AN OBJECT-ORIENTED FRAMEWORK USING DESIGN PATTERNS FOR NUMERICAL OPTION PRICING

Jeetendre Narsoo and Sameer Sunhaloo

Communicated by Suheel Khoury

MSC 2020 Classifications: Primary 68N19; Secondary 91G20

Keywords and phrases: Object-oriented programming, design patterns, numerical option pricing.

Abstract Nowadays most software used for development purposes has an environment that supports object-oriented concepts and there has been a major shift from the functional approach to object-oriented programming. The software industry has grown exponentially, covering all major areas of businesses. Among these areas, we have also the financial market. Many financial institutions and investors make use of option contracts to speculate on trends in the stock market or to keep their level of risks from other investments under control. The price of an option is therefore an important factor. Many researchers related to financial options have come up with several algorithms to calculate option values. These algorithms have been implemented in different computer languages or packages. In this paper, we propose an object-oriented framework using design patterns for pricing European options in MATLAB, under the Black-Scholes framework.

1 Introduction

Computation of a fair price of an option is of utmost importance in the market of financial derivatives. An option is a contract which gives the owner the right but not the obligation to buy or sell an underlying asset at a prescribed exercise price E on or before the expiry date T. Consider the stock price process [7]

$$dS = \mu S dt + \sigma S dW,$$

where S is the stock price at time t, μ is the expected return on stock, σ is the constant volatility of the stock price and W follows a Wiener process. With v denoting the price of an option, the Black-Scholes-Merton differential equation is given by [2]

$$\frac{\partial v}{\partial t} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 v}{\partial S^2} + rS \frac{\partial v}{\partial S} - rv = 0,$$

(1.1)

where r is the risk-free interest rate. By imposing appropriate boundary and initial conditions, (1.1) can be solved to determine the price of an option. However, it is not always possible to obtain closed-form expressions for the values of the options. Thus, numerical techniques must be employed. A powerful tool of pricing options numerically is the finite difference approach.

Object-oriented concepts are linked to the work of Ole-Johan Dahl and Kristen Nygaard on the design of the SIMULA language. Other object-oriented languages became popular in the late 80’s. The craze towards object-oriented programming languages started in the 90’s. Nowadays most programming languages and packages support an object-oriented environment. The main idea behind object-oriented concepts [1, 4, 8, 9, 10] is to think in terms of objects and manipulate them as they are represented in the real world. Object-oriented programming languages include the facilities to define objects through classes. A class is a blueprint for objects creation. Programming languages and packages like C++, C#, JAVA, ASP.net, VB.net, php and MATLAB, among others support an object-oriented environment.
Design patterns originated from the work of Christopher Alexander, an architect, in the early 60’s. Gamma et al. [3] have come up with 23 design patterns that can be used in software design. Design patterns have been used in many software development areas to optimise object-oriented programs to make them more flexible and re-usable. Design patterns have been applied in commercial applications, game development, graphical user interfaces among others. Heer & Agrawala [5] have made use of a few design patterns for information visualisation domain which also includes the representation of data in graphics form. They finally had a design in a reusable form to facilitate software design, implementation and evaluation.

In this paper, we have identified design patterns and proposed an object-oriented framework for the implementation of numerical option pricing algorithms using MATLAB. European option prices have been computed in the finite difference setting. It is to be noted that the algorithms discussed in this paper have also been implemented by other researchers using functional approaches. To the best of our knowledge, a few of them have used an object-oriented approach that does not include design patterns. Our approach is expected to provide more flexibility.

2 European Options

A European option can be exercised at the expiry date only. A European call option gives its holder the right to buy an underlying asset and its value at the expiry date is \(\max(S(T) - E, 0) \).

On the other hand, a European put option gives it holder the right to sell an underlying asset and its value at the expiry date is \(\max(E - S(T), 0) \). It is be noted that

\[
c(S, t) + E e^{-r(T-t)} = p(S, t) + S,
\]

where \(c(S, t) \) and \(p(S, t) \), respectively, denote the call and put values at asset price \(S \) and time \(t \).

