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Abstract In this paper we wish to prove some results relating to the growth rates of composite
entire and meromorphic functions with their corresponding left and right factors on the basis of
their generalized order (α, β) and generalized type (α, β), wher α, β are continuous non-negative
functions defined on (−∞,+∞).

1 Introduction, Definitions and Notations

Let us consider that the reader is familiar with the fundamental results and the standard
notations of the Nevanlinna theory of meromorphic functions which are available in [3, 5, 11].
We also use the standard notations and definitions of the theory of entire functions which are
available in [9] and therefore we do not explain those in details. Let f be an entire function
and Mf (r) = max{|f(z)| : |z| = r}. When f is meromorphic, the Nevanlinna’s characteristic
function Tf (r) (see [3, p.4]) plays the same role as Mf (r), which is defined as

Tf (r) = Nf (r) +mf (r),

wherever the function Nf (r, a)(Nf (r, a)) known as counting function of a-points (distinct a-
points) of meromorphic f is defined as follows:

Nf (r, a) =

r∫
0

nf (t, a)− nf (0, a)
t

dt+ nf (0, a) log r

(
Nf (r, a) =

r∫
0

nf (t, a)− nf (0, a)
t

dt+ nf (0, a) log r
)
,

in addition we represent by nf (r, a)(nf (r, a)) the number of a-points (distinct a-points) of f
in |z| ≤ r and an ∞ -point is a pole of f . In many occasions Nf (r,∞) and Nf (r,∞) are
symbolized by Nf (r) and Nf (r) respectively.

On the other hand, the functionmf (r,∞) alternatively indicated bymf (r) known as the
proximity function of f is defined as:

mf (r) =
1

2π

2π∫
0

log+ |f(reiθ)|dθ, where

log+ x = max(logx, 0) for all x > 0 .
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Also we may employ m(r, 1
f−a) by mf (r, a).

For an entire function f, the Nevanlinna’s Characteristic function Tf (r) of f is defined
as

Tf (r) = mf (r).

For x ∈ [0,∞) and k ∈ N where N is the set of all positive integers, we define itera-
tions of the exponential and logarithmic functions as exp[k] x = exp(exp[k−1] x) and log[k] x =

log(log[k−1] x),with convention that log[0] x = x, log[−1] x = expx, exp[0] x = x, and exp[−1] x =
logx. Further we assume that p and q always denote positive integers. Now considering this, let
us recall that Juneja et al. [4] defined the (p, q)-th order and (p, q)-th lower order of an entire
function as follows:

Definition 1.1. [4] Let p ≥ q. The (p, q)-th order %(p,q)(f) and (p, q)-th lower order λ(p,q)(f) of
an entire function f are defined as:

%(p,q)(f) = lim sup
r→+∞

log[p]Mf (r)

log[q] r
and λ(p,q)(f) = lim inf

r→+∞

log[p]Mf (r)

log[q] r
.

If f is a meromorphic function, then

%(p,q)(f) = lim sup
r→+∞

log[p−1] Tf (r)

log[q] r
and λ(p,q)(f) = lim inf

r→+∞

log[p−1] Tf (r)

log[q] r
.

For any entire function f , using the inequality Tf (r) ≤ logMf (r) ≤ 3Tf (2r) {cf. [3]},
one can easily verify that

%(p,q)(f) = lim sup
r→+∞

log[p]Mf (r)

log[q] r
= lim sup

r→+∞

log[p−1] Tf (r)

log[q] r

and λ(p,q)(f) = lim inf
r→+∞

log[p]Mf (r)

log[q] r
= lim inf

r→+∞

log[p−1] Tf (r)

log[q] r
,

when p ≥ 2.
Extending the notion of (p, q)-th order, recently Shen et al. [6] introduced the new

concept of [p, q]-ϕ order of entire and meromorphic function where p ≥ q. Later on, combining
the definition of (p, q)-order and [p, q]-ϕ order, Biswas (see, e.g., [2]) redefined the (p, q)-order
of an entire and meromorphic function without restriction p ≥ q.

