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Abstract It is well known that all the irreducible projective characters of a finite group G
can be obtained from the ordinary irreducible characters of a so-called representation group
R =M(G).G of G, where M(G) denotes the Schur multiplier of G. Using this theory, a routine
written in the computational algebra system GAP is presented to compute the irreducible pro-
jective characters IrrProj(G,αi) with associated factor sets αi for all of the maximal subgroups
of the sporadic simple Mathieu groups M23 and M24. In fact, this routine can be applied to any
finite group G provided the ordinary irreducible characters of a representation group R of G can
be found.

1 Introduction

The GAP routine developed by the current author in [13] computes all the sets of irreducible
projective characters IrrProj(G,αi), i = 1, 2, . . . ,m, of a finite group G with factor sets αi from
a so-called representation group R ∼= M(G).G of G, where M(G) denotes the Schur multiplier
of the group G and m the number of cohomology classes [αi] in M(G). The said GAP routine
is a result of the work in [14], [15], [16], [17] and [18] by the current author. The current paper
is part of a series of papers to compute all the irreducible projective characters IrrProj(G,αi)
of each maximal subgroup of the sporadic simple Mathieu groups M11, M12, M22, M23, M24
and their automorphism groups. The ones for M11, M12, M22 and their automorphism groups
were computed in [12] and [13]. In this paper, all the sets IrrProj(G,αi) of irreducible projective
characters for each maximal subgroup of M23 and M24 are computed using the methods in [12]
and [13], except for the ones whose sets IrrProj(G,αi) already appeared in the ATLAS [3] or
GAP library [6]. It is noteworthy to mention that as the group G increases in size, the calcu-
lations involving a representation group (Schur cover) of G in GAP might become unfeasible,
and therefore it can becomes extremely difficult to compute the sets IrrProj(G,αi) of G. Since
the orders of the maximal subgroups of M23 and M24 are relatively large compare to the ones of
the other Mathieu groups, we have to make use first of a MAGMA routine (see [1]) to convert
the finitely presented Schur covers of these groups into permutations groups and then use the
aforementioned GAP routine to compute the sets IrrProj(G,αi) for the maximal subgroups of
M23 and M24. Note that M23 and M24 have trivial Schur multipliers. In addition, readers who
are interested can read up on the relevance of the projective representations of the centralizers
CM24(g) of elements g in M24 in the Generalised Mathieu Moonshine [5].

In Section 2, a brief theoretical background is given on how to obtain all the irreducible
projective presentations of a finite group G from the ordinary irreducible representations of a
representation group R of G. A brief discussion on the GAP routine, which was used to com-
pute the irreducible projective characters of the maximal subgroups ofM23 andM24, will follows
in Section 3. In Section 4, all the information concerning the sets IrrProj(G,αi) for each maxi-
mal subgroupG ofM23 andM24 are tabulated. Computations are done in GAP [6] and MAGMA
[2] and notations in both GAP and the ATLAS are followed.
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2 Preliminary Results on Projective Characters

In this section, definitions of concepts pertaining to our study are given which will lead up to
a theoretical construction of finding all the irreducible projective characters of a finite group G
from the ordinary irreducible characters of a central extension C of G. In this regard, the outline
given in [11] is followed closely. For a more detailed treatment on ordinary and projective char-
acter theory readers are referred to [7], [8], [9], [10] and [19].

Definition 2.1. A projective representation of a group G of degree n over the complex numbers
C is a map P :G→ GL(n,C), such that

(i) P (1) = In, and

(ii) P (x)P (y) = α(x, y)P (xy) for x, y ∈ G and α(x, y) ∈ C∗.

The map α:G × G → C∗ is called a factor set (or 2-cocycle) α of G and satisfies the re-
lation α(xy, z)α(x, y) = α(x, yz)α(y, z) because of the associativity of multiplication in G
and GL(n,C). Then P is called a projective representation with factor set α and ξ, defined as
ξ(g) = Trace(P (g)) for all g ∈ G, is called a projective character of G with factor set α. An
irreducible projective representation P of a group G is essentially defined in a similar way then
an ordinary irreducible representation of G.

Definition 2.2. Two projective representations P1 and P2 of G of degree n with factor sets α1
and α2 respectively are said to be projectively equivalent if there exist a mapping φ : G → C∗
and a matrix T ∈ GL(n,C) such that P1(x)=φ(g)T−1P2(g)T , ∀x ∈ G.

For such P1 and P2 in Definition 2.2 it follows that α2(x, y) = φ(x)φ(y)(φ(xy))−1α1(x, y),
∀x, y ∈ G and it defines an equivalence relation where the equivalence class of the factor set α1
is denoted by [α1]. The set of all equivalence classes of factor sets of G forms a finite abelian
group and is called the Schur multiplier M(G) (also known as the second cohomology group
H2(G,C∗) of G). Also, in each cohomology class [α] of M(G) there is a so-called special factor
set α (see discussion below or [7]) such that the projective characters IrrProj(G,α) associated
with it are constant on the classes of G, in other words they are class functions. If the order of
the class [α] in M(G) is k, then the special factor set α takes values in powers of a kth-root of
unity.

Now a theoretical account of how to obtain the irreducible projective representations of a
group G with factor set α from the ordinary irreducible representations of a central extension
C = A.G of G, will follows.

Definition 2.3. A group C = A.G is a central extension for G if there exists a homomorphism π
from C onto G such that A = ker(π) ≤ Z(C) ∩ C ′ . In addition, if A ∼=M(G), then we call the
central extension C a representation group R of G.

Let C = A.G be a central extension of the group G with A = ker(π). Let X = {xg|g ∈ G}
be a set of coset representatives of A in C, such that π(xg) = g (one-to-one correspondence of
elements of X with the elements of G). Therefore, C =

⋃
g∈GAxg. Then, for all g, h ∈ G,

let a(g, h) be the unique element in A such that xgxh = a(g, h)xgh. Since the product opera-
tion to combine two elements in C and G is associative, then it follows that a(g, h)a(gh, k) =
a(g, hk)a(h, k) for all g, h, k ∈ G. Now, let λ be a linear character of the abelian groupA and put
α(g, h) = λ(a(g, h)) for all g, h ∈ G, then it follows from the relation in the previous sentence
that α is a factor set of G (the so-called special factor set mentioned above). Now, let T be an or-
dinary irreducible representation of C of degree n and let P (g) = T (xg) for all g ∈ G, then P is
an irreducible projective representation ofGwith factor set α, i.e., P (g)P (h) = λ(a(g, h))P (gh)
for all g, h ∈ G. Hence we can formulate the following definition:
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Definition 2.4. A projective representation P of G constructed from an ordinary irreducible rep-
resentation T of C in the above manner is said to be linearized by the ordinary representation T
(or lifted to C). Furthermore, P is irreducible if and only if T is irreducible.

