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Abstract Nowadays most software used for development purposes has an environment that
supports object-oriented concepts and there has been a major shift from the functional approach
to object-oriented programming. The software industry has grown exponentially, covering all
major areas of businesses. Among these areas, we have also the financial market. Many finan-
cial institutions and investors make use of option contracts to speculate on trends in the stock
market or to keep their level of risks from other investments under control. The price of an op-
tion is therefore an important factor. Many researchers related to financial options have come up
with several algorithms to calculate option values. These algorithms have been implemented in
different computer languages or packages. In this paper, we propose an object-oriented frame-
work using design patterns for pricing European options in MATLAB, under the Black-Scholes
framework.

1 Introduction

Computation of a fair price of an option is of utmost importance in the market of financial
derivatives. An option is a contract which gives the owner the right but not the obligation to
buy or sell an underlying asset at a prescribed exercise price E on or before the expiry date T .
Consider the stock price process [7]

dS = µSdt+ σSdW,

where S is the stock price at time t, µ is the expected return on stock, σ is the constant volatility
of the stock price and W follows a Wiener process. With v denoting the price of an option, the
Black-Scholes-Merton differential equation is given by [2]

∂v

∂t
+

1
2
σ2S2 ∂

2v

∂S2 + rS
∂v

∂S
− rv = 0, (1.1)

where r is the risk-free interest rate. By imposing appropriate boundary and initial conditions,
(1.1) can be solved to determine the price of an option. However, it is not always possible to
obtain closed-form expressions for the values of the options. Thus, numerical techniques must
be employed. A powerful tool of pricing options numerically is the finite difference approach.

Object-oriented concepts are linked to the work of Ole-Johan Dahl and Kristen Nygaard on the
design of the SIMULA language. Other object-oriented languages became popular in the late
80’s. The craze towards object-oriented programming languages started in the 90’s. Nowadays
most programming languages and packages support an object-oriented environment. The main
idea behind object-oriented concepts [1, 4, 8, 9, 10] is to think in terms of objects and manip-
ulate them as they are represented in the real world. Object-oriented programming languages
include the facilities to define objects through classes. A class is a blueprint for objects creation.
Programming languages and packages like C++, C], JAVA, ASP.net, VB.net, php and MATLAB,
among others support an object-oriented environment.
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Design patterns originated from the work of Christopher Alexander, an architect, in the early
60’s. Gamma et al. [3] have come up with 23 design patterns that can be used in software
design. Design patterns have been used in many software development areas to optimise object-
oriented programs to make them more flexible and re-usable. Design patterns have been applied
in commercial applications, game development, graphical user interfaces among others. Heer &
Agrawala [5] have made use of a few design patterns for information visualisation domain which
also includes the representation of data in graphics form. They finally had a design in a reusable
form to facilitate software design, implementation and evaluation.

In this paper, we have identified design patterns and proposed an object-oriented framework for
the implementation of numerical option pricing algorithms using MATLAB. European option
prices have been computed in the finite difference setting. It is to be noted that the algorithms
discussed in this paper have also been implemented by other researchers using functional ap-
proaches. To the best of our knowledge, a few of them have used an object-oriented approach
that does not include design patterns. Our approach is expected to provide more flexibility.

2 European Options

A European option can be exercised at the expiry date only. A European call option gives its
holder the right to buy an underlying asset and its value at the expiry date is max(S(T )−E, 0).
On the other hand, a European put option gives it holder the right to sell an underlying asset and
its value at the expiry date is max(E − S(T ), 0). It is be noted that

c (S, t) +Ee−r(T−t) = p (S, t) + S, (2.1)

where c (S, t) and p (S, t), respectively, denote the call and put values at asset price S and time t.

Let τ denote the time to the expiry date. Then, the value of a European put option satisfies

∂p

∂τ
=

1
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σ2S2 ∂
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∂S2 + rS
∂p

∂S
− rp, (2.2)

with initial initial condition p (S, 0) = max (S − E, 0) and boundary conditions

p (0, τ) = Ee−rτ and p (S, τ) ≈ 0, for large S,

for all τ ∈ [0, T ].

