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Abstract In the present article we are concerned with the numerical solution of a seventh
order boundary value problem. We have proposed a novel finite difference method, derived from
the splitting coupled equations approach. Under appropriate conditions, we have established the
convergence of the proposed method. We also acquired the numerical value of the derivative of
the solution to the problem, which is practically useful for some modeling problems. Numerical
results are in good agreement with the theoretical findings.

1 Introduction

In the present article we consider seventh order boundary value problem of the following form:

u(7)(x) = f(x, u), a < x < b, (1.1)

subject to the boundary conditions

u(a) = α1, u
′(a) = α2, u

′′(a) = α3, u
(3)(a) = α4,

u(b) = β1, u
′(b) = β2 and u′′(b) = β3,

where α1, α2, α3, α4, β1, β2 and β3 are real constant.
The problems in physical sciences can be modeled mathematically and formulated by differen-
tial equations. The problems in engineering sciences deal with the formulation and solution of
higher order differential equation. The higher order differential equation and boundary value
problem studied and discussed in [1]. In particular seventh order boundary value problems arise
in mathematical modeling of induction motors with two rotor circuits [2]. To ensure the exis-
tence and uniqueness of the solution of the problem (1.1), we presume the smoothness of the
forcing function f(x, u). However for the detail discussion on the existence and uniqueness of
the solution of higher order differential equations and corresponding BVPs, we can refer [3]. In
the present article, we concerned with numerical solution of reference problem instead of the
analytical solution.

In the literature on the numerical solutions of BVPs, several numerical methods have been
reported for seventh order boundary value problems. We can list some of them for instance Vari-
ational Iteration Method [4], Variation of Parameters Method [5], Differential Transformation
Method [6], Reproducing Kernel Space [7], Collocation Method using Sextic B- Splines [8],
Homotopy Analysis Method [9], Optimal Homotopy Asymptotic Method [10] and references
there in.

Some advance numerical techniques for numerical solution of boundary value problems have
been reported in the literature. These techniques are very satisfactory and yield a highly accurate
numerical solution. Hence, the purpose of this article is to incorporate these advancements in
developing numerical technique for numerical solution of seventh order boundary value prob-
lems (1.1). So we incorporated the those ideas in developing an accurate and convergent finite
difference method for numerical solution of seventh order boundary value problem by splitting
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method, a system of boundary value problems. We hope that others may find the proposed
method as an improvement in numerical technique to those existing techniques for the seventh
order boundary value problems in the literature.

We shall present our work in this article as follows: In Section 2 the finite difference method,
in Section 3 the derivation of the proposed finite difference method. In Section 4, the conver-
gence analysis of the proposed method under appropriate condition. The numerical experiment
on model problems and short discussion on numerical results are presented in Section 5. A
summary on the overall development and performance of the proposed method are presented in
Section 6.

2 The Difference Method

Let us assume problem (1.1) posses solution and it will be u(x) such that

u(4)(x) = v(x), a < x < b (2.1)

and the boundary conditions are

u(a) = α1, u′(a) = α2, u(b) = β1 and u′(b) = β2

where augment fuction v(x) is regular and differentiable in [a, b]. Further we have following
third order boundary value problem,

v(3)(x) = f(x, u), a < x < b (2.2)

and the boundary conditions are

u′′(a) = α3, u(3)(a) = α3 and u′′(b) = β3

To incorporate these boundary conditions, let us define

v(x) = u(4)(x)− λu′′(x) (2.3)

where λ is coupling constant and λ ∈ (0, 1). So we get problems (2.1)-(2.3), a system of bound-
ary value problems by splitting method from problem (1.1). Thus the seventh order boundary
value problem (1.1) has been transformed into a system of boundary value problems (2.1)-(2.3).
Solving numerically problem (1.1) is equivalent to solve numerically system of problems (2.1)-
(2.3).