Let \(\tau \) denote the time to the expiry date. Then, the value of a European put option satisfies

\[
\frac{\partial p}{\partial \tau} = \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 p}{\partial S^2} + r S \frac{\partial p}{\partial S} - rp,
\]

with initial initial condition \(p(S, 0) = \max(S - E, 0) \) and boundary conditions

\[
p(0, \tau) = E e^{-r \tau} \text{ and } p(S, \tau) \approx 0, \text{ for large } S,
\]

for all \(\tau \in [0, T] \).

It can be shown that the Black-Scholes formula for the value of a European put option is given by

\[
p(S, t) = E e^{-r(T-t)} N(d_1) - S N(d_2),
\]

where

\[
d_1 = -\frac{1}{\sigma \sqrt{T-t}} \left(\ln(S/E) + \left(r - \frac{1}{2} \sigma^2 \right) (T-t) \right),
\]

\[
d_2 = d_1 - \sigma \sqrt{T-t} \text{ and } N(\cdot) \text{ is the distribution function of the standard normal variable. The Black-Scholes surface for a European put option is shown in Figure 1. The Black-Scholes formula for the value of a European call option can be obtained using (2.1) and (2.3).}

3 Finite Difference Formulation

Finite difference methods for solving (2.2) consist of the discretisation of the temporal domain \(\tau \) over the interval \([0, T]\) with \(N \) interior points and the discretisation of the spatial domain \(S \) over the interval \([0, L]\) with \(M \) interior points.

Let \(\Delta S \) and \(\Delta \tau \), represent the constant cell spacings along the time and space axes, respectively. Moreover, let \(p_j^k = p(j \Delta S, k \Delta \tau) \). The first temporal derivative is approximated as follows:
Figure 1: Black-scholes surface for a European put option.

• Forward difference approximation
\[
\left(\frac{\partial p}{\partial \tau} \right)_{j,k} \approx \frac{1}{\Delta \tau} (p_{j+1}^k - p_j^k).
\]

• Backward difference approximation
\[
\left(\frac{\partial p}{\partial \tau} \right)_{j,k} \approx \frac{1}{\Delta \tau} (p_j^k - p_{j-1}^k).
\]

The first and second spatial derivatives are approximated by
\[
\left(\frac{\partial p}{\partial S} \right)_{j,k} \approx \frac{1}{\Delta S} (p_{j+1}^k - p_{j-1}^k),
\]
and
\[
\left(\frac{\partial^2 p}{\partial S^2} \right)_{j,k} \approx \frac{1}{\Delta S^2} (p_{j+1}^k - 2p_j^k + p_{j-1}^k),
\]
respectively.

3.1 Matrix-Vector Representation

Application of the Forward Difference in Time and Central Difference in Space (FTCS) scheme to (2.2) gives rise to the linear system

\[
\begin{pmatrix}
 p_1^{k+1} \\
 p_2^{k+1} \\
 \vdots \\
 p_{M-1}^{k+1} \\
 p_M^{k+1}
\end{pmatrix}
= \begin{pmatrix}
 b_1 & c_1 & & & \\
 a_2 & b_2 & c_2 & & \\
 & \ddots & \ddots & \ddots & \\
 & & a_{M-1} & b_{M-1} & c_{M-1} \\
 & & & a_M & b_M
\end{pmatrix}
\begin{pmatrix}
 p_1^k + \phi_1 \\
 p_2^k \\
 \vdots \\
 p_{M-1}^k \\
 p_M^k
\end{pmatrix},
\]

(3.1)

where \(a_j = j \Delta \tau \left(\sigma^2 j - r \right) / 2 \), \(b_j = 1 - r \Delta \tau - \sigma^2 j \Delta \tau \) and \(c_j = j \Delta \tau \left(\sigma^2 j + r \right) / 2 \) for \(j = 1, \ldots, M \), and \(\phi_1 = a_1 e^{-r \Delta \tau} \).
The linear system corresponding to the Backward Difference in Time and Central Difference in Space (FTCS) scheme is

\[
\begin{bmatrix}
\hat{b}_1 & -c_1 \\
-a_2 & \hat{b}_2 & -c_2 \\
& \ddots & \ddots \\
& -a_{M-1} & \hat{b}_{M-1} & -c_{M-1} \\
& & -a_M & \hat{b}_M \\
\end{bmatrix}
\begin{bmatrix}
p_{k+1}^1 \\
p_{k+1}^2 \\
\vdots \\
p_{k+1}^{M-1} \\
p_{k+1}^M \\
\end{bmatrix}
= \begin{bmatrix}
p_k^1 + \psi_1 \\
p_k^2 \\
\vdots \\
p_k^{M-1} \\
p_k^M \\
\end{bmatrix},
\]

(3.2)

where \(\hat{b}_j = 2 - b_j \) for \(j = 1, \ldots, M \), and \(\psi_1 = a_1 E e^{-r(k+1)\Delta\tau} \).