It can be shown that the Black-Scholes formula for the value of a European put option is given
by

p (S, t) = Ee−r(T−t)N (d1)− SN (d2) , (2.3)

where

d1 = −
1

σ
√
T − t

(
ln (S/E) +

(
r − 1

2
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)
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)
,

d2 = d1 − σ
√
T − t and N (·) is the distribution function of the standard normal variable. The

Black-Scholes surface for a European put option is shown in Figure 1. The Black-Scholes for-
mula for the value of a European call option can be obtained using (2.1) and (2.3).

3 Finite Difference Formulation

Finite difference methods for solving (2.2) consist of the discretisation of the temporal domain τ
over the interval [0, T ] with N interior points and the discretisation of the spatial domain S over
the interval [0, L] with M interior points.

Let ∆S and ∆τ , represent the constant cell spacings along the time and space axes, respectively.
Moreover, let pkj = p (j∆S, k∆τ). The first temporal derivative is approximated as follows:
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Figure 1: Black-scholes surface for a European put option.
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The first and second spatial derivatives are approximated by(
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respectively.

3.1 Matrix-Vector Representation

Application of the Forward Difference in Time and Central Difference in Space (FTCS) scheme
to (2.2) gives rise to the linear system
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The linear system corresponding to the Backward Difference in Time and Central Difference in
Space (FTCS) scheme is
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where b̂j = 2− bj for j = 1, . . . , M , and ψ1 = a1Ee
−r(k+1)∆τ .

The matrix-vector representation of the Crank-Nicolson scheme is obtained by adding (3.1) and
(3.2).

Following [6], we define the diagonal matrices D1 and D2 and the tridiagonal matrices T1 and
T2 as follows:
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Thus, (3.1) can be written as
pk+1 = Fpk + vf , (3.3)

where F = (1− r∆τ) I + 1
2 ∆τ

(
σ2D2T2 + rD1T1

)
, pk =

(
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)T
and vf =(
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. Similarly, (3.2) can be expressed as

Bpk+1 = pk + vb, (3.4)

where B = (1 + r∆τ) I − 1
2 ∆τ

(
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)
and vb =

(
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)T
.

Algorithm 3.1 generates European put option values using the FTCS scheme.

Algorithm 3.1 The FTCS algorithm to compute European put option values.
Input the parameters E, σ, r, M, N and T
Set L = 2E
Define ∆S = L/ (M + 1) and ∆τ = T/ (N + 1)
Compute F
Set p0 = max

(
E − (∆S : ∆S : L− ∆S)

T
, 0
)

Define vf = zeros (M, 1)
for k = 0 to N do

Compute φ1 = a1Ee
−rk∆τ

Compute pk+1 = Fpk + vf
end for
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Algorithm 3.2 computes European put option values using the BTCS scheme.

Algorithm 3.2 The BTCS algorithm to compute European put option values.
Input the parameters E, σ, r, M, N and T
Set L = 2E
Define ∆S = L/ (M + 1) and ∆τ = T/ (N + 1)
Compute B
Set p0 = max

(
E − (∆S : ∆S : L− ∆S)

T
, 0
)

Define vb = zeros (M, 1)
for k = 0 to N do

Compute ψ1 = a1Ee
−r(k+1)∆τ

Solve Bpk+1 = pk + vb
end for

Algorithm 3.3 generates European put option values using the CN scheme.

Algorithm 3.3 The CN algorithm to compute European put option values.
Input the parameters E, σ, r, M, N and T
Set L = 2E
Define ∆S = L/ (M + 1) and ∆τ = T/ (N + 1)
Compute F and B
Set p0 = max

(
E − (∆S : ∆S : L− ∆S)

T
, 0
)

Define vf = zeros (M, 1) and vf = zeros (M, 1)
for k = 0 to N do

Compute φ1 = a1Ee
−rk∆τ and ψ1 = a1Ee

−r(k+1)∆τ

Solve (I +B)pk+1 = (I + F )pk + vf + vf
end for

It is to be noted that the linear systems inside the for loops in Algorithm 3.2 and Algorithm 3.3
can be solved using the LU-factorisation method.

It can be observed from Algorithms 3.1, 3.2 and 3.3, that the FTCS, BTCS and CN schemes
share common characteristics and features. In the sequel, we have proposed a framework using
object-oriented concepts and design patterns suitable for option pricing models and that can be
used and implemented using the MATLAB environment.

4 Object-Oriented Concepts in MATLAB

In this section, we introduce an object-oriented approach to implement option pricing algorithms
that have been coded using the MATLAB environment, which fully supports object-oriented con-
cepts. MATLAB R2008 and later versions incorporate an object-oriented framework.

