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Abstract Wavelet theory is a recently developed promising tool in science and engineering
research; particularly wavelets are successfully used in fast algorithms for easy implementation.
In this paper, we present wavelet-based numerical solutions of elliptic boundary value prob-
lems encountered in mathematical physics, using lifting scheme. Here we used orthogonal and
biorthogonal wavelets to demonstrate the effectiveness and efficiency of the proposed technique.
The proposed scheme speeds up convergence in lesser computational time. Numerical examples
are given to prove the robustness of proposed technique.

1 Introduction

The full-approximation scheme (FAS) is a well known computational technique for accelerating
convergence to the steady state for flow problems and has proved to be very successful for solving
elliptic equations. The ill-conditioned systems are arising in the solution of nonlinear system of
equations. The suitable remedy is FAS for such systems and is largely applicable in increasing
the efficiency of the iterative methods to solve nonlinear system of equations. In the history of
numerical analysis, the development of efficient error minimization techniques for the system of
equations has been a significant research. Recently, it is renowned that FAS iterative solvers are
extremely efficient for nonlinear equations, introduced by Brandt [1]. For a detailed treatment
of FAS is presented in Briggs et al. [2]. An introduction of FAS is available in Hackbusch and
Trottenberg [3], Wesseling [4] and Trottenberg et al. [5]. However, for the elliptic differential
equations with highly oscillatory coefficients, the standard FAS is not efficient. But, wavelets,
particularly, Daubechies wavelets have great potential in this regard.

Wavelet analysis has its significance due to successful applications in signal and image pro-
cessing during the 1980s. The smooth orthonormal basis obtained by the translation and dila-
tion of a single function in a hierarchical fashion proved very useful to develop compression
algorithms for signals and images upto a chosen threshold of relevant amplitudes. While the
existence of the Haar type of wavelet functions has been known for a long time, the study of
wavelets acquired the present growth after the mathematical analysis of wavelets by Stromberg
[6], Grossmann and Morlet [7], and Meyer [8]. The multiresolution approximation of Mallat [9]
and Meyer [10] led to Daubechies [11] orthogonal family of wavelets. Recently wavelets have
been applied in a wide range of engineering disciplines; particularly, wavelets are successfully
used in signal analysis, time-frequency analysis and fast algorithms for easy implementation.
Wavelet based numerical methods are used for solving the system of equations with better con-
vergence in less computational cost. Some of the earlier works on wavelet based methods can
be found in Dahmen et al. [12].

A collection of the discrete wavelet transforms (DWT) and the wavelet based full-approximation
scheme (WFAS) were introduced recently in [13-16]. Shiralashetti et al. [17] had proposed the
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new wavelet based full-approximation scheme for the numerical solution of non-linear elliptic
partial differential equations. Similarly, the biorthogal wavelet method is applied for the solu-
tion of elliptic partial differential equations [18]. The method can be either used as an iterative
solver or as a preconditioning technique, offering in many cases a better performance than some
of the most innovative and existing FAS algorithms. Due to the efficiency and potentiality of
WFAS, researches further have been carried out for its enrichment. In order to realize this task,
the new work had built i. e orthogonal/biorthogonal discrete wavelet transforms using lifting
scheme [19]. Wavelet based lifting technique was introduced by Sweldens [20], which permits
some improvements on the properties of existing wavelet transforms. The technique has many
numerical benefits such as a reduced number of operations, which are fundamental in the context
of the iterative solvers. Shiralashetti et al. [21] applied wavelet lifting technique for the solution
of non-linear partial differential equations. In addition to this, the present paper illustrates that
the application of the lifting technique to the science and engineering problems.
The paper is divided as follows: Preliminaries of wavelets are given in section 2. Lifting tech-
nique is presented in section 3. Section 4 highlights the method of solution. Numerical solutions
of the test problems are presented in section 5. Finally, concluding remarks of the paper are
discussed in section 6.