The matrix-vector representation of the Crank-Nicolson scheme is obtained by adding (3.1) and (3.2).

Following [6], we define the diagonal matrices \(D_1 \) and \(D_2 \) and the tridiagonal matrices \(T_1 \) and \(T_2 \) as follows:

\[
D_1 = \begin{bmatrix}
1 \\
2 \\
\vdots \\
M-1 \\
M \\
\end{bmatrix}, \quad D_2 = \begin{bmatrix}
1^2 \\
2^2 \\
\vdots \\
(M-1)^2 \\
M^2 \\
\end{bmatrix},
\]

\[
T_1 = \begin{bmatrix}
0 & 1 & & & \\
-1 & 0 & 1 & & \\
& \ddots & \ddots & \ddots \\
& & -1 & 0 & 1 \\
& & & -1 & 0 \\
\end{bmatrix} \quad \text{and} \quad T_2 = \begin{bmatrix}
-2 & 1 \\
1 & -2 & 1 \\
\vdots & \ddots & \ddots \\
1 & -2 & 1 \\
\end{bmatrix}.
\]

Thus, (3.1) can be written as

\[
p_{k+1} = Fp_k + v_f,
\]

(3.3)

where \(F = (1 - r\Delta\tau)I + \frac{1}{2}\Delta\tau \left(\sigma^2 D_2 T_2 + r D_1 T_1 \right) \), \(p_k = \left(p_k^1 \ p_k^2 \ \cdots \ p_k^M \right)^T \) and \(v_f = \begin{pmatrix} \phi_1 & 0 & \cdots & 0 \end{pmatrix}^T \). Similarly, (3.2) can be expressed as

\[
Bp_{k+1} = p_k + v_b,
\]

(3.4)

where \(B = (1 + r\Delta\tau)I - \frac{1}{2}\Delta\tau \left(\sigma^2 D_2 T_2 + r D_1 T_1 \right) \) and \(v_b = \begin{pmatrix} \psi_1 & 0 & \cdots & 0 \end{pmatrix}^T \).

Algorithm 3.1 generates European put option values using the FTCS scheme.

Algorithm 3.1 The FTCS algorithm to compute European put option values.

Input the parameters \(E, \sigma, r, M, N \) and \(T \)

Set \(L = 2E \)

Define \(\Delta S = L/(M+1) \) and \(\Delta T = T/(N+1) \)

Compute \(F \)

Set \(p^0 = \max \left(E - (\Delta S : \Delta S : L - \Delta S)^T, 0 \right) \)

Define \(v_f = \text{zeros}(M,1) \)

for \(k = 0 \) to \(N \) do

\(\phi_1 = a_1 E e^{-r(k+1)\Delta\tau} \)

Compute \(p_{k+1} = Fp_k + v_f \)

end for
Algorithm 3.2 computes European put option values using the BTCS scheme.

Algorithm 3.2 The BTCS algorithm to compute European put option values.

- **Input the parameters** E, σ, r, M, N and T.
- Set $L = 2E$.
- Define $\Delta S = L / (M + 1)$ and $\Delta \tau = T / (N + 1)$.
- Compute B.
- Set $p^0 = \max \left(E - (\Delta S : \Delta S : L - \Delta S)^T , 0 \right)$.
- Define $v_b = \text{zeros} (M, 1)$.
- for $k = 0$ to N do
 - Compute $\psi_1 = a_1 E e^{-r(k+1)\Delta \tau}$.
 - Solve $Bp^{k+1} = p^k + v_b$.
- end for.

Algorithm 3.3 generates European put option values using the CN scheme.

Algorithm 3.3 The CN algorithm to compute European put option values.