However the above definition is very useful for measuring the growth of entire and
meromorphic functions. If p = l and q = 1 then we write %(l,1)(f) = %(l)(f) and λ(l,1)(f) =
λ(l)(f) where %(l)(f) and λ(l)(f) are respectively known as generalized order and generalized
lower order of entire or meromorphic function f . For details about generalized order one may
see [8]. Moreover when p = 3 and q = 1 then we write %(3,1)(f) = %(f) and λ(3,1)(f) = λ(f)
where %(f) and λ(f) are respectively known as hyper order and hyper lower order of entire or
meromorphic function f (see [10]). Also for p = 2 and q = 1, we respectively denote %(2,1)(f)
and λ(2,1)(f) by %(f) and λ(f) which are classical growth indicators such as order and lower
order of entire or meromorphic function f .

Now let L be a class of continuous non-negative on (−∞,+∞) function α such that
α(x) = α(x0) ≥ 0 for x ≤ x0 with α(x) ↑ +∞ as x → +∞. For any α ∈ L, we say
that α ∈ L0

1, if α((1 + o(1))x) = (1 + o(1))α(x) as x → +∞ and α ∈ L0
2, if α(exp((1 +

o(1))x)) = (1+ o(1))α(exp(x)) as x→ +∞. Finally for any α ∈ L, we also say that α ∈ L1, if
α(cx) = (1 + o(1))α(x) as x0 ≤ x → +∞ for each c ∈ (0,+∞) and α ∈ L2, if α(exp(cx)) =
(1 + o(1))α(exp(x)) as x0 ≤ x → +∞ for each c ∈ (0,+∞). Clearly, L1 ⊂ L0

1, L2 ⊂ L0
2 and

L2 ⊂ L1.Throughout the present paper we assume that β, β1, β2 ∈ L1 and α1, α2 ∈ L2, unless
otherwise specifically stated.

Considering this, the value

%(α,β)[f ] = lim sup
r→+∞

α(logMf (r))

β(log r)
(α ∈ L, β ∈ L)
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is called [7] generalized order (α, β) of an entire function f . For details about generalized order
(α, β) one may see [7]. During the past decades, several authors made close investigations on
the properties of entire functions related to generalized order (α, β) in some different direction.
For the purpose of further applications, Biswas et al. [1] introduced the definition of the general-
ized order (α, β) of entire and meromorphic function in the following way after giving a minor
modification to the original definition (e.g. see, [7]) which are as follows:

Definition 1.2. [1] The generalized order (α, β) denoted by %(α,β)[f ] and generalized lower order
(α, β) denoted by λ(α,β)[f ] of an entire function f are defined as:

%(α,β)[f ] = lim sup
r→+∞

α(Mf (r))

β(r)
and

λ(α,β)[f ] = lim inf
r→+∞

α(Mf (r))

β(r)
, where α ∈ L1.

If f is a meromorphic function, then

%(α,β)[f ] = lim sup
r→+∞

α(exp(Tf (r)))
β(r)

and

λ(α,β)[f ] = lim inf
r→+∞

α(exp(Tf (r)))
β(r)

, where α ∈ L2.

Using the inequality Tf (r) ≤ logMf (r) ≤ 3Tf (2r) {cf. [3]}, for an entire function f ,
one may easily verify that

%(α,β)[f ] = lim sup
r→+∞

α(Mf (r))

β(r)
= lim sup

r→+∞

α(exp(Tf (r)))
β(r)

and

λ(α,β)[f ] = lim inf
r→+∞

α(Mf (r))

β(r)
= lim inf

r→+∞

α(exp(Tf (r)))
β(r)

, when α ∈ L2.

