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Abstract The main results obtained in this paper are fixed point theorems for self and non-
self Gw-contractions on modular metric spaces endowed with a graph. Our new results are
extensions of recently fixed point theorems for self-mappings on metric spaces and also fixed
point theorems for non-self mappings in Banach spaces or convex metric spaces.

1 Background

The theory of metric modular w was introduced by the Chistyakov [7, 8, 9]. It is well known that
metric d attributes a non-negative finite distance between two points in metric spaces. Informally
speaking, a metric modular on a non-empty set assigns a non-negative (maybe, infinite valued)
"field of (generalized) velocities": to each time α > 0 (the absolute value of) an average velocity
wα (r, s) is associated in such a way that in order to cover the “distance” between points r, s ∈ S
it takes time α to move from r to s with velocity wα (r, s) .

The metric fixed point theory has been widely investigated since 1922 when Banach in [1]
has proved the contraction theorem for complete metric spaces. Many generalizations of the
Banach contraction theorem have been introduced by various authors, see, for example, [3, 16],
and Jachymski [11] generalized the Banach contraction theorem for self mappings defined on
complete metric spaces endowed with the graph. Berinde in [2] has extended the concept of
Banach contraction theorem for non-self mappings in complete metric spaces endowed with the
graph by using the inwardness condition defined in [4].

Chistyakov in [6] has laid down the foundation of fixed point theory for modular metric
spaces by introducing the Lipschitz as well as contraction condition for modular metric spaces.
The author stated that for a (convex) modular on S, a mapping f : S∗w → S∗w is modular contrac-
tive if there exists a real number k ∈ (0, 1) and α0 (k) > 0 provided that

wkα (fr, fs) ≤ wα (r, s) for all 0 < α ≤ α0

and r, s ∈ S∗w. In [6], the author introduced the fixed point theorem for contractive mappings in
modular metric spaces for convex modular.

After this initiation of contraction condition for modular metric spaces, many authors have
expanded the metric fixed point theory to modular metric spaces. Moreno et al. in [13] have
generalized the Banach contraction principle to modular metric spaces which are defined as
follows: Let (Sw, w) be a complete modular metric space, then every contraction mapping f :
Sw → Sw has a unique fixed point.

This paper has been organized in the following manner: In Section 2, we will give the brief
introduction of modular metrics, modular set Sw and metric dw induced from modular met-
ric along with modular sequences, its limit, convergence, and completeness of modular metric
spaces (Sw, w). In the last section, our main aim is to study the fixed point theorems for self
mappings as well as non-self mappings using Moreno et al. contraction principle for modu-
lar metric spaces. These theorems are the generalization of fixed point theorems discussed by
Berinde [2] on Banach spaces endowed with a graph.
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2 Metric Modular

Let S be a nonempty set (having at least two elements) and α ∈ (0,∞). Throughout this paper,
for the simplicity of arguments, we will denote the function w : (0,∞) × S × S → [0,∞]
with wα (r, s) := w (α, r, s) for all α > 0 and r, s ∈ S. The set w = {wα} for α > 0 is
one-parameter family of functions wα : S × S → [0,∞]. For fixed given r, s ∈ S, we may
define wr,s (α) = w (α, r, s) for all α > 0, so that wr,s : (0,∞) → [0,∞], is another family of
functions.

Definition 2.1. ([7])A function w : (0,∞) × S × S → [0,∞] satisfying the following three
conditions:

(F1) For r, s ∈ S, wα (r, s) = 0 for all α > 0 if and only if r = s;

(F2) wα (r, s) = wα (s, r) for all α > 0 and r, s ∈ S;

(F3) wα+β (r, s) ≤ wα (r, t) + wβ (t, s) for all α, β > 0 and r, s, t ∈ S.

is called metric modular on S.

In place of (F1), a weaker condition is defined as:

(F1’) wα (s, s) = 0 for all α > 0 and s ∈ S, then w is called metric pseudomodular for S.

A (pseudo) modular w is called convex if it satisfies following inequality,

wα+β (r, s) ≤
α

α+ β
wα (r, t) +

β

α+ β
wβ (t, s) for all α, β > 0 and r, s, t ∈ S.

An additional property satisfied by convex pseudo modular w is defined as :

wα (r, s) ≤
β

α
wβ (r, s) ≤ wβ (r, s) if β ≤ α.

Some examples are given below to have a better insight of metric modular w.