- **Input the parameters** E, σ, r, M, N and T.
- Set $L = 2E$.
- Define $\Delta S = L / (M + 1)$ and $\Delta \tau = T / (N + 1)$.
- Compute F and B.
- Set $p^0 = \max \left(E - (\Delta S : \Delta S : L - \Delta S)^T , 0 \right)$.
- Define $v_f = \text{zeros} (M, 1)$ and $v_f = \text{zeros} (M, 1)$.
- for $k = 0$ to N do
 - Compute $\phi_1 = a_1 E e^{-rk\Delta \tau}$ and $\psi_1 = a_1 E e^{-r(k+1)\Delta \tau}$.
 - Solve $(I + B)p^{k+1} = (I + F)p^k + v_f + v_f$.
- end for.

It is to be noted that the linear systems inside the for loops in Algorithm 3.2 and Algorithm 3.3 can be solved using the LU-factorisation method.

It can be observed from Algorithms 3.1, 3.2 and 3.3, that the FTCS, BTCS and CN schemes share common characteristics and features. In the sequel, we have proposed a framework using object-oriented concepts and design patterns suitable for option pricing models and that can be used and implemented using the MATLAB environment.

4 Object-Oriented Concepts in MATLAB

In this section, we introduce an object-oriented approach to implement option pricing algorithms that have been coded using the MATLAB environment, which fully supports object-oriented concepts. MATLAB R2008 and later versions incorporate an object-oriented framework.

4.1 Class Definition and Object Creation

The object-oriented main concept is to create a class and then defines objects from the class which encapsulates data members and functions together. Data members refer to variables and functions are also known as methods. A class is considered to be a blueprint for objects creation and since classes cannot be used directly, objects are used to manipulate them. The process of objects creation is also called instantiation and an object is said to be an instance of a class. The general structure of a class as defined in MATLAB is shown in Listing 1.
Listing 1: The General Structure of a class as defined in MATLAB.

classdef ClassName
properties
 \% This section consists of the declaration of variables
 \% also called data members.
end
methods
 \% This section consists of declaration of functions
 \% also called methods.
end
end

The definition of a class is specified by using the `classdef` keyword and `ClassName` is an identifier which is the name given to the class. A class consists of two main blocks where the first block is the `properties` block, which includes the definition of variables and as compared to C or Java languages, data types are omitted. The second block is the `methods` block in which functions are declared. Data members and methods can be defined as public, private or protected. Private data members or methods can be accessed only within the class they have been defined whereas protected data members or methods can be accessed within the class or sub-classes created through inheritance. Public data members or methods can be accessed within and also outside the class. When data members or methods are declared as private or protected, access to them is only through the use of other methods called accessors. This includes extra function calls which of course will increase the execution time. For this reason, all data members and methods are kept public in our implementation of the option pricing algorithms.

5 Inheritance

One of the advantages of using the object-oriented approach is re-use and this can be shown by creating a base class also known as a super class or parent class. The latter consists of the common features. Sub-classes or children may then be created from the parent class through a process called inheritance. There are two types of inheritance. The creation of sub-classes from a single parent is called simple inheritance. The creation of sub-classes from more than one parent is called multiple inheritance.

6 Design Patterns

A design pattern may be a single class or a group of classes. The idea behind design patterns is to create something that can be used over and over again, that is, a design pattern can be used in the same software or system or in other related software at least more than once. Design patterns are classified into creational, structural and behavioural patterns. Design patterns are described by specifying the pattern name, intent, motivation, applicability, structure, participants, collaborations, consequences, implementation, sample code and known uses.

7 Proposed Object Oriented Framework for Option Pricing Algorithms

We have identified two design patterns namely, creational and structural, for the option pricing algorithms. The creational patterns are dataModel, Error, Factory, Initialise and European. The structural pattern is a composite pattern named GenericOpPricingModel. Given below is the description of each pattern.

7.1 Creational Pattern: dataModel

Pattern Name

dataModel
Intent
The *dataModel* pattern encloses common properties or data used in the option pricing algorithms.

Motivation
We have observed that most option pricing algorithms make use of similar parameters, that is, a common set of data. For example, the FTCS, BTCS and CN schemes use the same parameters, that is, exercise price \((E)\), volatility \((\sigma)\), interest rate \((r)\) and expiry time \((T)\), among others.

