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Abstract We show existence of a positive solution for the Kirchhoff equation with small
tension forces and general nonlinearities, including singular terms. We use an approximation
scheme of Galerkin.

1 Introduction

The generalized wave equation

utt − (a+ b

∫
Ω

|∇u|2)∆u = f(x, u), (1.1)

describes changes in length u when a string with fixed extremes subject to transversal vibrations
due to a force f . The term (a + b

∫
Ω
|∇u|2) as well as the constants a > 0 and b ≥ 0 stand

for horizontal tensions. Equation (1.1) was introduced a long time ago in the paper [13], and it
can be viewed as an extension of D’Alembert’s wave equation for free vibration strings, where
a = 1 is a normalization constant and b = 0. Equation (1.1) also serves as a prototypal to
study some parabolic equations ut−φ(

∫
Ω
|∇u|2)∆u = f(x, u) and stationary nonlocal equations

−φ(
∫

Ω
|∇u|2)∆u = f(x, u), according to [3, 4, 5, 6, 7], where, say, the tension function φ has

suitable assumptions.
Notice that if u ∈ H1

0 (Ω), then (a + b
∫

Ω
|u|2)γ ≤ (a + bλ−1

1

∫
Ω
|∇u|2)γ for γ ≥ 0. This is

due to the Poincaré inequality that reads as
∫

Ω
|u|2 ≤ λ−1

1

∫
Ω
|∇u|2 for every u ∈ H1

0 (Ω), where
λ1 > 0 is the first eigenvalue of −∆ in H1

0 (Ω) with corresponding eigenfunction ϕ1 > 0. And
for this reason the tension term (a+b

∫
Ω
|u|2)γ can be smaller when compared to other situations

as well as with (1.1).
Let Ω ⊂ RN , N ≥ 3, be a bounded domain with smooth boundary ∂Ω. Our aim is to solve

the problem. 
−(a+ b

∫
Ω

|u|2)γ∆u = f(u) in Ω

u > 0 in Ω

u = 0 on ∂Ω.

(1.2)

The classical Kirchhoff equation −(a + b
∫

Ω
|∇u|2)γ∆u = f(u) with zero boundary condition

has been treated in many papers, we quote [1, 8, 10] for variational techniques, and also [16, 17]
with dimensional restrictions were explored. A fixed point approach was developed in [11, 12],
see also [2]. The global solvability was addressed in [9].

Define

f(t) = α
1
tθ

+ λtq + µt+ g(t) for t ≥ 0 (1.3)

where
α > 0, λ > 0, µ ≥ 0, 0 < θ < 1, 0 < q < 1. (1.4)
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The constants in the equation (1.2) satisfy

γ ≥ 0, a > 0, b ≥ 0 . (1.5)

The continuous function g : R→ R satisfies

|g(t)| ≤ k0|t|p for t ∈ R and 1 ≤ p < 2N/(N − 2), where k0 is a constant. (1.6)

By a solution of (1.2) we mean a function u ∈ H1
0 (Ω) such that

(a+ b

∫
Ω

|u|2)γ∇u∇φ− f(u)φ = 0, ∀φ ∈ H1
0 (Ω). (1.7)

We prescribe weaker assumptions on f compared to the quoted papers, since we do not
need the so-called Ambrosetti–Rabinowitz condition that guarantees convergence of specific
sequences when applying variational methods, see also [14]. Moreover we do not need to assume
f close to zero near the origin, in fact our f is singular at zero. Moreover, assume g ≡ 0 for
simplicity in the expression of f at (1.3), then the functional I : H1

0 (Ω) → R corresponding to
(1.2) is given by

I(u) = (a+ b

∫
Ω

|u|2)γ
∫

Ω

|∇u|2 −
(

α

1− θ
|u|1−θ + λ

q + 1
|u|q+1 +

µ

2
|u|2
)
.