4.1 Class Definition and Object Creation

The object-oriented main concept is to create a class and then defines objects from the class
which encapsulates data members and functions together. Data members refer to variables and
functions are also known as methods. A class is considered to be a blueprint for objects creation
and since classes cannot be used directly, objects are used to manipulate them. The process of
objects creation is also called instantiation and an object is said to be an instance of a class. The
general structure of a class as defined in MATLAB is shown in Listing 1.
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Listing 1: The General Structure of a class as defined in MATLAB.
c l a s s d e f ClassName
p r o p e r t i e s
\% Th i s s e c t i o n c o n s i s t s o f t h e d e c l a r a t i o n o f v a r i a b l e s
\% a l s o c a l l e d d a t a members .
end
methods
\% Th i s s e c t i o n c o n s i s t s o f d e c l a r a t i o n o f f u n c t i o n s
\% a l s o c a l l e d methods .
end
end

The definition of a class is specified by using the classdef keyword and ClassName is an
identifier which is the name given to the class. A class consists of two main blocks where the
first block is the properties block, which includes the definition of variables and as compared
to C or Java languages, data types are omitted. The second block is the methods block in which
functions are declared. Data members and methods can be defined as public, private or protected.
Private data members or methods can be accessed only within the class they have been defined
whereas protected data members or methods can be accessed within the class or sub-classes
created through inheritance. Public data members or methods can be accessed within and also
outside the class. When data members or methods are declared as private or protected, access
to them is only through the use of other methods called accessors. This includes extra function
calls which of course will increase the execution time. For this reason, all data members and
methods are kept public in our implementation of the option pricing algorithms.

5 Inheritance

One of the advantages of using the object-oriented approach is re-use and this can be shown
by creating a base class also known as a super class or parent class. The latter consists of the
common features. Sub-classes or children may then be created from the parent class though a
process called inheritance. There are two types of inheritance. The creation of sub-classes from
a single parent is called simple inheritance. The creation of sub-classes from more than one
parent is called multiple inheritance.

6 Design Patterns

A design pattern may be a single class or a group of classes. The idea behind design patterns is
to create something that can be used over and over again, that is, a design pattern can be used in
the same software or system or in other related software at least more than once. Design patterns
are classified into creational, structural and behavioural patterns. Design patterns are described
by specifying the pattern name, intent, motivation, applicability, structure, participants, collab-
orations, consequences, implementation, sample code and known uses.

7 Proposed Object Oriented Framework for Option Pricing Algorithms

We have identified two design patterns namely, creational and structural, for the option pricing
algorithms. The creational patterns are dataModel, Error, Factory, Initialise and European. The
structural pattern is a composite pattern named GenericOpPricingModel. Given below is the
description of each pattern.

7.1 Creational Pattern: dataModel

Pattern Name

dataModel



332 Jeetendre Narsoo and Sameer Sunhaloo

Intent

The dataModel pattern encloses common properties or data used in the option pricing algorithms.

Motivation

We have observed that most option pricing algorithms make use of similar parameters, that is, a
common set of data. For example, the FTCS, BTCS and CN schemes use the same parameters,
that is, exercise price (E), volatility (σ), interest rate (r) and expiry time (T ), among others.

Applicability

This pattern is meant to be used for the option pricing algorithms but it can also be modified for
other systems.

Structure

The class diagram of the dataModel pattern is given in Figure 2.

Figure 2: Creational Pattern: dataModel.

Participants

There are no participants.

Collaborations

There are no collaborators since this pattern is a single class.

Consequences

There is no need to declare variables in each option pricing algorithm and all algorithms will
make use of the same set of data.

Implementation

Classes will implement the data dataModel class through inheritance as shown in Listing 2. The
class definition is given in Listing 3.

Listing 2: Implementation of class dataModel.
c l a s s d e f b s B t c s < da taModel
. . .
end

The class bsBtcs is created from the class dataModel.
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Sample Code

Listing 3: class dataModel.
c l a s s d e f da taModel

% The c l a s s da taModel c o n s i s t s o f
% t h e v a r i o u s p a r a m e t e r s used i n f i n a n c e models
p r o p e r t i e s
S ; % Stock P r i c e
E ; % E x e r c i s e P r i c e
r ; % I n t e r e s t Ra te
T ; % Ex p i ry Time
sigma ; % V o l a t i l i t y
P ; % Put Opt ion Values
v ;
end
end

Known Uses

All algorithms discussed in this paper make use of the class dataModel.