Each irreducible projective representation of G with corresponding factor set α can be lin-
earized by an ordinary irreducible representation of a representation group R of G. So the
problem of constructing all irreducible projective characters of a finite group G reduces to that
of finding the ordinary irreducible characters of a representation group R of G.

Definition 2.5. A covering group D for G will be a quotient D ∼= R/B of a representation group
R =M(G).G of G by a subgroup B of M(G). If M(G)/B has order n we refer to the covering
group as a n-fold cover of G.

The projective characters of G associated with each equivalence class [α] of factors sets
in M(G) are found in the representation group R whereas in a n-fold cover D of G only the
projective characters coming from the n equivalence classes covered by D will be represented
[7].

Definition 2.6. An element x ∈ G is said to be α-regular if α(x, g) = α(g, x) for all g ∈ CG(x).
Furthermore, it is well known that g ∈ G is α-regular if and only if ξ(g) 6= 0 for some ξ ∈
IrrProj(G,α) or equivalently that g is α-irregular if and only if ξ(g) = 0 for all ξ ∈ IrrProj(G,α).

Now, if x ∈ G is α-regular, then we called the conjugacy class [x] of G which contains x an
α-regular class. The number |IrrProj(G,α)| of irreducible projective characters with factor set α
equals the number of α-regular classes of a group G. Projective characters also satisfy the usual
orthogonality relations and have analogues to ordinary characters.

3 A GAP routine to compute IrrProj(G,αi)

The GAP routine which was developed in [13] has its origin in Proposition 3.1 below. Since our
groups under consideration are relatively large, the said GAP routine will be slightly adjusted in
the sense that we will convert the finitely presented Schur cover (representation group) of G first
to a permutation group by using appropriate commands in GAP or use the MAGMA routine in
[1] before the GAP routine is applied.

Proposition 3.1. Let R = M(G).G be a representation group of a finite group G, where M(G)
denotes the Schur multiplier of G. Then the number of irreducible characters χj ∈ Irr(R) of R
which lies over a linear character λ of M(G) is less or equal to |Irr(G)|.

Proof. (see [14] , [15] or [20]).

The quantity
∑
χ∈Irr(R)

<χ↓M(G),λ>

χ(1) (see proof of Proposition 3.1) determines the number
of irreducible characters χj ∈ Irr(R) of R which lies over a linear character λ ∈ Irr(M(G))
(in other words λ ∈ Irr(M(G)) is an irreducible constituent of χj ↓M(G) which implies that
< χj ↓M(G), λ > 6= 0). Using this fact (see the line of the GAP routine starting with "n"), all the
sets IrrProj(G,αi), i = 1, 2, ..., |Irr(M(G)|, of G can be computed. Furthermore, it is shown in
the proof of Proposition 3.1 that the quantity

∑
χ∈Irr(R)

<χ↓M(G),λ>

χ(1) ≤ |Irr(G)| and the inequality
becomes strict if there is a non-identity element x ∈ M(G) \ ker(λ) which is a commutator in
R. Hence the number |IrrProj(G,αi)| of irreducible projective characters of G with factor set
αi is always less or equal to the number |Irr(G)| of ordinary irreducible characters of G. The
last line of the GAP routine ("N") gives |Irr(M(G))| blocks coming from a representation group
R (denoted as "Source(f)" in the below routine), where each block will contains one of the sets
IrrProj(G,αi), i = 1, 2, ..., |Irr(M(G)|. Whereas the output "Display(ct)" will display each indi-
vidual irreducible projective character table of G with factor set αi in GAP.

If a finite group G has a relatively small order then the GAP routine below can computes
easily all the distinct sets IrrProj(G,αi) of G from a suitable representation group R (Schur
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cover) of G as it was in the case of the groups in [13]. But if the group G becomes too
large then GAP does not has sufficient enough functions to compute the Schur cover of G
and its ordinary irreducible characters. Then additional techniques in computing these sets
IrrProj(G,αi) are required. This was the case with most of the maximal subgroups of M22
and Aut(M22) in [12] and with all of the maximal subgroups of M24 which were dealt with in
the current paper. So, to overcome this constraint, we compute the representation group R of
"Perm:= G" using the GAP command "S:=SchurCover(Perm)" and then use the GAP commands
"iso:=IsomorphismPermGroup(S)" and "x:=Image(iso)" to convert R into a permutation group
"x". Then to find the normal subgroup "z" of the group "x" such that "x/z ∼= G", the com-
mand "Nor:=Filtered(NormalSubgroups(x),h1−>Size(h1)=Size(x)/Size(Perm))" is used. Fur-
thermore, the command "f:=NaturalHomomorphismByNormalSubgroup(x,z)" is employed and
then we can follow the rest of the GAP routine below from the input line "I1:=ImagesSource(f)"
to compute the sets IrrProj(G,αi) of G successfully. The MAGMA routine in [1] was used to
convert the Schur covers of most of the maximal subgroups of M23 and M24 under consideration
in this paper into a permutation group before applying the below GAP routine.

gap> Perm:= G;; (Permutation group with generators found in [22] or can be generated in GAP.)
gap> f:= EpimorphismSchurCover(Perm);;
gap> z:= Kernel(f);;
gap> x:= Source(f);;
gap> I1:=ImagesSource(f);; (Quotient group I1 ∼= G)
gap> t:=Irr(I1);;
gap> 2t:=Irr(x);;
gap> F:=FusionConjugacyClassesOp(f);
gap> map:=ProjectionMap(F);
gap> N:=[];
gap> for i in [1..Size(Irr(z))] do
> n:=Filtered(Irr(x),chi−>not IsZero(ScalarProduct(RestrictedClassFunction(chi,z),Irr(z)[i])));
> s:=List(n,x−>x{map});
> Add(N,s);
>Cen:=SizesCentralizers(CharacterTable(I1));
>Cl:=OrdersClassRepresentatives(CharacterTable(I1));
> ct:=function()local ct ;ct:=rec();
>ct.SizesCentralizers:=Cen;;
>ct.OrdersClassRepresentatives:=Cl;;
> ct.Irr:=N[i];;
>ct.UnderlyingCharacteristic:=0;ct.Id:="G";
> ConvertToLibraryCharacterTableNC(ct);
>return ct;end;ct:=ct();
>SetInfoLevel(InfoCharacterTable,2);
>Display(ct);
>od;
gap>N;