2 Preliminaries of wavelets

Orthogonal and biorthogonal wavelet coefficients based on the orthogonality and smoothness
conditions that must be satisfied by scaling and wavelet functions. These conditions impose
restrictions on the value of filter coefficients through dilation equations. Fortunately we have two
distinct functions called scaling functions and wavelet functions with coefficients {hk} and {gk}
that define the refinement relation. These coefficients decide shape of the scaling and wavelet
functions and act as signal filters, in which the application where we can use the particular
wavelet. The huge amount of literature is available on filter design for specific application but
it is isolated to a regular reader since practically all methods use frequency domain as well as
complex analysis concepts to arrive at the filter.

2.1 Wavelet filters

The most important classes of filters are those of finite impulse response (FIR). The main charac-
teristics of these filters are the convenient time-localization properties. These filters are initiated
from wavelets with compact support and are such that,

hn = 0 for n < 0 and n > L

in which L is the length of the filter.
The minimum requirements for these compact FIR filters are:

(i) The length of the scaling filter hn must be even.

(ii)
∑
n hn =

√
2

(iii)
∑
n(hn · hn−2k) = δ(k),

in which δ(k) is the Kronecker delta, such that, it is equal to 1 for k = 0 or 0 for k = 1.

2.2 Haar wavelet filter coefficients

We know that low pass filter coefficients h = [h0, h1]
T

=
[√

2
2 ,

√
2

2

]T
and high pass filter

coefficients g = [g0, g1]
T
=
[√

2
2 ,

√
2

2

]T
play an important role in the decomposition. Thus it is

natural to wonder that, it possible to model the decomposition in terms of linear transformations.
Moreover, since the digital signals and images are composed of discrete data, then we need a
discrete analog of the decomposition algorithm so that we can process the signal and image data.
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2.3 Daubechies wavelet filter coefficients

Daubechies introduced scaling functions that satisfy the above requirements and distinguished
by having the shortest possible support. The scaling function φ has support[0, L− 1], while the
corresponding wavelet ψ has support in the interval [1− L/2, L/2]. We have filter coefficients
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are the high pass filter

coefficients.

2.4 Biorthogonal (CDF (2, 2)) wavelet filter coefficients

In many filtering applications, we need filter coefficients having symmetry to get a better accu-
racy. None of the orthogonal wavelet systems except Haar are having symmetrical coefficients.
But Haar is too insufficient for many applications in science and engineering. Biorthogonal
wavelet system can be constructed to have this feature. This is the motivation for designing such
wavelet systems. The following are the biorthogonal (CDF (2, 2)) wavelet filter coefficients [23,
24] are,
low pass filters: h = [h0, h1, h2] =

[
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Similarly, high pass filters: gk = (−1)kh̃4−k and g̃k = (−1)k+1h2−k.

3 Lifting Technique

The wavelet transform customs averages and differences, brings us to the definition of the lifting
procedure. The operations, average and difference, can be observed as distinct cases of more
general operations. If two data are almost equal the difference is, of course small and it is there-
fore obvious to think of the first data as a prediction of the second one. It is a good prediction,
if the difference is small. We also calculated the average of the two data. This can be viewed in
two cases. Either as an operation, this preserves some properties of the original data, or as an
extraction of essential properties of the data. The concluding viewpoint is based on the fact that
the pair-wise average values containing the overall structure of the data, but with only half the
number of data. The lifting procedure has three steps i.e. split, prediction and update.
Split: The given data are split into the even and odd entries. It is important to observe that we
do this only to explain the functionality in the algorithm.
Prediction: The given value at the data 2n, we predict that the value at data 2n+1 is the same.
Then we replace the value at 2n+1 with the correction to the prediction, which is the difference.
Generally, the idea is to have a prediction procedure P then compute

d = odd− P(even).

In the data d, each entry is one odd data minus some prediction on an even data.
Update: Given an even entry we have predicted that the next odd entry has same value, and
stored the difference. Then we update even entry. In general we decide an updating procedure,
and then compute

s = even + U(d).