The next design pattern derived is called Error.

7.2 Creational Pattern: Error

Pattern Name

Error

Intent

The Error pattern captures parameter input errors.

Motivation

A common Error class is used to capture the parameter errors. The parameters are: E, σ, r, M ,
N and T . The class Error consists of the variable Err which is a vector of size 6. Each index
refers to a specific error. For example Err(1) refers to error concerning parameter E. Table 1
lists all the possible errors.

Error Parameter Description
Err(1) E E cannot be less than or equal to zero and cannot be blank
Err(2) σ σ cannot be less than or equal to zero and cannot be blank
Err(3) r r cannot be less than or equal to zero and cannot be blank
Err(4) M M cannot be less or equal to zero and cannot be blank
Err(5) N N cannot be less or equal to zero and cannot be blank
Err(6) T T cannot be less than or equal to zero and cannot be blank

Table 1: Error List.

Each option pricing algorithm will set the error according to the parameters they are using.

Applicability

This pattern is meant to be used for the option pricing algorithms or can be modified to capture
errors for any other system.
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Structure

The structure of the class Error is given in Figure 3.

Figure 3: Creational Pattern: Error.

Participants

There are no participants.

Collaborations

There are no collaborators since this pattern is a single class.

Consequences

All the option pricing algorithms will make use of the same Error class.

Implementation

Classes will implement the data Error class through inheritance as shown in Listing 4.

Listing 4: Implementation of class Error.
c l a s s d e f b s B t c s < da taModel < E r r o r
. . .
end

The Err variable is set in the init method as shown in Listing 5.

Listing 5: code extract from init method of the BTCS class.
. . .
f u n c t i o n o b j = i n i t ( o b j )
i f i s e m p t y ( o b j . E )
o b j . E r r ( 1 ) = 1 ;
end
i f o b j . E <= 0
o b j . E r r ( 1 ) = 1 ;
end
i f i s e m p t y ( o b j . s igma )
o b j . E r r ( 2 ) = 1 ;
end
i f o b j . s igma <= 0
o b j . E r r ( 2 ) = 1 ;
end
i f i s e m p t y ( o b j . r )
o b j . E r r ( 3 ) = 1 ;
end
i f o b j . r <= 0
o b j . E r r ( 3 ) = 1 ;
end
i f i s e m p t y ( o b j .M)
o b j . E r r ( 4 ) = 1 ;
end
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i f o b j .M <= 0
o b j . E r r ( 4 ) = 1 ;
end
i f i s e m p t y ( o b j .N)
o b j . E r r ( 5 ) = 1 ;
end
i f o b j .N <= 0
o b j . E r r ( 5 ) = 1 ;
end
i f i s e m p t y ( o b j . T )
o b j . E r r ( 6 ) = 1 ;
end
i f o b j . T <= 0
o b j . E r r ( 6 ) = 1 ;
end

i f sum ( o b j . E r r ) > 0
r e t u r n
end
end
. . .

Sample Code

Sample code used to implement the class Error is given in Listing 6.

Listing 6: class Error.
c l a s s d e f E r r o r
p r o p e r t i e s
E r r ;
end
methods
f u n c t i o n [ o b j ]= E r r o r ( obj , n )
o b j . E r r = z e r o s ( n , 1 ) ;
end
f u n c t i o n [ mess ]= c h e c k E r r o r ( obj , op )
mess = ’ ’ ;
i f o b j . E r r ( 1 ) == 1
mess = [ mess ’E ’ ] ;
end
i f o b j . E r r ( 2 ) == 1
i f ~ i s e m p t y ( mess )
mess = [ mess ’ , sigma ’ ] ;
e l s e
mess = [ mess ’ sigma ’ ] ;
end
end
i f o b j . E r r ( 3 ) == 1
i f ~ i s e m p t y ( mess )
mess = [ mess ’ , r ’ ] ;
e l s e
mess = [ mess ’ r ’ ] ;
end
end
i f o b j . E r r ( 4 ) == 1
i f ~ i s e m p t y ( mess )
mess = [ mess ’ ,M’ ] ;
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e l s e
mess = [ mess ’M’ ] ;
end
end
i f o b j . E r r ( 5 ) == 1
i f ~ i s e m p t y ( mess )
mess = [ mess ’ ,N ’ ] ;
e l s e
mess = [ mess ’N ’ ] ;
end
end
i f o b j . E r r ( 6 ) == 1
i f ~ i s e m p t y ( mess )
mess = [ mess ’ ,T ’ ] ;
e l s e
mess = [ mess ’T ’ ] ;
end
end
i f ~ i s e m p t y ( mess )
mess = [ op ’ : ’ mess ’ c a n n o t be z e r o o r l e s s o r c h a r a c t e r ’ ] ;
end
end
end

Known Uses

All algorithms discussed so far make use of the class Error.