Example 2.2. The examples of (pseudo) modulars on a set S are denoted by following indexed
objects. Let α > 0 and r, s ∈ S. We have:

(i) w1
α (r, s) = ∞ if r 6= s, and w1

α (r, s) = 0 if r = s. Furthermore, if (S, d) is a (pseudo)
metric space with (pseudo) metric d, then we also have:

(ii) w2
α (r, s) =

d(r,s)
Φ(α) , where Φ : (0,∞)→ (0,∞) is a non-decreasing function;

(iii) w3
α (r, s) =∞ if α < d (r, s) and w3

α (r, s) = 0 if α ≥ d (r, s) ;

(iv) w4
α (r, s) =∞ if α ≤ d (r, s) and w4

α (r, s) = 0 if α > d (r, s) .

Lemma 2.3. ([5])For given r, s ∈ S, the function wr,s : (0,∞) → [0,∞] is non-increasing on
the interval (0,∞) , that is, if 0 < β < α then the condition (F3) (with t = r) and (F1’) implies
that

wα (r, s) = w(α−β)+β (r, s) ≤ wα−β (r, r) + wβ (r, s) = wβ (r, s) . (2.1)

Consequently, for the given r, s ∈ S, at each point α > 0, the left limit is defined as

(w−0)α (r, s) ≡ wα−0 (r, s)

= limβ→α−0 wβ (r, s) = inf {wβ (r, s) : 0 < β < α}
(2.2)

and the right limit is defined as

(w+0)α (r, s) ≡ wα+0 (r, s)

= limβ→α+0 wβ (r, s) = sup {wβ (r, s) : β > α} ,
(2.3)

exist in the closed interval [0,∞].
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By using (2.2) and (2.3), we can obtain following inequalities, for all α > β > 0

wα+0 (r, s) ≤ wα (r, s) ≤ wα−0 (r, s) ≤ wβ+0 (r, s) ≤ wβ (r, s) ≤ wβ−0 (r, s) (2.4)

Chistyakov has introduced the concept of metrizability for modular spaces.
Let us fix an element r0 ∈ S. The set defined as

Sw ≡ Sw (r0) = {r ∈ S : wα (r, r0)→ 0 as α→∞} ,

is said to be modular space (around r0), and r0 is said to be the center of Sw.
There are two more modular spaces defined on S:

S∗w ≡ S∗w (r0) = {r ∈ S : ∃ α = α (r) such that wα (r, r0) <∞}

and
Sfinw ≡ Sfinw (r0) = {r ∈ S : wα (r, r0) <∞ for all α > 0} .

Clearly, Sw ⊂ S∗w and it is shown in [7] that this inclusion is proper in general.
Chistyakov in [7] has introduced the essential metrics on modular sets induced from metric

modular. In this sequel, we define modular spaces, metric on modular spaces, sequences, along
with their convergence and completeness of modular metric spaces.

Lemma 2.4. If the function w be a metric (pseudo) modular on S, then the (pseudo) metric space
defined on modular set Sw is given by

dw (r, s) = inf {α > 0 : wα (r, s) ≤ α} ,

for r, s ∈ Sw. On the other hand, if w is a convex (pseudo) modular defined on S, then the convex
(pseudo) metric space defined on modular set S∗w is given by

d∗w (r, s) = inf {α > 0 : wα (r, s) ≤ 1} ,

for r, s ∈ S∗w.

According to [7], in convex modular w, two modular sets are equal, that is, Sw = S∗w, and
this standard set is endowed with metric d∗w. Moreover, metric space dw can be defined on the
largest set S∗w.

The next lemma shows the relationship of convergence between the metric dw and modular
w.

Lemma 2.5. Let w be a modular on S, {rn} ⊂ Sw and r ∈ Sw, we have

lim
n→∞

dw (rn, r) = 0 if and only if lim
n→∞

wα (rn, r) = 0 for all α > 0.

A similar conclusion holds for Cauchy sequences concerning dw.

The above lemma also holds for d∗w on the modular set S∗w for convex modular w.
Since the classical theory of metric spaces cannot be applied to modular metric theory in

a straight forward way. Therefore, the concept of modular convergence, limit, closedness and
completeness has been reintroduced in [6] and [13].

Definition 2.6. Let w be a modular on S. A sequence {rn} from Sw (or S∗w) is modular con-
vergent to an element r ∈ Sw (or S∗w) if limn→∞wα (rn, r) = 0 for all α > 0. A sequence
{rn} ⊂ Sw (or S∗w) is modular Cauchy, If wα (rn, rm)→ 0 as n,m→∞ and α > 0, that is, for
ε > 0 there exist N0 (ε) ∈ N provided that

for all n,m ≥ N0 (ε) : wα (rn, rm) < ε.