4 The sets IrrProj(G,αi) for the maximal subgroups ofM23 andM24

In this section, the sets IrrProj(G,αi) (see Tables 2 to 6) are only computed for the maximal
subgroups 24:A7, 24:(3×A5):2 of M23 and the ones 24:A8, 26:(3.S6) and 26:(L3(2)×S3) of M24.
The GAP routine discussed in Section 3 is used for this purpose. The irreducible projective char-
acters for the rest of the maximal subgroups of M23 and M24 (see Table 1) can be found amongst
the ATLAS, GAP library, [12] or [13]. Note that the ordinary irreducible characters Irr(G) of the
group G appear always in the first block of Tables 2 to 6. The information about the structure of
the Schur multiplier M(G) and the number |IrrProj(G,αi)| of irreducible projective characters
of a maximal subgroup G of M23 and M24 associated with each cohomology class [αi] in M(G)
is listed in Table 1.
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Most of the groups for which the sets IrrProj(G,αi) were computed in this section have
Schur multipliers of order 2 except for the maximal subgroup 24:A7 of M23. The Schur mul-
tiplier M(G) of the group 24:A7 is cyclic of order six. Let α2 be a generator for the Schur
multiplier M(G) ∼= 6 of 24:A7. Then the group 24:A7 will have 5 sets IrrProj(24:A7, αi) with
non-trivial factor sets α2, α3 = α2

2, α4 = α3
2, α5 = α4

2 and α6 = α5
2 of order 6, 3, 2, 3 and

6, respectively. The trivial factor set α1 = α6
2 = 1 is associated with the ordinary irreducible

characters Irr(24:A7) of 24:A7. Since α5
2 = α−1

2 = α2, the entries of the set IrrProj(24:A7, α2)
of 24:A7 in the fourth block of Table 3 are just the complex conjugates of the entries of the set
IrrProj(24:A7, α

5
2). Therefore, only one set IrrProj(24:A7, α2) of 24:A7 with factor set of order

six is found in Table 3 since IrrProj(24:A7, α
5
2) can be easily deduced from it. Similarly, the sets

IrrProj(24:A7, α
2
2) and IrrProj(24:A7, α

4
2) with factor sets of order 3 are just complex conjugates

of each and hence we will only find one set IrrProj(24:A7, α
2
2) of irreducible projective characters

of order 3 in the third block of Table 3. The set IrrProj(24:A7, α
3
2) with factor set of order 2 is

found in the the second block of Table 3. Hence only three disctinct sets IrrProj(24:A7, αi) with
non-trivial factor sets occur for the group 24:A7.

It is interesting to note that the maximal subgroup M1 = 24:A8 of M24 has a Schur multiplier
of order 2 and therefore a representation group 2.(24:A8) ∼= 25·A8 exists which is isomorphic to
a non-split extension of the shape G1 = 25·A8. The current author in [16] computed the Fischer-
Clifford matrices and associated ordinary character table of a non-split extension G2 = 25·A8
of the same shape as G1 but they are not isomorphic to each other although G1 and G2 have the
same number of conjugacy classes. In fact the group G2 is a 2-fold cover group for the maximal
subgroup M2 = 24·A8 of the smallest sporadic Conway simple group Co3. And interesting
enough the two groups M1 and M2 share the same irreducible projective character table with
factor set of order two. The irreducible projective character table of M1 with factor set of order
two was also computed in [1] and it coincides with the one in Table 4. In conclusion, it was
mentioned in [21] that the sets IrrProj(G,αi) of G are only defined universally up to sign and
it is possible that one can obtain different signs if the sets IrrProj(G,αi) are re-calculated using
a different representation group R = M(G).G. But these signs are calculated consistently with
a “special factor set ” and so the inner product and conjugacy results of [7] apply to the sets
IrrProj(G,αi).

Table 1. M(G) and |IrrProj(G,αi)| of maximal subgroups G of M23 and M24

Maximal subgroups of M23 |G| [M23:G]M(G) |IrrProj(G,αi)|
M22 443520 = 27.32.5.7.11 23 12 [12,11,8,11,10,7]

L3(4):22 40320 = 27.32.5.7 253 4 [14,13,11,11]
24:A7 40320 = 27.32.5.7 253 6 [15,12,13,13,10,10]
A8 20160 = 26.32.5.7 506 2 [14,9]
M11 7920 = 24.32.5.11 1288 1 [10]

24:(3×A5):2 5760 = 27.32.5 1771 2 [17,12]
23:11 253 = 11.23 40320 1 [13]

Maximal subgroups of M24 |G| [M24:G]M(G) |IrrProj(G,αi)|
M23 10200960 = 27.32.5.7.11.23 24 1 [17]
M22:2 887040 = 28.32.5.7.11 276 2 [21,16]
24:A8 322560 = 210.32.5.7 759 2 [25,14]
M12:2 190080 = 27.33.5.11 1288 2 [21,13]

26:(3.S6) 138240 = 210.33.5 1771 2 [33,18]
L3(4):S3 120960 = 27.33.5.7 2024 1 [20]

26:(L3(2)×S3) 64512 = 210.32.7 3795 2 [33,24]
L2(23) 6072 = 23.3.11.23 40320 2 [14,13]
L2(7) 168 = 23.3.7 1457280 2 [6,5]
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Table 2. IrrProj(G,αi) for 24:(3×A5):2, α1 = α2
2 = 1