Since 0 < θ < 1, then I is not C1, thus the classical variational theory cannot be employed
in order to find critical points, and ensure the validity of the weak solution relation (1.7). The
approach we perform in the present paper does not permit us to find multiple solutions, as the
variational theory does. A possible way to extend the method of this paper is to combine it
with the ideas of [15], where parabolic and wave equations are studied by means of the Galerkin
scheme with f depending only on x.

We deal with (1.2) by solving a sequence of problems in finite dimension by means of a fixed
point theorem, and finally we appeal to a convergence argument that leads us to a solution of
(1.2).

Firstly we solve the Kirchhoff model problem (1.2) with f as in (1.3) with g ≡ 0, this case
allow the parameters to vary in large range. Secondly, we solve (1.2) with a more general f with
g 6≡ 0, in this situation some parameters cannot be large. We also analyze what happens with the
solution when λ→ 0 and λ→∞. We state the main results.

Theorem 1.1. Assume (1.3)–(1.5) and g ≡ 0. There is µ∗ > 0 such that for 0 ≤ µ < µ∗ and for
every α, λ > 0, equation (1.2) has a positive solution.

Theorem 1.2. Assume (1.3)–(1.6). Then there exist α∗, λ∗, µ∗ > 0 such that for every 0 < α <
α∗, 0 < λ < λ∗ and 0 ≤ µ < µ∗ equation (1.2) has a positive solution.

Theorem 1.3. Let f be such that α = µ = 0 and g(t) = tp for t ≥ 0 with 1 < p < 2N/(N − 2).
And let uλ > 0 be the solution obtained in Theorem 1.2. Then ‖uλ‖H1

0
→ 0 as λ→ 0.

Theorem 1.4. Let f(t) = λ
( 1
tθ
+tq+t

)
+tp for t ≥ 0 with 1 < p < 2N/(N−2). And let uλ > 0

be the solution obtained in Theorem 1.2. If uλ exists for every large λ > 0, then ‖uλ‖H1
0
→ ∞

as λ→∞.

2 Preliminaries

The spaceH1
0 (Ω) is Hilbert with inner product (u, v) =

∫
Ω
∇u∇v and norm ‖u‖H1

0
=
(∫

Ω
|∇u|2

)1/2.
The spectrum of −∆ in H1

0 (Ω) is given by the numbers λi, i ∈ N, where 0 < λ1 < λ2 ≤ λ3 ≤
λ4.... The corresponding eigenfunctions are ϕi ∈ H1

0 (Ω), i ∈ N. The first eigenfunction corre-
sponding to λ1 is ϕ1 > 0. For every i ∈ N one has{

−∆ϕi = λiϕi in Ω

ϕi = 0 on ∂Ω.
(2.1)
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By elliptic regularity ϕi ∈ C∞(Ω), i ∈ N. The following orthogonality relations take place∫
Ω

∇ϕi∇ϕj = λj

∫
Ω

ϕiϕj = 0 if i 6= j. (2.2)

The set of eigenfunctions can be normalized as ‖ϕi‖H1
0
= 1, i ∈ N. Hence B = {ϕ1, ϕ2, . . . , ϕm, . . . }

is an orthonormal basis of H1
0 (Ω).

A result that will be useful is Brouwer’s Theorem [15]. The statement is: Let F : Rm → Rm
be a continuous function such that (F (ξ), ξ) ≥ 0 for every ξ ∈ Rm with |ξ| = r for some r > 0.
Then, there exists y0 ∈ Rm with |y0| ≤ r such that F (y0) = 0.

3 Existence of solution

We now prove Theorem 1.1.

Proof. Let fε(t) = α 1
(t+ε)θ + λtq + µt with 0 < ε < 1 and let B = {ϕ1, ϕ2, . . . , ϕm, . . . } be an

orthonormal basis of H1
0 (Ω), for instance see (2.2). Define

Wm = [ϕ1, ϕ2, . . . , ϕm],

to be the space spanned by {ϕ1, ϕ2, . . . , ϕm}. Define the function F : Rm → Rm such that

F (ξ) = (F1(ξ), F2(ξ), . . . , Fm(ξ))

where ξ = (ξ1, ξ2, ..., ξm) ∈ Rm,

Fj(ξ) = (a+ b

∫
Ω

|u|2)γ
∫

Ω

∇u∇ϕj −
∫

Ω

fε(|u|)ϕj , j = 1, 2, . . . ,m

and

u =
m∑
i=1

ξiϕi ∈ Wm.