If a sequence {rn} from Sw (or S∗w) is modular convergent to an element r ∈ S then r ∈ Sw (or
r ∈ S∗w, respectively) and the modular space Sw (or S∗w) is said to be closed for modular con-
vergence. If every Cauchy sequence is convergent in modular metric space (S∗w, w) (or (Sw, w))
then it is called complete.



388 A. Younus, M. U. Azam, M. Asif and G. Atta

The convergence of sequence {rn} can be weakened if we assume the condition in the above
definition to hold only for some α > 0 (instead of all α > 0), see, for example, [6].

In metric spaces theory, it is well-known that every convergent sequence is Cauchy. Similarly,
a modular convergent sequence is modular Cauchy (see [6, p.13]).

Chistyakov has introduced modular entourages that play a significant role in determining the
interior and closure of a subset A of S∗w (or Sw) in metric modular.

Definition 2.7. ([5]) Given α, µ > 0 and r ∈ S∗w, the modular entourage about r relative to α and
µ is the set defined as:

Bα,µ (r) = {s ∈ S∗w : wα (r, s) < µ} .

The interior and closure of a set A ⊂ S∗w are defined as:

A◦ = {x ∈ A : Bα,α (r) ⊂ A for some α > 0}

and
Ā = {x ∈ S∗w : A ∩Bα,α (r) 6= ∅ for all α > 0} ,

respectively. The boundary of A is denoted by ∂A and defined as: ∂A = Ā/A◦.
Chistyakov in [5, 7] has given the concept that classical modular ρ could be induced from

metric modular w defined on real linear space and vice versa. The modular set Sρ induced from
modular function ρ is a subspace of linear space. The criterion for classical modular induced
from metric modular guarantees that the sets Sρ and Sw are equal whenever the center r0 of Sw
is zero. Here, we give a short overview of classical modular ρ.

Orlicz in [15] has defined modular as follows: A modular on a real linear space S is a function
ρ : S → [0,∞] satisfying the following conditions:

(B1) ρ (0) = 0; (B2) If r ∈ S and ρ (λr) = 0 for all λ > 0, then r = 0; (B3) ρ (−r) = ρ (r)
for all r ∈ S, (B4) ρ (λr + µs) ≤ ρ (r) + ρ (s) for all λ, µ ≥ 0 with λ+ µ = 1 and r, s ∈ S.

In [14], a modular ρ on S is convex, if it satisfies the following inequality: ρ (λr + µs) ≤
λρ (r) + µρ (s) .

If ρ is modular on S, then the set described as

Sρ =

{
r ∈ S : lim

λ→+0
ρ (λr) = 0

}
,

is called a modular space. The set Sρ is a subspace of S, and it can be equipped with F -norm for
the rule,

|r|ρ = inf
{
λ > 0 : ρ

( r
λ

)
≤ λ

}
, r ∈ Sρ.

Moreover, if the modular is convex, then the modular space Sρ coincides with

S∗ρ = {r ∈ S : ∃ λ = λ (r) > 0 such that ρ (λr) <∞}

and
‖r‖ρ = inf

{
λ > 0 : ρ

( r
λ

)
, r ∈ Sρ = S∗ρ

}
,

becomes convex F -norm.
The next proposition shows the coherence between metric modular w and classical modular

ρ on real linear spaces.

Proposition 2.8. ([5, 7]) Suppose that S is a real linear space. For a given functional ρ : S →
[0,∞] , set

wα(r, s) := ρ

(
r − s
α

)
, α > 0, r, s ∈ S. (2.5)

Then: ρ is a (convex) modular on S if and only ifw is (convex) metric modular on S, respectively.
On the other hand, if the metric modular w satisfies the following two axioms:

(a) wα(βr, 0) = wα
β
(r, 0) for all α, β > 0 and r ∈ S.
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(b) wα(r + z, s+ z) = wα(r, s) for α > 0 and r, s, z ∈ S.
For the given r ∈ S, we set w1(r, 0) = ρ (r) . Then w is (convex) metric modular iff ρ is
a classic (convex) modular on S, respectively. Moreover, the equality (2.5) is also valid,
the set Sρ = Sw (0) is subspace of S and the functional |r|ρ = dw (r, 0) , r ∈ Sρ, is an
F -norm on Sρ. If the function w is convex, then S∗w (0) ≡ S∗ρ = Sρ is the subspace of S
and the functional ‖r‖ρ = d∗w (r, 0) , r ∈ S∗ρ , is a norm on S∗ρ . The same assertions hold for
pseudomodular.

3 Fixed Point Theorems in Modular Metric Spaces

In this section, we will establish fixed point theorems for self as well as non-self mappings of
complete metric modular spaces.