Definition 1.1 is a special case of Definition 1.2 for α(r) = log[p] r and β(r) = log[q] r.
Now in order to refine the growth scale namely the generalized order (α, β), we intro-

duce the definitions of another growth indicators, called generalized type (α, β) and generalized
lower type (α, β) respectively of a meromorphic function which are as follows:

Definition 1.3. The generalized type (α, β) denoted by σ(α,β)[f ] and generalized lower type
(α, β) denoted by σ(α,β)[f ] of a meromorphic function f having finite positive generalized order
(α, β) (0 < %(α,β)[f ] <∞) are defined as :

σ(α,β)[f ] = lim sup
r→+∞

exp(α(exp(Tf (r))))
(exp(β(r)))%(α,β)[f ]

and σ(α,β)[f ] = lim inf
r→+∞

exp(α(exp(Tf (r))))
(exp(β(r)))%(α,β)[f ]

It is obvious that 0 ≤ σ(α,β)[f ] ≤ σ(α,β)[f ] ≤ ∞.

Analogously, to determine the relative growth of two meromorphic functions having
same non zero finite generalized lower order (α, β), one can introduced the definition of gener-
alized weak type (α, β) and generalized upper weak type (α, β) of a meromorphic function f of
finite positive generalized lower order (α, β), λ(α,β)[f ] in the following way:

Definition 1.4. The generalized upper weak type (α, β) denoted by τ (α,β)[f ] and generalized
weak type (α, β) denoted by τ(α,β)[f ] of a meromorphic function f having finite positive gener-
alized lower order (α, β) (0 < λ(α,β)[f ] <∞) are defined as :

τ (α,β)[f ] = lim sup
r→+∞

exp(α(exp(Tf (r))))
(exp(β(r)))λ(α,β)[f ]

and τ(α,β)[f ] = lim inf
r→+∞

exp(α(exp(Tf (r))))
(exp(β(r)))λ(α,β)[f ]

It is obvious that 0 ≤ τ(α,β)[f ] ≤ τ (α,β)[f ] ≤ ∞.
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Now one may give the definitions of generalized hyper order (α, β) and generalized
hyper lower order (α, β) of entire and meromorphic functions in the following way:

Definition 1.5. The generalized hyper order (α, β) denoted by %(α,β)[f ] and generalized hyper
lower order (α, β) denoted by λ(α,β)[f ] of an entire function f are defined as:

%(α,β)[f ] = lim sup
r→+∞

α(log(Mf (r)))

β(r)
and

λ(α,β)[f ] = lim inf
r→+∞

α(log(Mf (r)))

β(r)
where α ∈ L1.

If f is a meromorphic function, then

%(α,β)[f ] = lim sup
r→+∞

α(Tf (r))

β(r)
and

λ(α,β)[f ] = lim inf
r→+∞

α(Tf (r))

β(r)
, where α ∈ L2.

Using the inequality Tf (r) ≤ logMf (r) ≤ 3Tf (2r) {cf. [3]}, for an entire function f ,
one may easily verify that

%(α,β)[f ] = lim sup
r→+∞

α(log(Mf (r)))

β(r)
= lim sup

r→+∞

α(Tf (r))

β(r)
and

λ(α,β)[f ] = lim inf
r→+∞

α(log(Mf (r)))

β(r)
= lim inf

r→+∞

α(Tf (r))

β(r)
when α ∈ L2.

In this paper we intend to establish some results relating to the growth properties of com-
posite entire and meromorphic functions on the basis of generalized order (α, β) and generalized
type (α, β).

2 Main Results

In this section we present the main results of the paper.

Theorem 2.1. Let f be a meromorphic function and g be an entire function such 0 < λ(α1,β1)[f ◦
g] ≤ %(α1,β1)[f ◦ g] <∞ and 0 < λ(α2,β2)[f ] ≤ %(α2,β2)[f ] <∞. Then

λ(α1,β1)[f ◦ g]
%(α2,β2)[f ]

≤ lim inf
r→+∞

α1(exp(Tf◦g(r)))
α2(exp(Tf (β−1

2 (β1(r))))))

≤ min
{λ(α1,β1)[f ◦ g]

λ(α2,β2)[f ]
,
%(α1,β1)[f ◦ g]
%(α2,β2)[f ]

}
≤ max

{λ(α1,β1)[f ◦ g]
λ(α2,β2)[f ]

,
%(α1,β1)[f ◦ g]
%(α2,β2)[f ]

}
≤ lim sup

r→+∞

α1(exp(Tf◦g(r)))
α2(exp(Tf (β−1

2 (β1(r)))))
≤
%(α1,β1)[f ◦ g]
λ(α2,β2)[f ]

.