[g]G 1 2 3 4 2 4 2 6 3 3 6 6 4 8 15 5 15
|CG(g)| 5760 384 180 16 48 32 96 12 18 36 12 6 8 8 15 15 15
χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 1 1 -1 -1 1 1 1 1 1 1 -1 -1 -1 1 1 1
χ3 2 2 -1 0 0 2 2 -1 2 -1 -1 0 0 0 -1 2 -1
χ4 4 4 4 -2 -2 0 0 0 1 1 1 1 0 0 -1 -1 -1
χ5 4 4 4 2 2 0 0 0 1 1 1 -1 0 0 -1 -1 -1
χ6 5 5 5 -1 -1 1 1 1 -1 -1 -1 -1 1 1 0 0 0
χ7 5 5 5 1 1 1 1 1 -1 -1 -1 1 -1 -1 0 0 0
χ8 6 6 6 0 0 -2 -2 -2 0 0 0 0 0 0 1 1 1
χ9 6 6 -3 0 0 -2 -2 1 0 0 0 0 0 0 C 1 C
χ10 6 6 -3 0 0 -2 -2 1 0 0 0 0 0 0 C 1 C
χ11 8 8 -4 0 0 0 0 0 2 -1 -1 0 0 0 1 -2 1
χ12 10 10 -5 0 0 2 2 -1 -2 1 1 0 0 0 0 0 0
χ13 15 -1 0 1 -3 -1 3 0 0 3 -1 0 -1 1 0 0 0
χ14 15 -1 0 -1 3 -1 3 0 0 3 -1 0 1 -1 0 0 0
χ15 30 -2 0 0 0 -2 6 0 0 -3 1 0 0 0 0 0 0
χ16 45 -3 0 1 -3 1 -3 0 0 0 0 0 1 -1 0 0 0
χ17 45 -3 0 -1 3 1 -3 0 0 0 0 0 -1 1 0 0 0
χ1 4 4 4 0 0 0 0 0 2 2 2 0 0 0 -1 -1 -1
χ2 4 4 -2 0 0 0 0 0 2 -1 -1 0 0 0 -C -1 -C
χ3 4 4 -2 0 0 0 0 0 2 -1 -1 0 0 0 -C -1 - C
χ4 4 4 4 0 0 0 0 0 -1 -1 -1 A 0 0 -1 -1 -1
χ5 4 4 4 0 0 0 0 0 -1 -1 -1 -A 0 0 -1 -1 -1
χ6 6 6 6 0 0 0 0 0 0 0 0 0 B B 1 1 1
χ7 6 6 6 0 0 0 0 0 0 0 0 0 -B -B 1 1 1
χ8 8 8 -4 0 0 0 0 0 -2 1 1 0 0 0 1 -2 1
χ9 12 12 -6 0 0 0 0 0 0 0 0 0 0 0 -1 2 -1
χ10 30 -2 0 0 0 0 0 0 0 3 -1 0 B -B 0 0 0
χ11 30 -2 0 0 0 0 0 0 0 3 -1 0 -B B 0 0 0
χ12 60 -4 0 0 0 0 0 0 0 -3 1 0 0 0 0 0 0

A = -
√

3i, B = -
√

2i, C = −1+
√

15i
2
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Table 3. IrrProj(G,αi) for 24:A7, α1 = α2
4 = α3

3 = α6
2 = 1

[g]G 1a 2a 5a 7a 14a 14b 7b 2b 4a 3a 6a 3b 6b 8a 4b
|CG(g)| 40320 2688 5 14 14 14 14 96 32 36 12 36 12 8 8
χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 6 6 1 -1 -1 -1 -1 2 2 3 -1 0 0 0 0
χ3 10 10 0 B B B B -2 -2 1 1 1 1 0 0
χ4 10 10 0 B B B B -2 -2 1 1 1 1 0 0
χ5 14 14 -1 0 0 0 0 2 2 -1 -1 2 2 0 0
χ6 14 14 -1 0 0 0 0 2 2 2 2 -1 -1 0 0
χ7 15 15 0 1 1 1 1 -1 -1 3 -1 0 0 -1 -1
χ8 15 -1 0 1 -1 -1 1 3 -1 0 0 3 -1 -1 1
χ9 21 21 1 0 0 0 0 1 1 -3 1 0 0 -1 -1
χ10 35 35 0 0 0 0 0 -1 -1 -1 -1 -1 -1 1 1
χ11 45 -3 0 B -B -B B -3 1 0 0 0 0 -1 1
χ12 45 -3 0 B -B -B B -3 1 0 0 0 0 -1 1
χ13 90 -6 0 -1 1 1 -1 6 -2 0 0 0 0 0 0
χ14 105 -7 0 0 0 0 0 -3 1 0 0 3 -1 1 -1
χ15 120 -8 0 1 -1 -1 1 0 0 0 0 -3 1 0 0
χ1 4 4 -1 -B -B -B -B 0 0 2 0 1 1 0 0
χ2 4 4 -1 -B -B -B -B 0 0 2 0 1 1 0 0
χ3 14 14 -1 0 0 0 0 0 0 -2 0 -1 -1 H H
χ4 14 14 -1 0 0 0 0 0 0 -2 0 -1 -1 -H -H
χ5 20 20 0 -1 -1 -1 -1 0 0 -2 0 2 2 0 0
χ6 20 20 0 -1 -1 -1 -1 0 0 4 0 -1 -1 0 0
χ7 36 36 1 1 1 1 1 0 0 0 0 0 0 0 0
χ8 60 -4 0 -B B B -B 0 0 0 0 3 -1 0 0
χ9 60 -4 0 -B B B -B 0 0 0 0 3 -1 0 0
χ10 90 -6 0 -1 1 1 -1 0 0 0 0 0 0 H -H
χ11 90 -6 0 -1 1 1 -1 0 0 0 0 0 0 -H H
χ12 120 -8 0 1 -1 -1 1 0 0 0 0 -3 1 0 0
χ1 6 6 A -1 -1 -A -A E E 0 E 0 0 0 0
χ2 15 15 0 1 1 A A F F 0 0 0 0 1 1
χ3 15 15 0 1 1 A A -A -A 0 E 0 0 -1 -1
χ4 15 -1 0 1 -1 -A A F -A 0 0 0 E -1 1
χ5 21 21 A 0 0 0 0 -F -F 0 0 0 0 1 1
χ6 21 21 A 0 0 0 0 A A 0 -E 0 0 -1 -1
χ7 24 24 -A B B C C 0 0 0 0 0 0 0 0
χ8 24 24 -A B B D D 0 0 0 0 0 0 0 0
χ9 45 -3 0 B -B -C C -F A 0 0 0 0 -1 1
χ10 45 -3 0 B -B -D D -F A 0 0 0 0 -1 1
χ11 90 -6 0 -1 1 A -A G -E 0 0 0 0 0 0
χ12 105 -7 0 0 0 0 0 -F A 0 0 0 E 1 -1
χ13 120 -8 0 1 -1 -A A 0 0 0 0 0 -E 0 0
χ1 6 6 A -1 -1 -A -A 0 0 0 0 0 0 H H
χ2 6 6 A -1 -1 -A -A 0 0 0 0 0 0 -H -H
χ3 24 24 -A B B C C 0 0 0 0 0 0 0 0
χ4 24 24 -A B B D D 0 0 0 0 0 0 0 0
χ5 36 36 A 1 1 A A 0 0 0 0 0 0 0 0
χ6 60 -4 0 -B B C -C 0 0 0 0 0 E 0 0
χ7 60 -4 0 -B B D -D 0 0 0 0 0 E 0 0
χ8 90 -6 0 -1 1 A -A 0 0 0 0 0 0 H -H
χ9 90 -6 0 -1 1 A -A 0 0 0 0 0 0 -H H
χ10 120 -8 0 1 -1 -A A 0 0 0 0 0 -E 0 0