Now, we introduce graph theory terminologies, which will be used in this section. Let Sw
be the metric modular set. The diagonal of Cartesian product Sw × Sw is denoted by 4. Now,
consider a directed graph Gw = (V (Gw) ,E (Gw)) such that the set of its vertices, V (Gw) ,
coincides with Sw and the edge set E (Gw) consists of all loops, that is, 4 ⊂ E (Gw). Let Gw
has no parallel edges (arcs). These graph theory terminologies and notations are standard and
can be found in every graph theory book (see, for example, [10, 12]).

The converse graph of Gw is denoted by G−1
w , that is, the graph obtained by Gw by reversing

its edges, defined as

E
(
G−1
w

)
= {(s, r) ∈ Sw × Sw : (r, s) ∈ E (Gw)}

If r, s are vertices in the graph Gw, then a path from r to s of length M is a sequence {ri}Mi=1 of
M + 1 vertices of Gw such that r0 = r, rM = s and (ri−1, ri) ∈ E (Gw) , i = 1, 2...M.

A graph Gw is called connected if there exists at least a path between two arbitrary vertices.
If G̃w =

(
Sw, E

(
G̃w
))

is the symmetric graph obtained by placing together the vertices of both
Gw and G−1

w , that is,
E
(
G̃w
)
= E (Gw) ∪ E

(
G−1
w

)
,

then Gw is said to be weakly connected whenever G̃w is connected.
If Gw = (V (Gw) , E (Gw)) is a graph and V (Gw) ⊃ H, then the graph (H,E (Gw)) with

E (H) = E (Gw) ∩ (H ×H) ,

is said to be the subgraph of Gw determined by H, denoted by GwH .

3.1 Self contraction case

A mapping ϒ : Sw → Sw is said to be defined on a metric modular space endowed with a graph
Gw if it satisfies:

∀ r, s ∈ Sw, (r, s) ∈ E (Gw) implies (ϒr,ϒs) ∈ E (Gw) . (3.1)

A mapping ϒ : Sw → Sw which is defined on metric modular space endowed with a graph
Gw, is said to be a Gw-contraction, if there is a constant k ∈ (0, 1) such that ∀ r, s ∈ Sw with
(r, s) ∈ E (Gw) , we have

wkα (ϒr,ϒs) ≤ wα (r, s) , for α > 0. (3.2)

If ϒr = r, then the element r ∈ Sw is said to be the fixed point of mapping ϒ.

Theorem 3.1. Suppose (Sw, w,Gw) be a complete modular metric space endowed with a weakly
connected and directed graph Gw such that the following property (T) holds, that is, for any
sequence {rn}∞n=1 ⊂ Sw with rn → r as n → ∞ and (rn, rn+1) ∈ E (Gw) for all n ∈ N, there
exist a subsequence {rsn}

∞
n=1 satisfying

(rsn , r) ∈ E (Gw) , ∀ n ∈ N. (3.3)
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Let ϒ : Sw → Sw be a Gw-contraction. If the set

Swϒ = {r ∈ Sw : (r,ϒr) ∈ E (Gw)} , (3.4)

is nonempty, then the mapping ϒ has a fixed point in Sw.

Proof. Let r0 ∈ Swϒ. It follows from (3.4) that (r0,ϒr0) ∈ E (Gw) and by using (3.1) ,we obtain(
ϒ
nr0,ϒ

n+1r0
)
∈ E (Gw) , ∀ n ∈ N. (3.5)

Denote rn := ϒnr0 for all n ∈ N. Then by the fact that ϒ is a Gw-contraction and in view of
(3.1), we get

wα (rn, rn+1) ≤ wα
k
(rn−1, rn) , (3.6)

for all n ∈ N. By using (3.6) with induction, it implies that

wα (rn, rn+1) ≤ w α
kn

(r0, r1) , ∀ n ∈ N and α > 0. (3.7)

For any positive integer q, by (3.2) and (2.1), we have

wα (rn, rn+q) ≤ wα
q
(rn, rn+1) + · · ·+ wα

q
(rn+q−1, rn+q)

≤ w α
qkn

(r0, r1) + · · ·+ w α

qkn+q−1
(r0, r1)

≤ qω α
qkn

(r0, r1) .

(3.8)

By using (3.8) and according to the fact that

lim
α→∞

wα (r, s) = 0, for all r, s ∈ Sw, (3.9)

we have
lim
n→∞

wα (rn, rn+q) ≤ 0 + · · ·+ 0 = 0, (3.10)

i.e., {rn} is Cauchy, hence convergent in (Sw, w,Gw) . The limit of this sequence is denoted as:

lim
n→∞

rn = r
∗
. (3.11)

By the property (T) of (Sw, w,Gw) , there exists a subsequence {rsn} satisfying

(rsn , r
∗) ∈ E (Gw) , ∀ n ∈ N.