The Factory pattern is another design pattern used.

7.3 Factory

A factory is responsible for the creation of objects with same of different types at run-time.
Based of the requirement at run-time, the factory will decide which object(s) to instantiate.

Pattern Name

Factory

Intent

The Factory pattern is used to create objects of the different option pricing algorithms.

Motivation

We are using a single class to create a set of different objects.

Applicability

This pattern is meant to be used for the option pricing algorithms but it can also be modified for
other systems.

Structure

The class diagram and the class definition of the Factory pattern are given in Figure 4 and Listing
7, respectively.
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Figure 4: Creational Pattern: Factory.

Participants

There are no participants.

Collaborations

There are no collaborators since this pattern is a single class.

Consequences

Creation of objects will be made through the Factory pattern.

Implementation

The class Factory consists of the Create method with one argument. The latter is the name of
the object we want to create. For example, Factory.Create(bsBtcs) will create an object of type
bsBtcs class.

Sample Code

Listing 7: class Factory.
c l a s s d e f F a c t o r y
methods ( Access = p r i v a t e )
f u n c t i o n o b j = F a c t o r y ( o b j )
end
end
methods ( S t a t i c )
f u n c t i o n o b j = C r e a t e ( o p t )
o b j = e v a l ( o p t ) ;
end
end
end

Known Uses

The class Factory is used to create objects of the different option pricing algorithms at run-time.

We also make use of abstract factory in our implementation.

7.4 Abstract Factory

Abstract factories may be considered to be interfaces that should be implemented by concrete
classes. The abstract classes Initialise and European consist of abstract methods which should
be implemented by their respective concrete classes.

Pattern Name

Initialise
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Intent

The Initialise pattern is used to force all classes related to option pricing models to implement
the init method. All default values and initialisation are done through this method.

Motivation

All classes will have the same polymorphic method for initialisation.

Applicability

This pattern is meant to be used for option pricing algorithms but it can also be modified for
other systems.

Structure

The class diagram and the class definition of the Initialise pattern are given in Figure 5 and
Listing 8, respectively.

Figure 5: Creational Pattern: Initialise.

Participants

There are no participants.

Collaborations

There are no collaborators since this pattern is a single class.

Consequences

All the option pricing algorithms will implement the Initialise pattern.

Implementation

All the option pricing algorithms will implement the Initialise pattern.

Sample Code

Listing 8: class Factory.
c l a s s d e f I n i t i a l i s e

% A b s t r a c t c l a s s I n i t i a l i s e
% wi th a b s t r a c t method i n i t t o be implemented
% by c o n c r e t e c l a s s e s
methods ( A b s t r a c t )
o b j = i n i t ( o b j ) ;
end
end

Known Uses

All classes that implement an option pricing algorithm shall implement the Initialise class.
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Pattern Name

European

Intent

The European pattern is used to force all classes related to the option pricing algorithms to
implement the EurPut method. After implementing the static method EurPut, a European option
value will be computed.

Motivation

All classes will have the same polymorphic method for the calculation of a European option
value.

Applicability

This pattern is meant to be used for the option pricing algorithms but it can also be modified for
other systems.

Structure

The class diagram and the class definition of the European pattern are given in Figure 6 and
Listing 9, respectively.

Figure 6: Creational Pattern: European.

Participants

There are no participants.

Collaborations

There are no collaborators since this pattern is a single class.

Consequences

All option pricing algorithms will implement the European pattern.

Implementation

All option pricing algorithms will implement the European pattern.

Sample Code

Listing 9: class European.
c l a s s d e f European

% A b s t r a c t c l a s s European
% wi th a b s t r a c t method EurPu t t o be implemented
% by c o n c r e t e c l a s s e s
methods ( A b s t r a c t )
o b j = EurPu t ( o b j ) ;
end
end
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Known Uses

All classes that implement an option pricing algorithm shall implement the Initialise class.