Proof.From the definition of %(α2,β2)[f ] and λ(α1,β1)[f ◦ g], we have for arbitrary positive ε and
for all sufficiently large positive numbers of r that

α1(exp(Tf◦g(r))) > (λ(α1,β1)[f ◦ g]− ε)β1(r) (2.1)

and
α2(exp(Tf (β−1

2 (β1(r))))) ≤ (%(α2,β2)[f ] + ε)β1(r) . (2.2)

Now from (2.1) and (2.2), it follows for all sufficiently large positive numbers of r that

α1(exp(Tf◦g(r)))
α2(exp(Tf (β−1

2 (β1(r)))))
>

(λ(α1,β1)[f ◦ g]− ε)β1(r)

(%(α2,β2)[f ] + ε)β1(r)
.
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As ε(> 0) is arbitrary, we obtain that

lim inf
r→+∞

α1(exp(Tf◦g(r)))
α2(exp(Tf (β−1

2 (β1(r)))))
>
λ(α1,β1)[f ◦ g]
%(α2,β2)[f ]

. (2.3)

Again we get for a sequence of positive numbers of r tending to infinity that

α1(exp(Tf◦g(r))) ≤ (λ(α1,β1)[f ◦ g] + ε)β1(r) (2.4)

and for all sufficiently large positive numbers of r that

α2(exp(Tf (β−1
2 (β1(r))))) > (λ(α2,β2)[f ]− ε)β1(r) . (2.5)

Combining (2.4) and (2.5), we get for a sequence of positive numbers of r tending to infinity
that

α1(exp(Tf◦g(r)))
α2(exp(Tf (β−1

2 (β1(r)))))
≤

(λ(α1,β1)[f ◦ g] + ε)β1(r)

(λ(α2,β2)[f ]− ε)β1(r)
.

Since ε(> 0) is arbitrary, it follows that

lim inf
r→+∞

α1(exp(Tf◦g(r)))
α2(exp(Tf (β−1

2 (β1(r)))))
≤
λ(α1,β1)[f ◦ g]
λ(α2,β2)[f ]

. (2.6)

Also for a sequence of positive numbers of r tending to infinity that

α2(exp(Tf (β−1
2 (β1(r))))) ≤ (λ(α1,β1)[f ] + ε)β1(r) . (2.7)

Now from (2.1) and (2.7), we obtain for a sequence of positive numbers of r tending to infinity
that

α1(exp(Tf◦g(r)))
α2(exp(Tf (β−1

2 (β1(r)))))
≥

(λ(α1,β1)[f ◦ g]− ε)β1(r)

(λ(α2,β2)[f ] + ε)β1(r)
.

As ε(> 0) is arbitrary, we get from above that

lim sup
r→+∞

α1(exp(Tf◦g(r)))
α2(exp(Tf (β−1

2 (β1(r)))))
≥
λ(α1,β1)[f ◦ g]
λ(α2,β2)[f ]

. (2.8)

Also we obtain for all sufficiently large positive numbers of r that

α1(exp(Tf◦g(r))) ≤ (%(α1,β1)[f ◦ g] + ε)β1(r) . (2.9)

Now it follows from (2.5) and (2.9) for all sufficiently large positive numbers of r that

α1(exp(Tf◦g(r)))
α2(exp(Tf (β−1

2 (β1(r)))))
≤

(%(α1,β1)[f ◦ g] + ε)β1(r)

(λ(α2,β2)[f ]− ε)β1(r)
.