Applicability
This pattern is meant to be used for the option pricing algorithms but it can also be modified for other systems.

Structure
The class diagram of the *dataModel* pattern is given in Figure 2.

![Figure 2: Creational Pattern: dataModel.](image)

Participants
There are no participants.

Collaborations
There are no collaborators since this pattern is a single class.

Consequences
There is no need to declare variables in each option pricing algorithm and all algorithms will make use of the same set of data.

Implementation
Classes will implement the data *dataModel* class through inheritance as shown in Listing 2. The class definition is given in Listing 3.

```java
class def bsBtcs < dataModel

end
```

The class *bsBtcs* is created from the class *dataModel*.
Known Uses
All algorithms discussed in this paper make use of the class dataModel.

The next design pattern derived is called Error.

7.2 Creational Pattern: Error

Pattern Name
Error

Intent
The Error pattern captures parameter input errors.

Motivation
A common Error class is used to capture the parameter errors. The parameters are: E, σ, r, M, N and T. The class Error consists of the variable Err which is a vector of size 6. Each index refers to a specific error. For example $Err(1)$ refers to error concerning parameter E. Table 1 lists all the possible errors.

<table>
<thead>
<tr>
<th>Error</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Err(1)</td>
<td>E</td>
<td>E cannot be less than or equal to zero and cannot be blank</td>
</tr>
<tr>
<td>Err(2)</td>
<td>σ</td>
<td>σ cannot be less than or equal to zero and cannot be blank</td>
</tr>
<tr>
<td>Err(3)</td>
<td>r</td>
<td>r cannot be less than or equal to zero and cannot be blank</td>
</tr>
<tr>
<td>Err(4)</td>
<td>M</td>
<td>M cannot be less or equal to zero and cannot be blank</td>
</tr>
<tr>
<td>Err(5)</td>
<td>N</td>
<td>N cannot be less or equal to zero and cannot be blank</td>
</tr>
<tr>
<td>Err(6)</td>
<td>T</td>
<td>T cannot be less than or equal to zero and cannot be blank</td>
</tr>
</tbody>
</table>

Table 1: Error List.

Each option pricing algorithm will set the error according to the parameters they are using.

Applicability
This pattern is meant to be used for the option pricing algorithms or can be modified to capture errors for any other system.
Structure

The structure of the class \textit{Error} is given in Figure 3.

<table>
<thead>
<tr>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{+Err}</td>
</tr>
<tr>
<td>\texttt{=Error(n: integer): obj}</td>
</tr>
<tr>
<td>\texttt{+checkError(op: String): String}</td>
</tr>
</tbody>
</table>

Figure 3: Creational Pattern: Error.

Participants

There are no participants.

Collaborations

There are no collaborators since this pattern is a single class.

Consequences

All the option pricing algorithms will make use of the same \textit{Error} class.

Implementation

Classes will implement the data \textit{Error} class through inheritance as shown in Listing 4.

Listing 4: Implementation of class \textit{Error}.

```matlab
classdef bsBtcs < dataModel < Error
    ... end

The \textit{Err} variable is set in the \textit{init} method as shown in Listing 5.

Listing 5: code extract from \textit{init} method of the BTCS class.

```
if obj.M <= 0
obj.Err(4) = 1;
end
if isempty(obj.N)
obj.Err(5) = 1;
end
if obj.N <= 0
obj.Err(5) = 1;
end
if isempty(obj.T)
obj.Err(6) = 1;
end
if obj.T <= 0
obj.Err(6) = 1;
end
if sum(obj.Err) > 0
return
end
end
...

Sample Code
Sample code used to implement the class Error is given in Listing 6.

Listing 6: class Error.

class def Error
properties
Err;
end
methods
function [obj]=Error(obj,n)
obj.Err = zeros(n,1);
end
function [mess]=checkError(obj,op)
mess = ' ';
if obj.Err(1) == 1
mess = [mess 'E'];
end
if obj.Err(2) == 1
if ~isempty(mess)
mess = [mess ',sigma '];
else
mess = [mess ' sigma '];
end
end
if obj.Err(3) == 1
if ~isempty(mess)
mess = [mess ',r '];
else
mess = [mess ' r '];
end
end
if obj.Err(4) == 1
if ~isempty(mess)
mess = [mess ',M '];
else
mess = [mess 'M '];
end
end
...
Known Uses

All algorithms discussed so far make use of the class Error.