A = −1+
√

3i
2 , B = −1−

√
7i

2 , C = E(21)5 + E(21)17 + E(21)20,
D = E(21)2+E(21)8+E(21)11, E = -1-

√
3i, F =−3−3

√
3i

2 ,
G = -3-3

√
3i, H = -

√
2
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Table 4. IrrProj(G,αi) for 24:A8, α1 = α2
2 = 1

[g]G 1a 2a 7a 14a 14b 7b 5a 3a 15a 15b 2b 4a 8a 4b 4c 2c 2d 6a 3b 6b 12a 6c 4d 4e 4f
|CG(g)| 322560 21504 14 14 14 14 15 180 15 15 384 128 16 16 384 512 1536 24 72 12 12 12 64 32 64
χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 7 7 0 0 0 0 2 4 -1 -1 3 3 1 1 -1 -1 -1 1 1 -1 -1 0 -1 -1 -1
χ3 14 14 0 0 0 0 -1 -1 -1 -1 2 2 0 0 6 6 6 2 2 0 0 -1 2 2 2
χ4 15 -1 1 -1 -1 1 0 0 0 0 3 -1 -1 1 -1 -1 7 -1 3 1 -1 0 3 -1 -1
χ5 20 20 -1 -1 -1 -1 0 5 0 0 4 4 0 0 4 4 4 -1 -1 1 1 1 0 0 0
χ6 21 21 0 0 0 0 1 6 1 1 1 1 -1 -1 -3 -3 -3 0 0 0 0 -2 1 1 1
χ7 21 21 0 0 0 0 1 -3 B B 1 1 -1 -1 -3 -3 -3 0 0 0 0 1 1 1 1
χ8 21 21 0 0 0 0 1 -3 B B 1 1 -1 -1 -3 -3 -3 0 0 0 0 1 1 1 1
χ9 28 28 0 0 0 0 -2 1 1 1 4 4 0 0 -4 -4 -4 1 1 -1 -1 1 0 0 0
χ10 35 35 0 0 0 0 0 5 0 0 -5 -5 -1 -1 3 3 3 2 2 0 0 1 -1 -1 -1
χ11 45 45 A A A A 0 0 0 0 -3 -3 1 1 -3 -3 -3 0 0 0 0 0 1 1 1
χ12 45 45 A A A A 0 0 0 0 -3 -3 1 1 -3 -3 -3 0 0 0 0 0 1 1 1
χ13 45 -3 A -A -A A 0 0 0 0 -3 1 -1 1 -3 5 -3 0 0 0 0 0 1 1 -3
χ14 45 -3 A -A -A A 0 0 0 0 -3 1 -1 1 -3 5 -3 0 0 0 0 0 1 1 -3
χ15 56 56 0 0 0 0 1 -4 1 1 0 0 0 0 8 8 8 -1 -1 -1 -1 0 0 0 0
χ16 64 64 1 1 1 1 -1 4 -1 -1 0 0 0 0 0 0 0 -2 -2 0 0 0 0 0 0
χ17 70 70 0 0 0 0 0 -5 0 0 2 2 0 0 -2 -2 -2 1 1 1 1 -1 -2 -2 -2
χ18 90 -6 -1 1 1 -1 0 0 0 0 6 -2 0 0 -6 2 18 0 0 0 0 0 2 -2 2
χ19 105 -7 0 0 0 0 0 0 0 0 -3 1 1 -1 1 -7 17 -1 3 -1 1 0 1 1 -3
χ20 105 -7 0 0 0 0 0 0 0 0 -3 1 1 -1 -7 9 1 -1 3 1 -1 0 -3 1 1
χ21 105 -7 0 0 0 0 0 0 0 0 9 -3 -1 1 1 1 -7 -1 3 -1 1 0 -3 1 1
χ22 120 -8 1 -1 -1 1 0 0 0 0 0 0 0 0 -8 8 8 1 -3 -1 1 0 0 0 0
χ23 210 -14 0 0 0 0 0 0 0 0 6 -2 0 0 2 -6 10 1 -3 1 -1 0 -2 2 -2
χ24 315 -21 0 0 0 0 0 0 0 0 -9 3 -1 1 3 -5 3 0 0 0 0 0 -1 -1 3
χ25 315 -21 0 0 0 0 0 0 0 0 3 -1 1 -1 3 3 -21 0 0 0 0 0 3 -1 -1
χ1 8 8 -1 -1 -1 -1 -2 -4 1 -1 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0
χ2 24 24 -A -A -A -A -1 -6 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ3 24 24 -A -A -A -A -1 -6 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ4 48 48 1 1 1 1 -2 6 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ5 56 56 0 0 0 0 1 -4 1 -1 0 0 0 0 0 0 0 -1 -1 C C 0 0 0 0
χ6 56 56 0 0 0 0 1 -4 1 -1 0 0 0 0 0 0 0 -1 -1 -C -C 0 0 0 0
χ7 56 56 0 0 0 0 1 2 B -B 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0
χ8 56 56 0 0 0 0 1 2 B -B 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0
χ9 64 64 -1 -1 -1 -1 -1 4 -1 1 0 0 0 0 0 0 0 -2 -2 0 0 0 0 0 0
χ10 120 -8 -1 1 1 -1 0 0 0 0 0 0 0 0 0 0 0 -2 6 0 0 0 0 0 0
χ11 120 -8 -1 1 1 -1 0 0 0 0 0 0 0 0 0 0 0 1 -3 C -C 0 0 0 0
χ12 120 -8 -1 1 1 -1 0 0 0 0 0 0 0 0 0 0 0 1 -3 -C C 0 0 0 0
χ13 360 -24 -A A A -A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ14 360 -24 -A A A -A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A = −1−
√