Since ε(> 0) is arbitrary, we obtain that

lim sup
r→+∞

α1(exp(Tf◦g(r)))
α2(exp(Tf (β−1

2 (β1(r)))))
≤
%(α1,β1)[f ◦ g]
λ(α2,β2)[f ]

. (2.10)

Further from the definition of %(α2,β2)[f ], we get for a sequence of positive numbers of r
tending to infinity that

α2(exp(Tf (β−1
2 (β1(r))))) > (%(α1,β1)[f ]− ε)β1(r) . (2.11)

Now from (2.9) and (2.11), it follows for a sequence of positive numbers of r tending to infinity
that

α1(exp(Tf◦g(r)))
α2(exp(Tf (β−1

2 (β1(r)))))
≤

(%(α1,β1)[f ◦ g] + ε)β1(r)

(%(α2,β2)[f ]− ε)β1(r)
.
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As ε(> 0) is arbitrary, we obtain that

lim inf
r→+∞

α1(exp(Tf◦g(r)))
α2(exp(Tf (β−1

2 (β1(r)))))
≤
%(α1,β1)[f ◦ g]
%(α2,β2)[f ]

. (2.12)

Again we obtain for a sequence of positive numbers of r tending to infinity that

α1(exp(Tf◦g(r))) > (%(α1,β1)[f ◦ g]− ε)β1(r) . (2.13)

So combining (2.2) and (2.13),we get for a sequence of positive numbers of r tending to infinity
that

α1(exp(Tf◦g(r)))
α2(exp(Tf (β−1

2 (β1(r)))))
>

(%(α1,β1)[f ◦ g]− ε)β1(r)

(%(α2,β2)[f ] + ε)β1(r)
.

Since ε(> 0) is arbitrary, it follows that

lim sup
r→+∞

α1(exp(Tf◦g(r)))
α2(exp(Tf (β−1

2 (β1(r)))))
>
%(α1,β1)[f ◦ g]
%(α2,β2)[f ]

. (2.14)

Thus the theorem follows from (2.3), (2.6), (2.8), (2.10), (2.12) and (2.14). 2

The following theorem can be proved in the line of Theorem 2.1 and so its proof is
omitted.

Theorem 2.2. Let f be a meromorphic function and g be an entire function such 0 < λ(α1,β1)[f ◦
g] ≤ %(α1,β1)[f ◦ g] <∞ and 0 < λ(α2,β2)[g] ≤ %(α2,β2)[g] <∞. Then

λ(α1,β1)[f ◦ g]
%(α2,β2)[g]

≤ lim inf
r→+∞

α1(exp(Tf◦g(r)))
α2(exp(Tg(β−1

2 (β1(r)))))

≤ min
{λ(α1,β1)[f ◦ g]

λ(α2,β2)[g]
,
%(α1,β1)[f ◦ g]
%(α2,β2)[g]

}
≤ max

{λ(α1,β1)[f ◦ g]
λ(α2,β2)[g]

,
%(α1,β1)[f ◦ g]
%(α2,β2)[g]

}
≤ lim sup

r→+∞

α1(exp(Tf◦g(r)))
α2(exp(Tg(β−1

2 (β1(r)))))
≤
%(α1,β1)[f ◦ g]
λ(α2,β2)[g]

.

We may now state the following two theorems without proof based on Definition 1.5.

Theorem 2.3. Let f be a meromorphic function and g be an entire function such 0 < λ(α1,β1)[f ◦
g] ≤ %(α1,β1)[f ◦ g] <∞ and 0 < λ(α2,β2)[f ] ≤ %(α2,β2)[f ] <∞. Then

λ(α1,β1)[f ◦ g]
%(α2,β2)[f ]

≤ lim inf
r→+∞

α1(Tf◦g(r))

α2(Tf (β
−1
2 (β1(r))))

≤ min
{λ(α1,β1)[f ◦ g]

λ(α2,β2)[f ]
,
%(α1,β1)[f ◦ g]
%(α2,β2)[f ]

}
≤ max

{λ(α1,β1)[f ◦ g]
λ(α2,β2)[f ]

,
%(α1,β1)[f ◦ g]
%(α2,β2)[f ]

}
≤ lim sup

r→+∞

α1(Tf◦g(r))

α2(Tf (β
−1
2 (β1(r))))

≤
%(α1,β1)[f ◦ g]
λ(α2,β2)[f ]

.