Therefore
(F (ξ), ξ) = (a+ b

∫
Ω

|u|2)γ
∫

Ω

|∇u|2 −
∫

Ω

fε(|u|)u ≥ (3.1)

≥ aγ‖u‖2
H1

0
− α|Ω|θC1−θ

1 ‖u‖1−θ
H1

0
− λCq+1

q+1‖u‖
q+1
H1

0
− µC2

2‖u‖2
H1

0
. (3.2)

The function F is continuous because each Fj is continuous by Sobolev embedding and dom-
inated convergence theorem. Here C1, C2 and Cq+1 are Sobolev constants related to ‖u‖H1

0
≤

Cσ‖u‖Lσ with 1 ≤ σ < 2N/(N −2), which are independent on m and ε. Hence, there is R0 > 0
such that

(F (ξ), ξ) > 0 for ‖u‖H1
0
= |ξ| = R0. (3.3)

Brouwer’s Theorem asserts that there exists um,ε ∈ H1
0 with ‖um,ε‖H1

0
≤ R0 satisfying

(a+ b

∫
Ω

|um,ε|2)γ
∫

Ω

∇um,ε∇ϕj −
∫

Ω

fε(|um,ε|)ϕj = 0, j = 1, 2, . . . ,m. (3.4)

Hence

(a+ b

∫
Ω

|um,ε|2)γ
∫

Ω

∇um,ε∇ζm −
∫

Ω

fε(|um,ε|)ζm = 0, ∀ζm ∈ Wm.

Let k ∈ N, then for every m ≥ k we obtain

(a+ b

∫
Ω

|um,ε|2)γ
∫

Ω

∇um,ε∇ζk −
∫

Ω

fε(|um,ε|)ζk = 0, ∀ζk ∈ Wk. (3.5)

Since ‖um,ε‖H1
0
≤ R0 and H1

0 is reflexive, there exists uε ∈ H1
0 such that
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(a1) um,ε ⇀ uε weakly in H1
0 as m→∞

(a2) um,ε → uε in Lσ for 1 ≤ σ < 2N/(N − 2) as m→∞

Letting m→∞ in the expression (3.5), with the aid of (a1)-(a2), we get

(a+ b

∫
Ω

|uε|2)γ
∫

Ω

∇uε∇ζk −
∫

Ω

fε(|uε|)ζk = 0, ∀ζk ∈ Wk.

Since the space of all subspace [Wm]k∈N is dense in H1
0 , then

(a+ b

∫
Ω

|uε|2)γ
∫

Ω

∇uε∇ζ −
∫

Ω

fε(|uε|)ζ = 0, ∀ζ ∈ H1
0 . (3.6)

Hence uε is a weak solution of
−(a+ b

∫
Ω

|uε|2)γ∆uε = fε(|uε|) in Ω

uε = 0 on ∂Ω,

Observe that fε(uε) > 0, hence we are in position to use the maximum principle. Consequently,
uε > 0 in Ω. Hence uε satisfies

−(a+ b

∫
Ω

|uε|2)γ∆uε = fε(uε) in Ω

uε > 0 in Ω

uε = 0 on ∂Ω,

(3.7)

We claim that uε ≥ δ0ϕ1 in Ω for some δ0 > 0. Indeed, notice that there is a constant % > 0,
which does not depend on ε, such that

fε(t) = α
1

(t+ ε)θ
+ λtq + µt ≥ α 1

(t+ 1)θ
+ λtq ≥ % for t ≥ 0.