7.5 Generic Option Pricing Model

The generic option pricing model is a composite design pattern and is the framework that can be
used while implementing the option pricing algorithms.

Intent

The Generic Option Pricing Model pattern is used to provide a common template for the option
pricing algorithms.

Motivation

All classes will have to implement the the different interfaces and make use of a common data
model and error objects.

Applicability

This pattern is meant to be used for the option pricing algorithms but it can also be modified for
other systems.

Structure

The class diagram and the class definition of the Generic Option Pricing Model pattern are given
in Figure 7 and Listing 10, respectively.

Figure 7: Generic Option Pricing class.

Participants

Participants are European, Initialise, dataModel and Error classes.

Collaborations

The collaborators are same as the participants.

Consequences

All option pricing algorithms will implement the European and Initialise patterns.
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Implementation

All option pricing algorithms will implement the European and Initialise patterns.

Sample Code

Listing 10: class Generic Option Pricing Model.
c l a s s d e f opModel < da taModel & I n i t i a l i s e & European & E r r o r
methods
f u n c t i o n o b j = i n i t ( o b j )
# To be implemented by c o n c r e t e c l a s s e s
end
f u n c t i o n o b j = EurPu t ( o b j )
# To be implemented by c o n c r e t e c l a s s e s
end
end
end

Listing 11: Example bsBtcs class.
c l a s s d e f b s B t c s < da taModel & I n i t i a l i s e & European & E r r o r
methods
f u n c t i o n o b j = i n i t ( o b j )
# c a p t u r e e r r o r and s e t E r r v a r i a b l e i f any
# i n i t i a l i s e o t h e r v a r i a b l e s
end
f u n c t i o n o b j = EurPu t ( o b j )
# compute an European o p t i o n v a l u e as p e r a l g o r i t h m
end
end
end

Known Uses

All classes that implement an option pricing algorithm should implement abstract methods in-
herited.

8 Numerical Experiments

All numerical experiments in this paper have been performed on an HP laptop with Intel(R)
Core(TM) i7-3520M CPU @ 2.90 GHz and Windows 8 environment. MATLAB R2012a envi-
ronment has been used to write and execute the MATLAB programs.

8.1 Classical Finite Difference Methods

The classes that implement the FTCS, BTCS and CN schemes to solve the Black-Scholes par-
tial differential equation for a European put option value have been tested with different sets
of parameters. As shown in Table 2, we tested the FTCS, BTCS, and CN objects with N =
{27, 28, 29, 210, 211, 212, 213, 214, 215, 216, 217}, E = 100, S = 100, r = 0.06, ∆S = 0.2,
T = 1 and σ = 0.3.

From Table 2, it can be observed that the FTCS scheme is not stable for all combinations of
∆τ and ∆S. We set ∆S = 0.2 for all the three schemes and when smaller values of h are used,
the execution times increases and more memory space is required. The CN scheme gives a four
decimal point accuracy in fewer times step. The execution time, Etime, is measured in seconds
and Error is the difference between the value obtained from the Black-Scholes (BS) formula and
the three finite difference schemes studied.
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FTCS BTCS True Value
N Value Etime Error Value Etime Error BS
27 NaN 0.20 8.881968 0.75 1.16E-02 8.893526
28 NaN 0.19 8.887709 0.09 5.82E-03 8.893526
29 NaN 0.27 8.890580 0.11 2.95E-03 8.893526
210 NaN 0.53 8.892016 0.16 1.51E-03 8.893526
211 NaN 0.99 8.892734 0.32 7.92E-04 8.893526
212 NaN 1.97 8.893093 0.53 4.33E-04 8.893526
213 NaN 3.91 8.893273 0.96 2.53E-04 8.893526
214 NaN 7.84 8.893362 1.88 1.63E-04 8.893526
215 NaN 15.86 8.893407 3.63 1.19E-04 8.893526
216 NaN 18.03 8.893430 7.20 9.61E-05 8.893526
217 8.893463 63.59 6.24E-05 8.893441 14.47 8.49E-05 8.893526

Table 2: Results of the FTCS and BTCS schemes to compute a European put option value from
the Black-Scholes partial differential equation with E = 100, S = 100, r = 0.06, ∆S = 0.2,
T = 1 and σ = 0.3.