7i
2 , B = −1+

√
15i

2 , C = -
√

3i
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Table 5. IrrProj(G,αi) for 26:(3.S6), α1 = α2
2 = 1

[g]G 1a 2a 2b 3a 2c 4a 4b 2d 4c 4d 2e 6a 6b 3b 12a 6c 6d 3c 4e 4f 2f 4g 4h 8a 4i 4j 12b 15a 15b 10a 5a 12c 6e

|CG(g)| 138240 3072 7680 1080 384 64 384 768 128 128 256 24 24 72 12 12 24 72 128 96 384 32 32 16 96 32 12 15 15 20 60 12 12

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 1 1 1 -1 -1 -1 1 1 1 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 -1 -1
χ3 5 5 5 5 1 1 1 1 1 1 1 1 -1 -1 1 1 2 2 -3 -3 -3 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0
χ4 5 5 5 5 3 3 3 1 1 1 1 1 2 2 0 0 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1 0 0 0 0 -1 -1
χ5 5 5 5 5 -1 -1 -1 1 1 1 1 1 -1 -1 -1 -1 2 2 3 3 3 1 1 1 -1 -1 -1 0 0 0 0 0 0
χ6 5 5 5 5 -3 -3 -3 1 1 1 1 1 2 2 0 0 -1 -1 1 1 1 -1 -1 -1 -1 -1 -1 0 0 0 0 1 1
χ7 6 6 6 -3 0 0 0 -2 -2 -2 -2 1 0 0 0 0 0 0 0 0 0 0 0 0 2 2 -1 D D 1 1 0 0
χ8 6 6 6 -3 0 0 0 -2 -2 -2 -2 1 0 0 0 0 0 0 0 0 0 0 0 0 2 2 -1 D D 1 1 0 0
χ9 9 9 9 9 -3 -3 -3 1 1 1 1 1 0 0 0 0 0 0 -3 -3 -3 1 1 1 1 1 1 -1 -1 -1 -1 0 0
χ10 9 9 9 9 3 3 3 1 1 1 1 1 0 0 0 0 0 0 3 3 3 -1 -1 -1 1 1 1 -1 -1 -1 -1 0 0
χ11 10 10 10 10 -2 -2 -2 -2 -2 -2 -2 -2 1 1 1 1 1 1 2 2 2 0 0 0 0 0 0 0 0 0 0 -1 -1
χ12 10 10 10 10 2 2 2 -2 -2 -2 -2 -2 1 1 -1 -1 1 1 -2 -2 -2 0 0 0 0 0 0 0 0 0 0 1 1
χ13 12 12 12 -6 0 0 0 4 4 4 4 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 2 2 0 0
χ14 16 16 16 16 0 0 0 0 0 0 0 0 -2 -2 0 0 -2 -2 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0
χ15 18 18 18 -9 0 0 0 2 2 2 2 -1 0 0 0 0 0 0 0 0 0 0 0 0 2 2 -1 1 1 -2 -2 0 0
χ16 18 2 -6 0 -4 0 4 6 2 -2 -2 0 -1 3 1 -1 0 0 0 0 0 2 -2 0 0 0 0 0 0 -1 3 0 0
χ17 18 2 -6 0 4 0 -4 6 2 -2 -2 0 -1 3 -1 1 0 0 0 0 0 -2 2 0 0 0 0 0 0 -1 3 0 0
χ18 30 30 30 -15 0 0 0 -2 -2 -2 -2 1 0 0 0 0 0 0 0 0 0 0 0 0 -2 -2 1 0 0 0 0 0 0
χ19 45 -3 5 0 -3 1 -3 9 -3 1 1 0 0 0 0 0 -1 3 1 1 -7 -1 -1 1 3 -1 0 0 0 0 0 1 -1
χ20 45 -3 5 0 3 -1 3 9 -3 1 1 0 0 0 0 0 -1 3 -1 -1 7 1 1 -1 3 -1 0 0 0 0 0 -1 1
χ21 45 -3 5 0 -3 1 -3 -3 1 -3 5 0 0 0 0 0 -1 3 -3 1 5 1 1 -1 -3 1 0 0 0 0 0 1 -1
χ22 45 -3 5 0 3 -1 3 -3 1 -3 5 0 0 0 0 0 -1 3 3 -1 -5 -1 -1 1 -3 1 0 0 0 0 0 -1 1
χ23 72 8 -24 0 -8 0 8 0 0 0 0 0 -1 3 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -3 0 0
χ24 72 8 -24 0 8 0 -8 0 0 0 0 0 -1 3 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -3 0 0
χ25 90 -6 10 0 -6 2 -6 6 -2 -2 6 0 0 0 0 0 1 -3 -2 2 -2 0 0 0 0 0 0 0 0 0 0 -1 1
χ26 90 -6 10 0 6 -2 6 6 -2 -2 6 0 0 0 0 0 1 -3 2 -2 2 0 0 0 0 0 0 0 0 0 0 1 -1
χ27 90 10 -30 0 -4 0 4 6 2 -2 -2 0 1 -3 1 -1 0 0 0 0 0 -2 2 0 0 0 0 0 0 0 0 0 0
χ28 90 10 -30 0 4 0 -4 6 2 -2 -2 0 1 -3 -1 1 0 0 0 0 0 2 -2 0 0 0 0 0 0 0 0 0 0
χ29 108 12 -36 0 0 0 0 -12 -4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 3 0 0
χ30 135 -9 15 0 -3 1 -3 3 -1 3 -5 0 0 0 0 0 0 0 1 -3 9 -1 -1 1 -3 1 0 0 0 0 0 0 0
χ31 135 -9 15 0 3 -1 3 3 -1 3 -5 0 0 0 0 0 0 0 -1 3 -9 1 1 -1 -3 1 0 0 0 0 0 0 0
χ32 135 -9 15 0 -3 1 -3 -9 3 -1 -1 0 0 0 0 0 0 0 5 -3 -3 1 1 -1 3 -1 0 0 0 0 0 0 0
χ33 135 -9 15 0 3 -1 3 -9 3 -1 -1 0 0 0 0 0 0 0 -5 3 3 -1 -1 1 3 -1 0 0 0 0 0 0 0