The algorithm described here is called one step lifting. It requires the choice of a prediction P
and an update U. The discrete wavelet transformed is obtained by combining a number of lifting
steps.
Now we look in to lifting technique in general. First let us see how we can invert the lifting
procedure. It is observed by just reverse in the arrows and changing the signs. Thus the direct
transform

dj = oddj − P(evenj)
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sj = evenj + U(dj)

is inverted by the steps
evenj = sj −U(dj)

oddj = dj+P(evenj)

The last step, where the sequences evenj and oddj are merged to the form of sequence s and is
given to explain in the algorithm.
It is observed that the generalization is crucial in applications. There are many important trans-
forms, where the above steps do not occur in pairs. Furthermore, in last we add a new type
of operation which is called normalization or sometimes rescaling [19]. The detailed algorithm
using different wavelets is given in the next section.

4 Method of solution

Consider the elliptic partial differential equation of the form,

∂2u

∂x2 +
∂2u

∂y2 = F (x, y) (4.1)

where F (x, y) is a non homogeneous term in x and y subjected to Dirichlet boundary conditions.
By applying the finite difference scheme to Eq. (4.1), which gives the system of algebraic equa-
tions,

Au = Fi j , 1 ≤ i, j ≤ N (4.2)

where N = 2J , N is the number of grid points and J is the level of resolution.
By solving Eq. (4.2), we get an approximate solution u. An approximate solution containing
some error, thus required solution equals to sum of approximate solution and some error.
There are many methods to minimize such error to get the accurate solution. Some of them are
FAS, WFAS and BWFAS etc. Now, we are using the advanced technique based on different
wavelets called as lifting scheme. Recently, lifting schemes are very useful in the signal analysis
and image processing in the science and engineering field. But nowadays, extends to approxima-
tions in the numerical analysis. Here, we are discussing the algorithm [19] of the lifting schemes
as follows.

4.1 Lifting scheme via Haar wavelet (HWLS)

In [25], Daubechies and Sweldens have shown that every wavelet filter can be decomposed into
lifting steps. More details of the advantages as well as other important structural advantages of
the lifting technique can be available in [19, 20]. The representation of Haar wavelet via lifting
form presented as;
Decomposition:
Consider an approximate solution S = u like as signal, and then apply the HWLS decomposition
(finer to coarser) procedure as,

d1 = S(2j)− S(2j − 1),
s1 = S(2j − 1) + 1

2d1,

S1 =
√

2 s1 and
D = 1√

2
d1

(4.3)

Reconstruction:
Now apply the HWLS reconstruction (coarser to finer) procedure as,

d1 =
√

2 D,
s1 =

1√
2
S1,

S(2j − 1) = s1 − 1
2d1 and

S(2j) = d1 + S(2j − 1)

(4.4)

which is the required solution of the given equation.
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4.2 Lifting scheme via Daubechies wavelet (DWLS)

As discussed in the previous section 4.1, we follow the same procedure but using different
wavelet i.e., Daubechies 4th order (Db4) wavelet coefficients. The DWLS procedure is as fol-
lows;
Decomposition:

s1 = S(2j − 1) +
√

3S(2j),
d1 = S(2j)−

√
3

4 s1 −
√

3−2
4 s1(j − 1),

s2 = s1 − d1(j + 1),
S1 =

√
3−1√

2
s2 and

D =
√

3+1√
2
d1

(4.5)

Reconstruction:
Now we apply the DWLS reconstruction (coarser to finer) procedure as,

d1 =
√

2√
3+1

D,

s2 =
√

2√
3−1

S1,

s1 = s2 + d1(j + 1),
S(2j) = d1 +

√
3

4 s1 +
√

3−2
4 s1(j − 1) and

S(2j − 1) = s1 −
√

3S(2j)

(4.6)

which is the required solution of the given equation.