We partition the interval [a,b] in which the solution of problem (1.1) is desired to intro-
duce finite number of mesh points. In these subintervals mesh points a ≤ x0 < x1 < x2 <
...... < xN+1 ≤ b are generated by using uniform step length h such that xi = a + ih, i =
0, 1, 2, ....., N + 1. We wish to determine the numerical solution u(x) of the problem (1.1) at
these mesh points xi. We denote the numerical approximation of u(x) and f(x, u(x)) respec-
tively by ui and fi at these mesh point x = xi, i = 1, 2, ....., N . Also the boundary value
problem (1.1) replaced by the system of boundary value problems (2.1)-(2.3) may be written as
under

u
(4)
i = vi, (2.4)

v
(3)
i = fi

at these node x = xi, i = 0, .., N + 1. Following the ideas in [11, 12], we propose our finite
difference method for a numerical solution of problem (2.4),

−2(ui−1 − 2ui − ui+1) + h(u′i+1 − u′i−1) =
h4

90
(vi+1 + 13vi + vi−1), (2.5)

−3(ui+1 − ui−1) + h(u′i+1 + 4u′i + u′i−1) =
h4

60
(vi+1 − vi−1), (2.6)
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−3vi−1 + 4vi − vi+1 = 2hv′i−1 +
h3

6
(3fi + fi+1), i = 1 (2.7)

vi−2 − 3vi−1 + 3vi − vi+1 =
h3

2
(−3fi + fi+1), 2 ≤ i ≤ N

If the source function f(x, u) in problem (1.1) is linear then the system of equations (2.5)-(2.7)
will be linear otherwise we will obtain nonlinear system of equations.

3 Derivation of the Difference Method

In this section we out line the derivation of the proposed method, we have followed the same
approach as given in [11, 12, 13]. Let us write a linear combination of solution u(x) , u′(x) and
v(x) at nodes xx±1,and xi,

a2ui+1 + a1ui−1 + a0ui + h(b2u
′
i+1 + b1u

′
i−1) + h4(c2vi+1 + c0vi + c1vi−1) = 0 (3.1)

where a0 − c0 are constants to be determined. to determine these constants, we expanding each
term on the left hand side of (3.1) in Taylor series about the point xi. Using method of undeter-
mine coefficients, compare the coefficients of hp, p = 0, 1, .., 7 on both side we get a system of
equations. Solving this system of equations, we get

(a2, a1, a0, b2, b1, c2, c0, c1) = (−2,−2, 4, 1,−1,− 1
90
,−13

90
,− 1

90
) (3.2)

On substitution of these constants a0 − c0 from (3.1)into (3.2) and simplify, we have

−(vi−1 + 2vi − vi+1) + h(u′i+1 − u′i−1)−
h4

90
(vi+1 + 13vi + vi−1) + tui = 0 (3.3)

where tui, i = 1, .., N is local truncation error and equal to − 19h8

30240u
(8)
i . Similarly we can derive

the following equations

−3(ui+1 − ui−1) + h(u′i+1 + 4u′i + u′i−1)−
h4

60
(vi+1 − vi−1) + tu′i, (3.4)

where local local error tu′i is equal to − h5

504u
(7)
i , i = 1, .., N and

−3vi−1 + 4vi − vi+1 − 2hv′i−1 −
h3

6
(3fi + fi+1) + tvi, i = 1 (3.5)

vi−2 − 3vi−1 + 3vi − vi+1 −
h3

2
(−3fi + fi+1) + tvi, 2 ≤ i ≤ N

where local truncation error tvi are respectively equal to− 3h5

20 v
(5)
i , i = 1 and−h5

2 v
(5)
i , 2 ≤ i ≤ N .

Thus by neglecting the local error terms in (3.3)-(3.5), we will get our proposed difference
method for the numerical solution of the problem (1.1). Moreover we are getting the numerical
value of the derivative of the solution of the problem (1.1) as a by product of the method. Some
times we need it which otherwise get approximated.

4 Convergence Analysis

In this section we will discuss the convergence of the method proposed in section 1. Thus for
the discussion of convergence let us consider following test equation.

u(7)(x) = f(x, u), a < x < b. (4.1)

u(a) = α1, u
′(a) = α2, u

′′(a) = α3, u
(3)(a) = α4,

u(b) = β1, u
′(b) = β2 andu′′(b) = β3
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Let s be the approximate solution of difference method (2.4-2.5) for numerical solution of the
problem (4.1), we can write this in the matrix form

Js = Rh (4.2)

where J is coefficient matrix, s = [u,u′, v]T and Rh = [rh1, rh2, rh3]T . These matrix are

rh3 =



3v0 + 2hv′0 +
h3

6 (3f1 + f2)

−v0 +
h3

2 (−3f2 + f3)
h3

2 (−3f3 + f4)
...

vN+1 +
h3

2 (−3fN + fN+1 + λβ3)


N×1

, rh2 =


−3α1 − hα2 − h4

60v0

0
...