χ1 4 4 4 4 0 0 0 0 0 0 0 0 -2 -2 0 0 -1 -1 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 E E
χ2 4 4 4 4 0 0 0 0 0 0 0 0 -2 -2 0 0 -1 -1 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -E -E
χ3 4 4 4 4 0 0 0 0 0 0 0 0 1 1 A A 2 2 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 0 0
χ4 4 4 4 4 0 0 0 0 0 0 0 0 1 1 -A -A 2 2 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 0 0
χ5 12 12 12 -6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C -1 -1 2 2 0 0
χ6 12 12 12 -6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -C -1 -1 2 2 0 0
χ7 16 16 16 16 0 0 0 0 0 0 0 0 -2 -2 0 0 2 2 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0
χ8 20 20 20 20 0 0 0 0 0 0 0 0 2 2 0 0 -2 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ9 24 24 24 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -D -D -1 -1 0 0
χ10 24 24 24 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -D -D -1 -1 0 0
χ11 72 8 -24 0 0 0 0 0 0 0 0 0 2 -6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -3 0 0
χ12 72 8 -24 0 0 0 0 0 0 0 0 0 -1 3 A -A 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -3 0 0
χ13 72 8 -24 0 0 0 0 0 0 0 0 0 -1 3 -A A 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -3 0 0
χ14 108 12 -36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B 0 0 0 0 0 -1 3 0 0
χ15 108 12 -36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -B 0 0 0 0 0 -1 3 0 0
χ16 180 -12 20 0 0 0 0 0 0 0 0 0 0 0 0 0 -2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ17 180 -12 20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -3 0 0 0 0 0 0 0 0 0 0 0 0 0 E -E
χ18 180 -12 20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -3 0 0 0 0 0 0 0 0 0 0 0 0 0 -E E

A = -
√

3i, B = -2
√

2i, C = -
√

6i, D = −1−
√

15i
2 , E=

√
3
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Table 6. IrrProj(G,αi) for 26:(L3(2)× S3), α1 = α2
2 = 1

[g]G 1a 2a 2b 3a 4a 2c 4b 4c 2d 4d 6a 4e 4f 2e 2f 3b 6b 3c 6c 12a 6d 12b 4g 4h 4i 4j 8a 14a 7a 21a 14b 7b 21b

|CG(g)| 64512 3072 1536 504 384 2688 32 128 128 64 24 128 128 256 768 36 12 72 24 12 12 12 32 96 32 32 16 14 42 21 14 42 21

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 -1 -1 1 1 1 -1 -1 -1 -1 1 1 -1 1 1
χ3 2 2 2 -1 0 0 0 0 0 0 -1 2 2 2 2 -1 -1 2 2 0 0 -1 2 2 0 0 0 0 2 -1 0 2 -1
χ4 3 3 3 3 -3 -3 1 1 1 1 -1 -1 -1 -1 -1 0 0 0 0 0 0 1 1 1 -1 -1 -1 M -M -M M -M -M
χ5 3 3 3 3 -3 -3 1 1 1 1 -1 -1 -1 -1 -1 0 0 0 0 0 0 1 1 1 -1 -1 -1 M -M -M M -M -M
χ6 3 3 3 3 3 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 1 1 1 1 1 1 -M -M -M -M -M -M
χ7 3 3 3 3 3 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 1 1 1 1 1 1 -M -M -M -M -M -M
χ8 6 6 6 6 -6 -6 -2 -2 -2 -2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 -1 1 -1 -1
χ9 6 6 6 6 6 6 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1
χ10 6 6 6 -3 0 0 0 0 0 0 1 -2 -2 -2 -2 0 0 0 0 0 0 -1 2 2 0 0 0 0 O M 0 O M
χ11 6 6 6 -3 0 0 0 0 0 0 1 -2 -2 -2 -2 0 0 0 0 0 0 -1 2 2 0 0 0 0 O M 0 O M
χ12 7 7 7 7 -7 -7 1 1 1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 1 1 1 0 0 0 0 0 0
χ13 7 7 7 7 7 7 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0
χ14 8 8 8 8 -8 -8 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 1 1 0 0 0 0 0 0 -1 1 1 -1 1 1
χ15 8 8 8 8 8 8 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 1 1 1 1 1 1
χ16 12 12 12 -6 0 0 0 0 0 0 -2 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 -2 1 0 -2 1
χ17 14 14 14 -7 0 0 0 0 0 0 1 -2 -2 -2 -2 -1 -1 2 2 0 0 1 -2 -2 0 0 0 0 0 0 0 0 0
χ18 16 16 16 -8 0 0 0 0 0 0 0 0 0 0 0 1 1 -2 -2 0 0 0 0 0 0 0 0 0 2 -1 0 2 -1
χ19 21 5 -3 0 -1 7 -1 3 3 -1 0 -3 1 1 9 0 0 3 -1 -1 1 0 -1 3 1 1 -1 0 0 0 0 0 0
χ20 21 5 -3 0 1 -7 1 -3 -3 1 0 -3 1 1 9 0 0 3 -1 1 -1 0 -1 3 -1 -1 1 0 0 0 0 0 0
χ21 21 5 -3 0 -1 7 -1 -1 -1 3 0 1 -3 5 -3 0 0 3 -1 -1 1 0 1 -3 -1 -1 1 0 0 0 0 0 0
χ22 21 5 -3 0 1 -7 1 1 1 -3 0 1 -3 5 -3 0 0 3 -1 1 -1 0 1 -3 1 1 -1 0 0 0 0 0 0
χ23 42 10 -6 0 -2 14 -2 2 2 2 0 -2 -2 6 6 0 0 -3 1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0
χ24 42 10 -6 0 2 -14 2 -2 -2 -2 0 -2 -2 6 6 0 0 -3 1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0
χ25 42 -6 2 0 0 0 0 4 -4 0 0 2 -2 -2 6 3 -1 0 0 0 0 0 0 0 2 -2 0 0 0 0 0 0 0
χ26 42 -6 2 0 0 0 0 -4 4 0 0 2 -2 -2 6 3 -1 0 0 0 0 0 0 0 -2 2 0 0 0 0 0 0 0
χ27 63 15 -9 0 -3 21 1 1 1 -3 0 -1 3 -5 3 0 0 0 0 0 0 0 1 -3 -1 -1 1 0 0 0 0 0 0
χ28 63 15 -9 0 3 -21 -1 -1 -1 3 0 -1 3 -5 3 0 0 0 0 0 0 0 1 -3 1 1 -1 0 0 0 0 0 0
χ29 63 15 -9 0 -3 21 1 -3 -3 1 0 3 -1 -1 -9 0 0 0 0 0 0 0 -1 3 1 1 -1 0 0 0 0 0 0
χ30 63 15 -9 0 3 -21 -1 3 3 -1 0 3 -1 -1 -9 0 0 0 0 0 0 0 -1 3 -1 -1 1 0 0 0 0 0 0
χ31 84 -12 4 0 0 0 0 0 0 0 0 4 -4 -4 12 -3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ32 126 -18 6 0 0 0 0 4 -4 0 0 -2 2 2 -6 0 0 0 0 0 0 0 0 0 -2 2 0 0 0 0 0 0 0
χ33 126 -18 6 0 0 0 0 -4 4 0 0 -2 2 2 -6 0 0 0 0 0 0 0 0 0 2 -2 0 0 0 0 0 0 0