4.3 Lifting scheme via biorthogonal wavelet (BWLS)

As discussed in the previous sections 4.1 and 4.2, here also we follow the same procedure but we
used another wavelet i.e., biorthogonal wavelet (CDF (2, 2)) coefficients. The BWLS procedure
is as follows;

Decomposition:
d1 = S(2j)− 1

2 [S(2j − 1) + S(2j + 2)] ,
s1 = S(2j − 1) + 1

4 [d1(j − 1) + d1] ,

D = 1√
2
d1,

S1 =
√

2 s1

(4.7)

Reconstruction:
Now we apply the BWLS reconstruction (coarser to finer) procedure as,

s1 =
1√
2
S1,

d1 =
√

2D,
S(2j − 1) = s1 − 1

4 [d1(j − 1) + d1]

S(2j) = d1 +
1
2 [S(2j − 1) + S(2j + 2)] ,

(4.8)

which is the required solution of the given equation.
The coefficients s1(j) and d1(j) are the average and detailed coefficients respectively of the
approximate solution u. The new approaches are illustrated through some of the numerical
problems and the results are shown in next section.

5 Numerical examples

Here, we present some of the test problems to demonstrate the validity and applicability of the
HWLS, DWLS and BWLS.
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Test Problem 5.1: First, we consider the linear elliptic partial differential equation (Poisson
equation),

∂2u

∂x2 +
∂2u

∂y2 = −2π2 (sin(πx) + sin(πy)) (5.1)

subject to Dirichlet’s boundary conditions. The exact solution for this problem is given by
u(x, y) = sin(πx) sin(πy). The wavelet based numerical solutions of Eqn. (5.1) are obtained as
per the procedure explained in section 4 and are presented in comparison with exact solution in
figure 1.
The maximum error Emax = max |ue − ua|, where ue&ua are exact and approximate solutions
respectively. The error analysis and CPU time versus grid points is given in table 1.

Figure 1. Comparison of numerical solutions with exact solution for N=16 X 16 of Test Problem
5.1.
Table 1. The maximum error with CPU time (in seconds) versus grid points of Test Problem 5.1.

N Method Emax Setup time Running
time

Total time

8X8 HWLS 9.9080e-03 7.1466e-04 1.3209e-03 2.0355e-03
WFAS 9.9080e-03 2.6126e-02 8.8605e-04 2.7012e-02
DWLS 9.9080e-03 6.0348e-04 6.1302e-03 6.7337e-03
BWFAS 9.9080e-03 3.7374e-02 8.7202e-04 3.8246e-02
BWLS 9.9080e-03 5.0632e-04 1.3305e-03 1.8368e-03

16X16 HWLS 2.8265e-03 6.9447e-04 1.2805e-03 1.9750e-03
WFAS 2.8265e-03 2.6091e-01 2.0345e-03 2.6295e-01
DWLS 2.8265e-03 5.9766e-04 6.0915e-03 6.6892e-03
BWFAS 2.8265e-03 2.6091e-01 2.0345e-03 2.6295e-01
BWLS 2.8265e-03 4.8202e-04 2.6753e-03 3.1573e-03

32X32 HWLS 7.5388e-04 6.7155e-04 1.2716e-03 1.9432e-03
WFAS 7.5388e-04 2.6349e-01 4.3437e-03 2.6784e-01
DWLS 7.5388e-04 5.8500e-04 6.0871e-03 6.6721e-03
BWFAS 7.5388e-04 3.6823e+00 3.1822e-03 3.6855e+00
BWLS 7.5388e-04 4.8545e-04 2.7050e-03 3.1905e-03

Test Problem 5.2: Now, we consider the nonlinear elliptic partial differential equation,

−∂
2u

∂x2 −
∂2u

∂y2 + ueu = 2(x− x2) + 2(y − y2) + (x− x2)(y − y2)e(x−x
2)(y−y2) (5.2)

with respect to Dirichlet’s boundary conditions. The exact solution of the problem is given
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byu(x, y) = (x − x2)(y − y2). As in the previous example, the numerical results of Eqn. (5.2)
are presented in figure 2. The error analysis and CPU time versus grid points is given in table 2.

Figure 2. Comparison of numerical solutions with exact solution for N=16 X 16 of Test Problem
5.2.
Table 2. The maximum error with CPU time (in seconds) versus grid points of Test Problem 5.2.