Let ψ = δϕ1 with δ > 0 and notice that ‖uε‖H1
0
≤ lim infm→∞ ‖um,ε‖H1

0
≤ R0, then

−(a+ b

∫
Ω

|uε|2)γ∆ψ = δϕ1λ1(a+ b

∫
Ω

|uε|2)γ ≤ δϕ1λ1(a+ b
R2

0
λ1

)γ ≤ % (3.8)

where the last inequality (3.8) is valid by taking δ > 0 small enough, and it is independent on
ε. Comparing with (3.7) and using the boundary condition v = ψ = 0 on ∂Ω, we obtain by the
maximum principle that there is δ0 > 0 such that uε ≥ δ0ϕ1 in Ω.

Since ‖uε‖H1
0
≤ R0. By Sobolev embedding and still denoting a subsequence ε = εn → 0,

then
(b1) uε ⇀ u0 weakly in H1

0 as ε→ 0

(b2) uε → u0 in Lσ for 1 ≤ σ < 2N/(N − 2) as ε→ 0

(b3) uε → u0 a.e. in Ω as ε→ 0

(b4) |uε| ≤ h(x) a.e. in Ω, for some h ∈ Lσ, 1 ≤ σ < 2N/(N − 2)

We conclude that u0 ≥ δ0ϕ1 in Ω. We rewite (3.6) next

(a+ b

∫
Ω

|uε|2)γ
∫

Ω

∇uε∇ζ −
∫

Ω

(
α

1
(uε + ε)θ

+ λuqε + µuε
)
ζ = 0, ∀ζ ∈ H1

0 . (3.9)

Using (b1)-(b4) and letting ε→ 0 in (3.9) we obtain

(a+ b

∫
Ω

|u0|2)γ
∫

Ω

∇u0∇ζ −
∫

Ω

(
α

1
uθ0
ζ + λuq0 + µu0

)
ζ = 0, ∀ζ ∈ H1

0 . (3.10)
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The first integral of (3.10) is a consequence of (b1)-(b2). The integral of uq0 follows from (b3)-
(b4) and dominated convergence theorem. The integral involving µ follows by (b2). Notice that∫

Ω
u−θ0 ≤ δ−θ0

∫
Ω
ϕ−θ1 <∞. Then,∫

Ω

1
(uε + ε)θ

ζ →
∫

Ω

1
uθ0
ζ, ∀ζ ∈ H1

0 , (3.11)

since by dominated convergence theorem we can write (3.11) with ζ ∈ C∞0 (Ω), and since H1
0 is

the completion of C∞0 (Ω), we can take ζ ∈ H1
0 , hence (3.11) holds for every ζ ∈ H1

0 .

We proceed to prove of Theorem 1.2.

Proof. Let B, Wm and F as defined in the proof of Theorem 1.1. Define the approximation
fε(t) = α 1

(t+ε)θ + λtq + µt+ g(t) with 0 < ε < 1. Estimate (3.1) now transforms into

(F (ξ), ξ) = (a+ b

∫
Ω

|u|2)γ
∫

Ω

|∇u|2 −
∫

Ω

fε(|u|)u ≥ (3.12)

≥ aγ‖u‖2
H1

0
− α|Ω|θC1−θ

1 ‖u‖1−θ
H1

0
− λCq+1

q+1‖u‖
q+1
H1

0
− k0C

p+1
p+1‖u‖

p+1
H1

0
− µC2

2‖u‖2
H1

0
.

Hence, there is a constant K0 > 0 such that

(F (ξ), ξ) ≥ aγ‖u‖2
H1

0
−K0

(
α‖u‖1−θ

H1
0
+ λ‖u‖q+1

H1
0
+ ‖u‖p+1

H1
0
+ µ‖u‖2

H1
0

)
. (3.13)

We will choose R0, α∗, µ∗ and λ∗ according to our needs. Let ‖u‖H1
0
= R0. Thus we require

R0 = min{1, 1
2
(

2
3K0

)1/(p−1)}.