Theorem 2.4. Let f be a meromorphic function and g be an entire function such 0 < λ(α1,β1)[f ◦
g] ≤ %(α1,β1)[f ◦ g] <∞ and 0 < λ(α2,β2)[g] ≤ %(α2,β2)[g] <∞. Then

λ(α1,β1)[f ◦ g]
%(α2,β2)[g]

≤ lim inf
r→+∞

α1(Tf◦g(r))

α2(Tg(β
−1
2 (β1(r))))

≤ min
{λ(α1,β1)[f ◦ g]

λ(α2,β2)[g]
,
%(α1,β1)[f ◦ g]
%(α2,β2)[g]

}
≤ max

{λ(α1,β1)[f ◦ g]
λ(α2,β2)[g]

,
%(α1,β1)[f ◦ g]
%(α2,β2)[g]

}
≤ lim sup

r→+∞

α1(Tf◦g(r))

α2(Tg(β
−1
2 (β1(r))))

≤
%(α1,β1)[f ◦ g]
λ(α2,β2)[g]

.
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The proofs of the following four theorems can be carried out as of the Theorem 2.1,
therefore we omit the details.

Theorem 2.5. Let f be a meromorphic function and g be an entire function such 0 <σ(α1,β1)[f◦g]
≤ σ(α1,β1)[f ◦ g] <∞, 0 < σ(α2,β2)[f ] ≤ σ(α2,β2)[f ] <∞ and %(α1,β1)[f ◦ g] = %(α2,β2)[f ]. Then

σ(α1,β1)[f ◦ g]
σ(α2,β2)[f ]

≤ lim inf
r→+∞

exp(α1(exp(Tf◦g(r))))
exp(α2(exp(Tf (β−1

2 (β1(r))))))

≤ min
{σ(α1,β1)[f ◦ g]

σ(α2,β2)[f ]
,
σ(α1,β1)[f ◦ g]
σ(α2,β2)[f ]

}
≤ max

{σ(α1,β1)[f ◦ g]
σ(α2,β2)[f ]

,
σ(α1,β1)[f ◦ g]
σ(α2,β2)[f ]

}
≤ lim sup

r→+∞

exp(α1(exp(Tf◦g(r))))
exp(α2(exp(Tf (β−1

2 (β1(r))))))
≤
σ(α1,β1)[f ◦ g]
σ(α2,β2)[f ]

.

Theorem 2.6. Let f be a meromorphic function and g be an entire function such 0 < τ(α1,β1)[f◦g]
≤ τ (α1,β1)[f ◦ g] <∞, 0 < τ(α2,β2)[f ] ≤ τ (α2,β2)[f ] <∞ and λ(α1,β1)[f ◦ g] = λ(α2,β2)[f ]. Then

τ(α1,β1)[f ◦ g]
τ (α2,β2)[f ]

≤ lim inf
r→+∞

exp(α1(exp(Tf◦g(r))))
exp(α2(exp(Tf (β−1

2 (β1(r))))))

≤ min
{τ(α1,β1)[f ◦ g]

τ(α2,β2)[f ]
,
τ (α1,β1)[f ◦ g]
τ (α2,β2)[f ]

}
≤ max

{τ(α1,β1)[f ◦ g]
τ(α2,β2)[f ]

,
τ (α1,β1)[f ◦ g]
τ (α2,β2)[f ]

}
≤ lim sup

r→+∞

exp(α1(exp(Tf◦g(r))))
exp(α2(exp(Tf (β−1

2 (β1(r))))))
≤
τ (α1,β1)[f ◦ g]
τ(α2,β2)[f ]

.