The Factory pattern is another design pattern used.

7.3 Factory

A factory is responsible for the creation of objects with same of different types at run-time. Based of the requirement at run-time, the factory will decide which object(s) to instantiate.

Pattern Name

Factory

Intent

The Factory pattern is used to create objects of the different option pricing algorithms.

Motivation

We are using a single class to create a set of different objects.

Applicability

This pattern is meant to be used for the option pricing algorithms but it can also be modified for other systems.

Structure

The class diagram and the class definition of the Factory pattern are given in Figure 4 and Listing 7, respectively.
Participants
There are no participants.

Collaborations
There are no collaborators since this pattern is a single class.

Consequences
Creation of objects will be made through the Factory pattern.

Implementation
The class Factory consists of the Create method with one argument. The latter is the name of the object we want to create. For example, Factory.Create(bsBtcs) will create an object of type bsBtcs class.

Sample Code

Listing 7: class Factory.

class def Factory
methods (Access = private)
function obj=Factory(obj)
end
end
methods (Static)
function obj=Create(opt)
obj = eval(opt);
end
end

Known Uses
The class Factory is used to create objects of the different option pricing algorithms at run-time.

We also make use of abstract factory in our implementation.

7.4 Abstract Factory

Abstract factories may be considered to be interfaces that should be implemented by concrete classes. The abstract classes Initialise and European consist of abstract methods which should be implemented by their respective concrete classes.

Pattern Name
Initialise
Intent

The *Initialise* pattern is used to force all classes related to option pricing models to implement the *init* method. All default values and initialisation are done through this method.

Motivation

All classes will have the same polymorphic method for initialisation.

Applicability

This pattern is meant to be used for option pricing algorithms but it can also be modified for other systems.

Structure

The class diagram and the class definition of the *Initialise* pattern are given in Figure 5 and Listing 8, respectively.

![Figure 5: Creational Pattern: Initialise.](image)

Participants

There are no participants.

Collaborations

There are no collaborators since this pattern is a single class.

Consequences

All the option pricing algorithms will implement the *Initialise* pattern.

Implementation

All the option pricing algorithms will implement the *Initialise* pattern.

Sample Code

Listing 8: class *Factory*.

```plaintext
classdef Initialise
% Abstract class Initialise
% with abstract method init to be implemented
% by concrete classes
methods(_abstract)
    obj=init(obj);
end
end
```

Known Uses

All classes that implement an option pricing algorithm shall implement the *Initialise* class.
Pattern Name

European

Intent

The European pattern is used to force all classes related to the option pricing algorithms to implement the EurPut method. After implementing the static method EurPut, a European option value will be computed.

Motivation

All classes will have the same polymorphic method for the calculation of a European option value.

Applicability

This pattern is meant to be used for the option pricing algorithms but it can also be modified for other systems.

Structure

The class diagram and the class definition of the European pattern are given in Figure 6 and Listing 9, respectively.

![Figure 6: Creational Pattern: European.](image)

Participants

There are no participants.

Collaborations

There are no collaborators since this pattern is a single class.

Consequences

All option pricing algorithms will implement the European pattern.

Implementation

All option pricing algorithms will implement the European pattern.