3β1 − hβ2 +
h4

60vN+1


N×1

,

rh1 =


2α1 + hα2 +

h4

90v0

0
...

2β1 − hβ2 +
h4

90vN+1


N×1

, v =


v1
...
vN


N×1

,u′ =


u′1
...
u′N


N×1

,u =


u1
...
uN


N×1

,

and let us define the coefficients matrix J in terms of block matrix,

J =



C1,1
... C1,2

... C1,3

. . . . . . . . . . . . . . .

C2,1
... C2,2

... C2,3

. . . . . . . . . . . . . . .

C3,1
... C3,2

... C3,3


3N×3N

where

C1,1 = 2



2 −1 0
−1 2 −1

. . . . . . . . .
−1 2 −1

0 −1 2


N×N

,C1,2 = h



0 1 0
−1 0 1

. . . . . . . . .
−1 0 1

0 −1 0


N×N

,

C1,3 = −
h4

90



13 1 0
1 13 1

. . . . . . . . .
1 13 1

0 1 13


N×N

,C2,1 =
−3
h

C1,2

C2,2 = h



4 1 0
1 4 1

. . . . . . . . .
1 4 1

0 1 4


N×N

,C2,3 =
−h3

60
C1,2,
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C3,3 =



4 −1 0
−3 3 −1
1 −3 3 −1

. . . . . . . . . . . .
1 −3 3 −1
−1 3 3


N×N

,

and matrices (C3,1)N×N and (C3,2)N×N depend on forcing function f(x, u). These matrices are
well defined. The exact solution S = [U,U′,V]T of the difference method (2.4-2.5) will satisfy
the following equation

JS = Rh + T (4.3)

where T = [tu, tu′, tv]T is truncation error and will be defined as,

tu =


19h8

30240u
(8)
1

...
19h8

30240u
(8)
N


N×1

, tu′ =


h7

504u
(7)
1

...
19h8

30240u
(8)
N


N×1

, tv =


3h5

20 v
(5)
1

h5

2 v
(5)
2

...
h5

2 v
(5)
N


N×1

Let us define an error function the difference between approximate and exact solution of the
difference method (2.4-2.5) i.e. E = s− S. To introduce and calculate so defined error function
let subtract (4.3) from (4.2), we will obtain following error equation

JE = −T (4.4)

Thus from (4.4), we observe that the convergence of the proposed method depends on the prop-
erties of coefficients matrix J. We will prove under appropriate assumptions that the coefficient
matrix J is invertible. Let us test the invertibility of coefficient matrix J. The diagonal matrices
C1,1, C2,2 and C3,3 of matrix J have different structure. The matrix C1,1 is invertible [14]. Ma-
trix C2,2 is strictly diagonally dominant so it will invertible. For matrix C3,3, we have to rely on
computation of explicit inverse. Let explicit inverses of C3,3 be C−1

3,3 = (ki,j)N×N , where

ki,j =

{
i2(N−j+1)(N−j+2)

2(N+1)2 , i ≤ j ≤ N
(N−i)(N−i+1)

2 kN−1,j − ((N − i)2 − 1)kN,j , j < i
(4.5)

kN,j =


(4N(N+2)(2N−1)−(N−2j)((N−2)2(N−2j+2)+8N)

32(N+1)2 , j ≤ N
2

N(2N2+3N+2)+(N−2j+2)((2N+1)(2j−N)−2N)
8(N+1)2 , N

2 < j

kN−1,j =


N3−2N+2−(N−2j)(N(N−2j+2)−2)

2(N+1)2 , j ≤ N
2

N3−2N−2+(N−2j+2)(N(2j−N)+2)
2(N+1)2 , N

2 < j.

Thus from (4.5) we can verify that matrix C3,3 is invertible. Let us define following terms [15],

vupk = max
j=1,2..,k−1

||AjkA
−1
kk ||, k=2,3 , vlowk = max

j=k+1,3
||AjkA

−1
kk ||, k=1,2 ,

M∗ =
∏

2≤k≤3

(1 + vupk ) and M∗ =
∏

1≤k≤2

(1 + vlowk ).