Theorem 2.7. Let f be a meromorphic function and g be an entire function such 0 <σ(α1,β1)[f◦g]
≤ σ(α1,β1)[f ◦ g] <∞, 0 < τ(α2,β2)[f ] ≤ τ (α2,β2)[f ] <∞ and %(α1,β1)[f ◦ g] = λ(α2,β2)[f ]. Then

σ(α1,β1)[f ◦ g]
τ (α2,β2)[f ]

≤ lim inf
r→+∞

exp(α1(exp(Tf◦g(r))))
exp(α2(exp(Tf (β−1

2 (β1(r))))))

≤ min
{σ(α1,β1)[f ◦ g]

τ(α2,β2)[f ]
,
σ(α1,β1)[f ◦ g]
τ (α2,β2)[f ]

}
≤ max

{σ(α1,β1)[f ◦ g]
τ(α2,β2)[f ]

,
σ(α1,β1)[f ◦ g]
τ (α2,β2)[f ]

}
≤ lim sup

r→+∞

exp(α1(exp(Tf◦g(r))))
exp(α2(exp(Tf (β−1

2 (β1(r))))))
≤
σ(α1,β1)[f ◦ g]
τ(α2,β2)[f ]

.

Theorem 2.8. Let f be a meromorphic function and g be an entire function such 0 < τ(α1,β1)[f◦g]
≤ τ (α1,β1)[f ◦ g] <∞, 0 < σ(α2,β2)[f ] ≤ σ(α2,β2)[f ] <∞ and λ(α1,β1)[f ◦ g] = %(α2,β2)[f ]. Then

τ(α1,β1)[f ◦ g]
σ(α2,β2)[f ]

≤ lim inf
r→+∞

exp(α1(exp(Tf◦g(r))))
exp(α2(exp(Tf (β−1

2 (β1(r))))))

≤ min
{τ(α1,β1)[f ◦ g]

σ(α2,β2)[f ]
,
τ (α1,β1)[f ◦ g]
σ(α2,β2)[f ]

}
≤ max

{τ(α1,β1)[f ◦ g]
σ(α2,β2)[f ]

,
τ (α1,β1)[f ◦ g]
σ(α2,β2)[f ]

}
≤ lim sup

r→+∞

exp(α1(exp(Tf◦g(r))))
exp(α2(exp(Tf (β−1

2 (β1(r))))))
≤
τ (α1,β1)[f ◦ g]
σ(α2,β2)[f ]

.

Analogously one may formulate the following four theorems without their proofs.

Theorem 2.9. Let f be a meromorphic function and g be an entire function such 0 <σ(α1,β1)[f◦g]
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≤ σ(α1,β1)[f ◦ g] <∞, 0 < σ(α2,β2)[g] ≤ σ(α2,β2)[g] <∞ and %(α1,β1)[f ◦ g] = %(α2,β2)[g]. Then

σ(α1,β1)[f ◦ g]
σ(α2,β2)[g]

≤ lim inf
r→+∞

exp(α1(exp(Tf◦g(r))))
exp(α2(exp(Tg(β−1

2 (β1(r))))))

≤ min
{σ(α1,β1)[f ◦ g]

σ(α2,β2)[g]
,
σ(α1,β1)[f ◦ g]
σ(α2,β2)[g]

}
≤ max

{σ(α1,β1)[f ◦ g]
σ(α2,β2)[g]

,
σ(α1,β1)[f ◦ g]
σ(α2,β2)[g]

}
≤ lim sup

r→+∞

exp(α1(exp(Tf◦g(r))))
exp(α2(exp(Tg(β−1

2 (β1(r))))))
≤
σ(α1,β1)[f ◦ g]
σ(α2,β2)[g]

.