Sample Code

Listing 9: class European.

```matlab
classdef European
    % Abstract class European
    % with abstract method EurPut to be implemented
    % by concrete classes
    methods (Abstract)
        obj=EurPut(obj);
    end
end```

Known Uses
All classes that implement an option pricing algorithm shall implement the *Initialise* class.

7.5 Generic Option Pricing Model
The generic option pricing model is a composite design pattern and is the framework that can be used while implementing the option pricing algorithms.

Intent
The *Generic Option Pricing Model* pattern is used to provide a common template for the option pricing algorithms.

Motivation
All classes will have to implement the the different interfaces and make use of a common data model and error objects.

Applicability
This pattern is meant to be used for the option pricing algorithms but it can also be modified for other systems.

Structure
The class diagram and the class definition of the *Generic Option Pricing Model* pattern are given in Figure 7 and Listing 10, respectively.

![Figure 7: Generic Option Pricing class.](image)

Participants
Participants are European, Initialise, dataModel and Error classes.

Collaborations
The collaborators are same as the participants.

Consequences
All option pricing algorithms will implement the *European* and *Initialise* patterns.
Implementation

All option pricing algorithms will implement the European and Initialise patterns.

Sample Code

Listing 10: class Generic Option Pricing Model.

class def opModel < dataModel & Initialise & European & Error
methods
function obj=init(obj)
# To be implemented by concrete classes
end
function obj=EurPut(obj)
# To be implemented by concrete classes
end
end
end

Listing 11: Example bsBtcs class.

class def bsBtcs < dataModel & Initialise & European & Error
methods
function obj=init(obj)
# capture error and set Err variable if any
# initialise other variables
end
function obj=EurPut(obj)
# compute an European option value as per algorithm
end
end
end

Known Uses

All classes that implement an option pricing algorithm should implement abstract methods inherited.

8 Numerical Experiments

All numerical experiments in this paper have been performed on an HP laptop with Intel(R) Core(TM) i7-3520M CPU @ 2.90 GHz and Windows 8 environment. MATLAB R2012a environment has been used to write and execute the MATLAB programs.

8.1 Classical Finite Difference Methods

The classes that implement the FTCS, BTCS and CN schemes to solve the Black-Scholes partial differential equation for a European put option value have been tested with different sets of parameters. As shown in Table 2, we tested the FTCS, BTCS, and CN objects with $N = \{2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{12}, 2^{13}, 2^{14}, 2^{15}, 2^{16}, 2^{17}\}$, $E = 100$, $S = 100$, $r = 0.06$, $\Delta S = 0.2$, $T = 1$ and $\sigma = 0.3$.

From Table 2, it can be observed that the FTCS scheme is not stable for all combinations of $\Delta r$ and $\Delta S$. We set $\Delta S = 0.2$ for all the three schemes and when smaller values of $h$ are used, the execution times increases and more memory space is required. The CN scheme gives a four decimal point accuracy in fewer times step. The execution time, Etime, is measured in seconds and Error is the difference between the value obtained from the Black-Scholes (BS) formula and the three finite difference schemes studied.
In Tables 3-5, $S = \{80, 85, 90, 95, 100, 105, 110, 115, 120\}$, $T = \{1, 3\}$, $\sigma = \{0.1, 0.3\}$ and $r = 0.06$.

Table 3: Results of the BTCS and CN schemes to compute European put option values from the Black-Scholes partial differential equation with $E = 100$, $S = 100$, $r = 0.06$, $\Delta S = 0.2$, $T = 1$, $\sigma = 0.3$ and $N = 2^{12}$ (for BTCS) and $N = 2^9$ (for CN).

<table>
<thead>
<tr>
<th>$S$</th>
<th>Value</th>
<th>Error</th>
<th>Value</th>
<th>Error</th>
<th>BS</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>18.955521</td>
<td>8.39E-05</td>
<td>18.955558</td>
<td>4.74E-05</td>
<td>18.955605</td>
</tr>
<tr>
<td>85</td>
<td>15.882539</td>
<td>2.09E-04</td>
<td>15.882691</td>
<td>5.66E-05</td>