Let us assume
M∗M

∗ < M∗ +M∗ and M = max
p=1,2,3

||C−1
p,p||

then matrix J is invertible [15] and moreover

||J−1|| ≤ MM∗M
∗

M∗ +M∗ −M∗M∗
. (4.6)
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Thus from (4.4) and (4.6), we have

||E|| = ||J−1T|| ≤ MM∗M
∗

M∗ +M∗ −M∗M∗
||T || (4.7)

It is easy to prove that MM∗M
∗

M∗+M∗−M∗M∗ is finite. Thus ‖E‖ is bounded. Also it is easy to prove
||E|| tends to zero as h→ 0. So we can conclude that finite difference method (2.5-2.7) converge.
The order of the convergence of the difference method (2.5-2.7) is at least O(h2).

5 Numerical Results

We have considered four model problems to establish the computational efficiency of proposed
method (2.5-2.7). We have considered uniform step size h in computation of numerical solution
of each model problem. In Table 1 and Table 2, we have shown MAEU , the maximum absolute
error in the solution u(x) and MAEV , the derivatives of solution v(x) of the problems (1.1)
for different values of N. We have used the following formulas in computation of MAEU and
MAEV :

MAEU = max
1≤i≤N

|u(xi)− ui|

MAEV = max
1≤i≤N

|u′(xi)− vi|

We have used Gauss Seidel iterative method to solve linear system of equations (2.5-2.7). All
computations were performed on a Windows 2007 Ultimate operating system in the GNU FOR-
TRAN environment version 99 compiler (2.95 of gcc) on Intel Core i3-2330M, 2.20 GHz PC.
The solutions are computed on N nodes and iteration is continued until either the maximum dif-
ference between two successive iterates is less than 10−6 or the number of iteration reached 103.
Problem 1. The model linear problem given by

u(7)(x) = −u(x)− (35 + 12x+ 2x2) exp(x), 0 < x < 1

subject to boundary conditions

u(0) = 1, u′(0) = 0, u′′(0) = −1, u′′′(0) = −3 ,

u(1) = 0, u′(1) = − exp(1) and u′′(1) = −4 exp(1).

The analytical solution of the problem is u(x) = x(1 − x) exp(x). The MAEU and MAEV
computed by method (2.5-2.7) for coupling constant C = .40199 and different values of N are
presented in Table 1.

Problem 2. The model linear problem given by

u(7)(x) = u(x)u′(x) + (2− 3x+ x2 + (x− 8) exp(x)) exp(−2x), 0 < x < 1

subject to boundary conditions

u(0) = 1, u′(0) = 0, u′′(0) = −1, u′′′(0) = 2 ,

u(1) = 2 exp(−1), u′(1) = − exp(−1) and u′′(1) = 0.

The analytical solution of the problem is u(x) = (1 + x) exp(−x). The MAEU and MAEV
computed by method (2.4-2.5) for coupling constant C = .4099 and different values of N are
presented in Table 2.
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Table 1. Maximum absolute error (Problem 1).

N
32 64 128

MAEU.28539286(-2) .14184146(-5) .55249515(-7)
MAEV.10026446(-1) .32737342(-4) .99397312(-5)

Table 2. Maximum absolute error (Problem 2).

N
16 32 64

MAEU.10952180(-3) .11572996(-6) .97807437(-7)
MAEV.44546052(-3) .30212423(-5) .56484023(-5)

The numerical results obtained in numerical experiment on considered model problems are
satisfactory. The error in numerical result decreases as step size h decreases. We observed in
numerical experiment that the convergence of the proposed method depends on the consideration
of the coupling constant. In our numerical experiments, we have estimated the value of the
coupling constant by guess and simulation. However, the accurate value of the coupling constant
may possibly increase the accuracy of the results produced by the proposed method. We have
obtained numerical approximation of the derivative of solution of problem as a byproduct the
proposed method (2.5-2.7).

6 Conclusion

In the present article, we have developed and discussed the numerical technique using finite dif-
ferences and splitting method for the numerical solution of seventh order differential equations
and corresponding boundary value problem. We transformed the problem into system of prob-
lems by introducing a smooth augment function. The continuous system of problems at nodal
points x = xi, i = 1, 2.., N reduced to a discrete system of algebraic equations (2.5-2.7). If
source function f(x, u) is linear then we obtained linear discrete system of algebraic equations.
The proposed method in numerical experiments has shown its efficiency, also we got a numerical
approximation of the derivative of the solution as an intermediate result. In future work, we shall
work with an improvement in present idea. Work in this direction is in progress.
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