χ1 4 4 4 4 A A 0 0 0 0 0 0 0 0 0 1 1 1 1 G G 0 0 0 0 0 0 N -M -M -N -M -M
χ2 4 4 4 4 A A 0 0 0 0 0 0 0 0 0 1 1 1 1 G G 0 0 0 0 0 0 -N -M -M N -M -M
χ3 4 4 4 4 -A -A 0 0 0 0 0 0 0 0 0 1 1 1 1 -G -G 0 0 0 0 0 0 N -M -M -N -M -M
χ4 4 4 4 4 -A -A 0 0 0 0 0 0 0 0 0 1 1 1 1 -G -G 0 0 0 0 0 0 -N -M -M N -M -M
χ5 6 6 6 6 B B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H H H K K K -G 1 1 -G 1 1
χ6 6 6 6 6 B B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -H -H -H -K -K -K -G 1 1 -G 1 1
χ7 6 6 6 6 -B -B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H H H -K -K -K G 1 1 G 1 1
χ8 6 6 6 6 -B -B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -H -H -H K K K G 1 1 G 1 1
χ9 8 8 8 8 C C 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 G G 0 0 0 0 0 0 G -1 -1 G -1 -1
χ10 8 8 8 8 -C -C 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -G -G 0 0 0 0 0 0 -G -1 -1 -G -1 -1
χ11 8 8 8 -4 0 0 0 0 0 0 0 0 0 0 0 -1 -1 2 2 0 0 0 0 0 0 0 0 0 O M 0 O M
χ12 8 8 8 -4 0 0 0 0 0 0 0 0 0 0 0 -1 -1 2 2 0 0 0 0 0 0 0 0 0 O M 0 O M
χ13 12 12 12 -6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -H I I 0 0 0 0 2 -1 0 2 -1
χ14 12 12 12 -6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H -I -I 0 0 0 0 2 -1 0 2 -1
χ15 16 16 16 -8 0 0 0 0 0 0 0 0 0 0 0 1 1 -2 -2 0 0 0 0 0 0 0 0 0 -2 1 0 -2 1
χ16 42 10 -6 0 D E 0 0 0 0 0 0 0 0 0 0 0 -3 1 G -G 0 H J K K -K 0 0 0 0 0 0
χ17 42 10 -6 0 D E 0 0 0 0 0 0 0 0 0 0 0 -3 1 G -G 0 -H -J -K -K K 0 0 0 0 0 0
χ18 42 10 -6 0 -D -E 0 0 0 0 0 0 0 0 0 0 0 -3 1 -G G 0 H J -K -K K 0 0 0 0 0 0
χ19 42 10 -6 0 -D -E 0 0 0 0 0 0 0 0 0 0 0 -3 1 -G G 0 -H -J K K -K 0 0 0 0 0 0
χ20 84 20 -12 0 -A F 0 0 0 0 0 0 0 0 0 0 0 3 -1 -G G 0 0 0 0 0 0 0 0 0 0 0 0
χ21 84 20 -12 0 A -F 0 0 0 0 0 0 0 0 0 0 0 3 -1 G -G 0 0 0 0 0 0 0 0 0 0 0 0
χ22 84 -12 4 0 0 0 0 0 0 0 0 0 0 0 0 -3 1 0 0 0 0 0 0 0 L -L 0 0 0 0 0 0 0
χ23 84 -12 4 0 0 0 0 0 0 0 0 0 0 0 0 -3 1 0 0 0 0 0 0 0 -L L 0 0 0 0 0 0 0
χ24 168 -24 8 0 0 0 0 0 0 0 0 0 0 0 0 3 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A = -4i, B = 6i, C = 8i, D = 2i, E = -14i, F = -28i, G = i, H =
√

2, I = 2
√

2, J = -3
√

2, K = -
√

2i, L = -2
√

2i, M = 1−
√

7i
2 ,

N = E(28)11+E(28)15+E(28)23, O= -1+
√

7i



On the maximal subgroups of M23 and M24 315

References
[1] A. Basheer and J. Moori, Fischer matrices of Dempwolff group 25·GL(5, 2), Int. J. Group Theory, Vol. 1

No.4 (2012), 43-63.

[2] W. Bosma and J.J. Canon, Handbook of Magma Functions, Department of Mathematics, University of
Sydney, November 1994.

[3] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, and R.A. Wilson, Atlas of Finite Groups, Oxford
University Press, Oxford, 1985.

[4] B. Fischer, Clifford-matrices, Progr. Math. 95, Michler G.O. and Ringel C.(eds), Birkhauser, Basel (1991),
1 - 16.

[5] M.R. Gaberdiel, D. Persson, H. Ronellenfitsch and R. Volpato, Generalised Mathieu Moonshine,
(https://arxiv.org/abs/1211.7074).

[6] The GAP Group, GAP --Groups, Algorithms, and Programming, Version 4.11.0; 2020. (http://www.gap-
system.org).

[7] R.J. Haggarty and J.F. Humphreys, Projective characters of finite groups, Proc. London Math. Soc. (3)36
(1975), 176 - 192.

[8] I. M. Isaacs, Character Theory of Finite Groups, Academic Press, San Diego, 1976.

[9] G. Karpilovsky, Group Representations: Introduction to Group Representations and Characters, Vol 1
Part B, North - Holland Mathematics Studies 175, Amsterdam, 1992.

[10] G. Karpilovsky, Projective representations of finite groups, Marcel Dekker, New York and Basel, 1985.
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