0} X_{n+4}-X_{1} X_{n+3}=d M_{n+3} \\
& X_{0} X_{n+2}-X_{1} X_{n+1}=d M_{n+1}
\end{aligned}
$$

Adding together both the equations, we get

$$
\begin{align*}
& X_{0}\left(X_{n+4}+X_{n+2}\right)-X_{1}\left(X_{n+3}+X_{n+1}\right) \\
& =d\left(M_{n+3}+M_{n+1}\right) \\
& =\frac{d}{\gamma-\delta}\left(\gamma^{n+3}-\delta^{n+3}+\gamma^{n+1}-\delta^{n+1}\right) \tag{3.11}\\
& =\frac{d}{\gamma-\delta}\left[\gamma^{n+1}\left(\gamma^{2}+1\right)-\delta^{n+1}\left(\delta^{2}+1\right)\right] \\
& =\frac{d}{\gamma-\delta}\left[\gamma^{n+2}(\gamma-\delta)+\delta^{n+2}(\gamma-\delta)\right] \\
& =d N_{n+2}
\end{align*}
$$

$$
=\frac{d}{\gamma-\delta}\left(\gamma^{n+3}-\delta^{n+3}+\gamma^{n+1}-\delta^{n+1}\right) \quad \text { By Eqn. (3.11) }
$$

By Eqn. (3.7)
By Eqn. (3.12)
Hence the result.

Conclusion

In this paper we studied the matrix sequence of the binomial form of second order JacobsthalLike sequence. In addition to this we obtained some basic results about the said matrix sequence. As an extension of this article, future work will examine the matrix sequence of the binomial form of other second order sequences or higher order sequences.

References

[1] T. Koshy: Fibonacci and Lucas numbers with applications, John Wiley and Sons, 2011.
[2] A. F. Horadam: Complex Fibonacci numbers and Fibonacci quaternions, The American Mathematical Monthly, 70 (3) (1963), 289-291.
[3] J. H. Jordan: Gaussian Fibonacci and Lucas numbers, Fibonacci Quarterly, 3 (4) (1965), 315-318.
[4] G. Berzsenyi: Gaussian Fibonacci numbers, Fibonacci Quarterly, 15 (3) (1977), 233-236.
[5] C. J. Harman: Complex Fibonacci numbers, Fibonacci Quarterly, 19 (1) (1981), 82-86.
[6] S. Pethe and A. F. Horadam: Generalised Gaussian Fibonacci numbers, Bulletin of the Australian Mathematical Society, 33 (1) (1986), 37-48.
[7] M. Asci and E. Gurel: Gaussian Jacobsthal Lucas numbers, Ars Combinatoria, 111 (2013), 53-63.
[8] M. Asci and E. Gurel: Gaussian Jacobsthal and Gaussian Jacobsthal Lucas polynomials, Notes on Number Theory and Discrete Mathematics, 19 (1) (2013), 25-36.
[9] S. Uygun: The (s, t)-Jacobsthal and (s, t)-Jacobsthal Lucas sequences, Applied Mathematical Sciences, 9 (70) (2015), 3467-3476.
[10] K.W. Chen: Identities from the binomial transform, Journal of Number Theory, 124(1) (2007), 142-150.
[11] A. A. Wani, S. A. Bhat and G. P. S. Rathore: Fibonacci-Like sequence associated with k-Pell, k-PellLucas and Modified k-Pell sequences, Journal of Applied Mathematics and Computational Mechanics, 16 (2) (2017), 159-171.
[12] H. Civciv, and R. Turkmen: On the (s, t)-Fibonacci and matrix sequences, Ars Combinatoria, 87 (2008), 161-173.
[13] H. Civciv, and R. Turkmen: Notes on the (s, t)-Lucas and Lucas matrix sequences, Ars Combinatoria , 89 (2008), 271-285.

Author information

A. A. Wani, University of Kashmir, J and K India.

E-mail: arfatmaths@gmail.com
G. C. Morales, Departamento de Matemticas,Universidad Tecnica Federico, Santa Mara, Valparaso, Chile. E-mail: gamaliel.cerda.m@mail.pucv.cl
N. A. Malik, Cluster University of Jammu, J and K India.

E-mail: drnaseerulhassan@gmail.com
Received: July 29, 2020.
Accepted: November 22, 2020