N Method Emax Setup time Running
time

Total time

8X8 HWLS 1.6302e-05 5.2718e-04 8.1831e-04 1.3455e-03
WFAS 1.5771e-05 2.0915e-02 2.4905e-04 2.1164e-02
DWLS 1.6302e-05 4.0300e-04 8.2197e-03 8.6227e-03
BWFAS 1.5934e-05 2.1791e-02 2.3160e-04 2.2023e-02
BWLS 1.6302e-05 7.1329e-04 2.6818e-03 3.3950e-03

16X16 HWLS 6.3642e-06 5.2445e-04 8.2413e-04 1.3486e-03
WFAS 6.2978e-06 1.6368e-02 2.5692e-04 1.6625e-02
DWLS 6.3642e-06 4.0026e-04 7.9751e-03 8.3754e-03
BWFAS 6.3402e-06 1.7256e-02 2.3229e-04 1.7488e-02
BWLS 6.3642e-06 7.2389e-04 2.6876e-03 3.4115e-03

32X32 HWLS 3.6802e-06 5.4702e-04 8.3610e-04 1.3831e-03
WFAS 3.6702e-06 1.6552e-02 2.5418e-04 1.6807e-02
DWLS 3.6802e-06 3.9924e-04 8.1592e-03 8.5584e-03
BWFAS 3.6768e-06 1.9340e-02 2.4016e-04 1.9580e-02
BWLS 3.6802e-06 7.2389e-04 2.7122e-03 3.4361e-03

Test Problem 5.3: Finally, we consider the nonlinear elliptic partial differential equation,

−∂
2u

∂x2 −
∂2u

∂y2 + ueu =
((

9π2 + e(x
2−x3)sin(3πy)

)
(x2 − x3) + 6x− 2

)
sin(3πy) (5.3)

subjected to Dirichlet’s boundary conditions. The exact solution of the problem is given by
u(x, y) = (x2−x3) sin(3πy). As in the previous examples, the numerical solutions of Eqn. (5.3)
are presented in figure 3. The error analysis and CPU time versus grid points is given in table 3.



352 S. C. Shiralashetti1, M. H. Kantli2, A. B. Deshi3

Figure 3. Comparison of numerical solutions with exact solution for N=16 X 16 of Test Problem
5.3.
Table 3. The maximum error with CPU time (in seconds) versus grid points of Test Problem 5.3.

N Method Emax Setup time Running
time

Total time

8X8 HWLS 1.0530e-02 5.4634e-04 8.5116e-04 1.3975e-03
WFAS 1.0530e-02 1.7440e-02 1.2076e-04 1.7561e-02
DWLS 1.0530e-02 4.3276e-04 8.0364e-03 8.4691e-03
BWFAS 1.0530e-02 1.8024e-02 5.3916e-04 1.8563e-02
BWLS 1.0530e-02 7.2184e-04 2.6705e-03 3.3923e-03

16X16 HWLS 3.2596e-03 5.4566e-04 8.5834e-04 1.4040e-03
WFAS 3.2596e-03 1.7372e-02 1.2110e-04 1.7493e-02
DWLS 3.2596e-03 4.3208e-04 7.8448e-03 8.2769e-03
BWFAS 3.2596e-03 1.8069e-02 5.3984e-04 1.8609e-02
BWLS 3.2596e-03 7.8547e-04 2.9154e-03 3.7009e-03

32X32 HWLS 8.6292e-04 5.6687e-04 8.7202e-04 1.4389e-03
WFAS 8.6292e-04 1.7537e-02 1.2247e-04 1.7660e-02
DWLS 8.6292e-04 4.3379e-04 7.7685e-03 8.2023e-03
BWFAS 8.6292e-04 1.8244e-02 5.4394e-04 1.8788e-02
BWLS 8.6292e-04 7.1466e-04 2.7334e-03 3.4481e-03

6 Conclusions

In this paper, we developed an efficient wavelet based lifting technique for the numerical solution
of elliptic problems. From the figures and tables, the proposed schemes are very convenient and
effective. However the CPU time of the proposed scheme shows the super convergence than the
existing ones (Wavelet based FAS). Hence the scheme has wide range of applications in science
and engineering field.
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