<td>15.882748</td>
</tr>
<tr>
<td>95</td>
<td>10.870815</td>
<td>3.89E-04</td>
<td>10.871137</td>
<td>6.73E-05</td>
<td>10.871204</td>
</tr>
<tr>
<td>100</td>
<td>8.893093</td>
<td>4.33E-04</td>
<td>8.893362</td>
<td>1.88E-04</td>
<td>8.893526</td>
</tr>
<tr>
<td>105</td>
<td>7.227820</td>
<td>4.49E-04</td>
<td>7.228188</td>
<td>8.09E-05</td>
<td>7.228269</td>
</tr>
<tr>
<td>110</td>
<td>5.840140</td>
<td>4.49E-04</td>
<td>5.840490</td>
<td>9.91E-05</td>
<td>5.840589</td>
</tr>
<tr>
<td>115</td>
<td>4.694402</td>
<td>4.50E-04</td>
<td>4.694714</td>
<td>1.38E-04</td>
<td>4.694852</td>
</tr>
<tr>
<td>120</td>
<td>3.756097</td>
<td>4.73E-04</td>
<td>3.756359</td>
<td>2.11E-04</td>
<td>3.756570</td>
</tr>
</tbody>
</table>

Table 4: Results of the BTCS and CN schemes to compute European put option values from the Black-Scholes partial differential equation with $E = 100$, $S = 100$, $r = 0.06$, $\Delta S = 0.2$, $T = 3$, $\sigma = 0.3$ and $N = 2^{12}$ (for BTCS) and $N = 2^9$ (for CN).

<table>
<thead>
<tr>
<th>$S$</th>
<th>Value</th>
<th>Error</th>
<th>Value</th>
<th>Error</th>
<th>BS</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>18.569997</td>
<td>1.05E-02</td>
<td>18.570227</td>
<td>1.02E-02</td>
<td>18.580477</td>
</tr>
<tr>
<td>85</td>
<td>16.530407</td>
<td>1.57E-02</td>
<td>16.530760</td>
<td>1.53E-02</td>
<td>16.546000</td>
</tr>
<tr>
<td>90</td>
<td>14.705421</td>
<td>2.25E-02</td>
<td>14.705877</td>
<td>2.21E-02</td>
<td>14.727959</td>
</tr>
<tr>
<td>95</td>
<td>13.075037</td>
<td>3.15E-02</td>
<td>13.075574</td>
<td>3.09E-02</td>
<td>13.106519</td>
</tr>
<tr>
<td>100</td>
<td>11.619952</td>
<td>4.28E-02</td>
<td>11.620545</td>
<td>4.23E-02</td>
<td>11.662797</td>
</tr>
<tr>
<td>105</td>
<td>10.321899</td>
<td>5.70E-02</td>
<td>10.322538</td>
<td>5.64E-02</td>
<td>10.378902</td>
</tr>
<tr>
<td>110</td>
<td>9.163855</td>
<td>7.43E-02</td>
<td>9.164518</td>
<td>7.37E-02</td>
<td>9.238188</td>
</tr>
<tr>
<td>115</td>
<td>8.130136</td>
<td>9.52E-02</td>
<td>8.130808</td>
<td>9.45E-02</td>
<td>8.225341</td>
</tr>
<tr>
<td>120</td>
<td>7.206422</td>
<td>1.20E-01</td>
<td>7.207089</td>
<td>1.19E-01</td>
<td>7.326407</td>
</tr>
</tbody>
</table>
Table 5: Results of the BTCS and CN schemes to compute a European put option value from the Black-Scholes partial differential equation with $E = 100$, $S = 100$, $r = 0.06$, $\Delta S = 0.2$, $T = 1$, $\sigma = 0.1$ and $N = 2^{12}$ (for BTCS) and $N = 2^9$ (for CN).

9 Remarks

We have exploited the programming environment of MATLAB, which provides both functional and object-oriented approaches to programming. It is to be noted that programs which are designed using an object-oriented approach do not necessarily improve performance. An object-oriented approach using design patterns provides a structured way to write and implement flexible and robust programs. The proposed framework provides a common template for implementing option pricing algorithms. Moreover, the approach presented in this paper can easily be extended to other mathematical models arising in finance and engineering, amongst others.

10 Conclusion

Object-oriented concepts have been used to implement some generic numerical algorithms for pricing financial options under the Black-Scholes framework. In particular, the Forward Difference in Time and Central Difference in Space, Backward Difference in Time and Central Difference in Space and the Crank-Nicolson schemes have been employed to approximate the Black-Scholes equation. The object-oriented framework using design patterns was implemented and tested in MATLAB. It should be noted that our proposed strategy does not necessarily improve execution time as most microprocessors execute one instruction at a time. As future work we are proposing to design a flexible graphical user interface to integrate several option pricing models under one common environment.

References


**Author information**

Jeetendre Narsoo and Sameer Sunhaloo, School of Innovative Technologies and Engineering, University of Technology, Mauritius, Mauritius.

E-mail: jnarso@umail.utm.ac.mu

Received: April 27, 2020.

Accepted: September 2, 2020.