We want
α < (

1
2
)1+θ(

2
3K0

)1+θ/(p−1) 2
3K0

.

Hence α < α∗ if we take

α∗ =
1
2
(

1
2
)1+θ(

2
3K0

)1+θ/(p−1) 2
3K0

.

We need
µ < 2/3K0,

thus µ < µ∗ is satisfied if one has

µ∗ =
1

3K0
.

Once R0 has been chosen, we seek λ∗ such that R2
0 − K0λR

q+1
0 > 0, i.e., λ < R1−q

0 /K0 for
λ < λ∗. Hence we take

λ∗ =
1
K0

(
1
2
)2−q(

2
3K0

)(1−q)/(p−1).

Thus, let
Π = R2

0 −K0λ
∗Rq+1

0 > 0.

Therefore,
(F (ξ), ξ) > Π for ‖u‖H1

0
= |ξ| = R0. (3.14)

Brouwer’s Theorem states that there exists um,ε ∈ H1
0 with ‖um,ε‖H1

0
≤ R0 satisfying (3.4).

Notice that there is a constant % > 0, which does not depend on ε such that

fε(t) = α
1

(t+ ε)θ
+ λtq + µt+ g(t) ≥ α 1

(t+ 1)θ
+ λtq ≥ % for t ≥ 0.

The accomplishment of the proof follows almost verbatim the steps (3.4) to (3.11).
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4 Behavior of the solution

We prove Theorem 1.3 next.

Proof. Here f(t) = λtq + tp. The solution uλ satisfies

aγ‖uλ‖2
H1

0
≤ (a+ b

∫
Ω

|uλ|2)γ
∫

Ω

|∇uλ|2 =
∫

Ω

f(uλ)uλ =

∫
Ω

λuq+1
λ + up+1

λ ≤ λCq+1
q+1‖uλ‖

q+1
H1

0
+ Cp+1

p+1‖uλ‖
p+1
H1

0
.

Then

‖uλ‖1−q
H1

0
≤

λCq+1
q+1

1− Cp+1
p+1‖uλ‖

p−1
H1

0

.

By the choice of R0 ≤ 1 we get

1− Cp+1
p+1‖uλ‖

p−1
H1

0
≥ 1/2.

Hence ‖uλ‖H1
0
≤
(
2λCq+1

q+1

)1/(1−q) → 0 as λ→ 0.

The proof of Theorem 1.4 is as follows.

Proof. We denote the solution by uλ. Since ‖uλ‖H1
0
≤ R0, the term (a+b

∫
Ω
|uλ|2)γ is bounded.

Suppose on the contrary that for every λ > 0, by Theorem 1.1, there is a solution uλ. Multiply
the equation (1.2) by ϕ1, integrate and use (2.1), hence∫

Ω

f(uλ)ϕ1 = λ1

∫
Ω

uλϕ1(a+ b

∫
Ω

|uλ|2)γ ≤ λ1M0

∫
Ω

uλϕ1, (4.1)

for a constant M0 > 0 independent on λ. Since f(t) = λ
( 1
tθ
+ tq + t

)
+ tp ≥ λtq + tp for t ≥ 0,

then f(t) ≥ λ(p−1)(p−q)Cp,qt for t ≥ 0, where Cp,q > 0 is a constant depending only on p and q.
Hence by (4.1) one obtains

λ(p−1)(p−q)Cp,q

∫
Ω

uλϕ1 ≤ λ1M0

∫
Ω

uλϕ1.

Thus λ is bounded, which a contradiction.

Concluding remarks. We solved equation (1.2) when 0 ≤ µ < µ∗, it would be interesting
to know if a solution exists whether µ ≥ µ∗, as well as the behavior of the H1

0 -norm of a such
solution with respect to the parameters α > 0 and λ > 0. Another remaining question is related
to the applicability of the methods of the present paper to find a solution when p = 2N/(N − 2),
that is, when f has critical growth. The problem in dimension 2 is also challenging.
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