Theorem 2.10. Let f be a meromorphic function and g be an entire function such 0 < τ(α1,β1)[f ◦
g] ≤ τ (α1,β1)[f ◦ g] <∞, 0 < τ(α2,β2)[g] ≤ τ (α2,β2)[g] <∞ and λ(α1,β1)[f ◦ g] = λ(α2,β2)[g]. Then

τ(α1,β1)[f ◦ g]
τ (α2,β2)[g]

≤ lim inf
r→+∞

exp(α1(exp(Tf◦g(r))))
exp(α2(exp(Tg(β−1

2 (β1(r))))))

≤ min
{τ(α1,β1)[f ◦ g]

τ(α2,β2)[g]
,
τ (α1,β1)[f ◦ g]
τ (α2,β2)[g]

}
≤ max

{τ(α1,β1)[f ◦ g]
τ(α2,β2)[g]

,
τ (α1,β1)[f ◦ g]
τ (α2,β2)[g]

}
≤ lim sup

r→+∞

exp(α1(exp(Tf◦g(r))))
exp(α2(exp(Tg(β−1

2 (β1(r))))))
≤
τ (α1,β1)[f ◦ g]
τ(α2,β2)[g]

.

Theorem 2.11. Let f be a meromorphic function and g be an entire function such 0 < σ(α1,β1)[f ◦
g] ≤ σ(α1,β1)[f ◦ g] <∞, 0 < τ(α2,β2)[g] ≤ τ (α2,β2)[g] <∞ and %(α1,β1)[f ◦ g] = λ(α2,β2)[g]. Then

σ(α1,β1)[f ◦ g]
τ (α2,β2)[g]

≤ lim inf
r→+∞

exp(α1(exp(Tf◦g(r))))
exp(α2(exp(Tg(β−1

2 (β1(r))))))

≤ min
{σ(α1,β1)[f ◦ g]

τ(α2,β2)[g]
,
σ(α1,β1)[f ◦ g]
τ (α2,β2)[g]

}
≤ max

{σ(α1,β1)[f ◦ g]
τ(α2,β2)[g]

,
σ(α1,β1)[f ◦ g]
τ (α2,β2)[g]

}
≤ lim sup

r→+∞

exp(α1(exp(Tf◦g(r))))
exp(α2(exp(Tg(β−1

2 (β1(r))))))
≤
σ(α1,β1)[f ◦ g]
τ(α2,β2)[g]

.

Theorem 2.12. Let f be a meromorphic function and g be an entire function such 0 < τ(α1,β1)[f ◦
g] ≤ τ (α1,β1)[f ◦ g] <∞, 0 < σ(α2,β2)[g] ≤ σ(α2,β2)[g] <∞ and λ(α1,β1)[f ◦ g] = %(α2,β2)[g]. Then

τ(α1,β1)[f ◦ g]
σ(α2,β2)[g]

≤ lim inf
r→+∞

exp(α1(exp(Tf◦g(r))))
exp(α2(exp(Tg(β−1

2 (β1(r))))))

≤ min
{τ(α1,β1)[f ◦ g]

σ(α2,β2)[g]
,
τ (α1,β1)[f ◦ g]
σ(α2,β2)[g]

}
≤ max

{τ(α1,β1)[f ◦ g]
σ(α2,β2)[g]

,
τ (α1,β1)[f ◦ g]
σ(α2,β2)[g]

}
≤ lim sup

r→+∞

exp(α1(exp(Tf◦g(r))))
exp(α2(exp(Tg(β−1

2 (β1(r))))))
≤
τ (α1,β1)[f ◦ g]
σ(α2,β2)[g]

.

3 Conclusion

The main aim of this paper is to develop some results relating to the growth rates of composite
entire and meromorphic functions with their corresponding left and right factors on the basis
of their generalized order (α, β) and generalized type (α, β), which have not studied previously
and the results obtained has a great significient in the filed of growth analysis of entire and
meromorphic functions. But still there remains some problems to be investigated for future
researchersin this field.
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