In Tables 3-5, S = {80, 85, 90, 95, 100, 105, 110, 115, 120}, T = {1, 3}, σ = {0.1, 0.3} and
r = 0.06.

BTCS CN True Value
S Value Error Value Error BS
80 18.955521 8.39E-05 18.955558 4.74E-05 18.955605
85 15.882539 2.09E-04 15.882691 5.66E-05 15.882748
90 13.192400 3.14E-04 13.192651 6.30E-05 13.192714
95 10.870815 3.89E-04 10.871137 6.73E-05 10.871204

100 8.893093 4.33E-04 8.893454 7.24E-05 8.893526
105 7.227820 4.49E-04 7.228188 8.09E-05 7.228269
110 5.840140 4.49E-04 5.840490 9.91E-05 5.840589
115 4.694402 4.50E-04 4.694714 1.38E-04 4.694852
120 3.756097 4.73E-04 3.756359 2.11E-04 3.756570

Table 3: Results of the BTCS and CN schemes to compute European put option values from the
Black-Scholes partial differential equation with E = 100, S = 100, r = 0.06, ∆S = 0.2, T = 1,
σ = 0.3 and N = 212 (for BTCS) and N = 29 (for CN).

BTCS CN True Value
S Value Error Value Error BS
80 18.569997 1.05E-02 18.570227 1.02E-02 18.580477
85 16.530407 1.57E-02 16.530760 1.53E-02 16.546060
90 14.705421 2.25E-02 14.705877 2.21E-02 14.727959
95 13.075037 3.15E-02 13.075574 3.09E-02 13.106519

100 11.619952 4.28E-02 11.620545 4.23E-02 11.662797
105 10.321899 5.70E-02 10.322538 5.64E-02 10.378902
110 9.163855 7.43E-02 9.164518 7.37E-02 9.238188
115 8.130136 9.52E-02 8.130808 9.45E-02 8.225341
120 7.206422 1.20E-01 7.207089 1.19E-01 7.326407

Table 4: Results of the BTCS and CN schemes to compute a European put option value from the
Black-Scholes partial differential equation with E = 100, S = 100, r = 0.06, ∆S = 0.2, T = 3,
σ = 0.3 and N = 212 (for BTCS) and N = 29 (for CN).
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BTCS CN True Value
S Value Error Value Error BS
80 14.363833 -2.99E-04 14.363602 6.76E-05 14.363534
85 9.886541 -3.02E-04 9.886259 1.99E-05 9.886239
90 6.131633 -8.64E-05 6.131441 1.06E-04 6.131547
95 3.374278 1.77E-04 3.374244 2.11E-04 3.374455

100 1.635493 2.83E-04 1.635557 2.19E-04 1.635776
105 0.698049 2.22E-04 0.698117 1.54E-04 0.698271
110 0.263635 1.14E-04 0.263670 7.95E-05 0.263749
115 0.088801 3.91E-05 0.088808 3.19E-05 0.088840
120 0.026926 6.16E-06 0.026923 9.14E-06 0.026932

Table 5: Results of the BTCS and CN schemes to compute a European put option value from the
Black-Scholes partial differential equation with E = 100, S = 100, r = 0.06, ∆S = 0.2, T = 1,
σ = 0.1 and N = 212 (for BTCS) and N = 29 (for CN).

9 Remarks

We have exploited the programming environment of MATLAB, which provides both functional
and object-oriented approaches to programming. It is to be noted that programs which are de-
signed using an object-oriented approach does not necessarily improve performance. An object-
oriented approach using design patterns provides a structured way to write and implement flex-
ible and robust programs. The proposed framework provides a common template for imple-
menting option pricing algorithms. Moreover, the approach presented in this paper can easily be
extended to other mathematical models arising in finance and engineering, amongst others.

10 Conclusion

Object-oriented concepts have been used to implement some generic numerical algorithms for
pricing financial options under the Black-Scholes framework. In particular, the Forward Dif-
ference in Time and Central Difference in Space, Backward Difference in Time and Central
Difference in Space and the Crank-Nicolson schemes have been employed to approximate the
Black-Scholes equation. The object-oriented framework using design patterns was implemented
and tested in MATLAB. It should be noted that our proposed strategy does not necessarily im-
prove execution time as most microprocessors execute one instruction at a time. As future work
we are proposing to design a flexible graphical user interface to integrate several option pricing
models under one common environment.
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