Hence, by contraction condition (3.2) and in view of (3.1), we get

wα (ϒrsn ,ϒr
∗) ≤ wα

k
(rsn , r

∗) . (3.12)

Therefore, by property (F3) of Definition 2.1, we have

wα (r∗,ϒr∗) ≤ wα
2
(r∗, rsn+1) + wα

2
(rsn+1,ϒr

∗)

= wα
2
(r∗, rsn+1) + wα

2
(ϒrsn ,ϒr

∗) .
(3.13)

By using (3.12) in inequality (3.13) yields

wα (r
∗,ϒr∗) ≤ wα

2
(r∗, rsn+1) + w α

2k
(rsn , r

∗) , (3.14)

for all n ≥ 1. In equation (3.14), assuming n→∞ and using (3.11), we have wα (r∗,ϒr∗) ≤ 0,
then by condition (F1) we obtain r∗ = ϒr∗, which is a fixed point of mapping ϒ.

Remark 3.2. For α > 0, consider the modular function,

wα (r, s) =
d (r, s)

α

for r, s ∈ S, where (S, d) is a metric space. This modular is convex and for any fixed r0, the
modular set S∗w (r0) = Sw (r0) = S. Since it is convex modular, therefore, d∗w (r, s) = d (r, s) .
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If α = 1, then the contraction condition (2.1) used in [2] is equivalent to contraction condition
(3.2) used in Theorem 3.1, i.e., if there is a constant k ∈ (0, 1) for a mapping ϒ : Sw → Sw such
that ∀ r, s ∈ Sw with (r, s) ∈ E (Gw) , we have

wkα (ϒr,ϒs) ≤ wα (r, s) , for α > 0,

implies
d (ϒr,ϒs) ≤ kd (r, s) .

Therefore, Theorem 3.1 is the extension of [2, Theorem 2.1].

Example 3.3. Let S = [1,∞) ⊂ R, (S, d) be the usual metric and according to Example 2.2 for
Φ (α) = α, we have

wα (r, s) =
|r − s|
α

.

This is convex metric modular. In this case, dw (r, s) = |r − s| as well as modular and metric
convergence is equivalent to usual d-convergence in S. The modular set S∗w = Sw = S. Since
[1,∞) is closed subset of R and R is complete with respect to usual metric. Therefore (Sw, w)
is complete metric modular. Let the mapping ϒ : Sw → Sw be defined as ϒr = r

2 + 1
r and Gw

be the complete graph on the set Sw that is, E (Gw) = Sw × Sw. Since Gw is a complete graph,
so it satisfies the property (3.1) for all r, s ∈ Sw. Moreover, Gw is weakly connected. ϒ is a
Gw-contraction with contraction coefficient k ≥ 0.5. For any convergent sequence {rn} ⊂ Sw
converging to some point r ∈ Sw property (T) holds due to complete graph. Thus, by Theorem
3.1 mapping ϒ has a fixed point which is r∗ = 1.414.

3.2 Non-self contraction case

Let the function w satisfying the additional property defined as:

wα (r, s) = wα (r, u) + wα (u, s) , (3.15)

for all α > 0 and r, s, u ∈ S, then it is said to be metric modular having convexity property.

Example 3.4. Let (S, d) be convex metric spaces and from Example 2.2, we define Φ (α) = αn

where n = 1, 2, 3, · · · . The function defined as

wα (r, s) =
d (r, s)

αn
,

for α > 0 and r, s ∈ S is a metric modular having convexity property.

Definition 3.5. Let (Sw, w) be a complete metric modular space and A ⊂ Sw. A mapping ϒ :
A→ Sw is modular metrically inward if for each r ∈ A there exist an element u ∈ A such that

wα (r,ϒr) = wα (r, u) + wα (u,ϒr) , (3.16)

for all α > 0, where u = r if and only if r = ϒr.

By following the Proposition 2.8, for a (convex) modular on S, the modular set Sw (0) = Sρ
(S∗w (0) = S∗ρ) is a linear subspace of S. Throughout this section, the function w is metric
modular having covexity property and Sw ≡ Sw (0), for fixed r0 = 0.

Let A ⊂ Sw and r ∈ Sw; for a given sequence {rn} ⊂ A and limn→∞ wα (rn, r) = 0,
if r ∈ A then this set A is said to be closed. Let A be a nonempty, closed subset of Sw and
ϒ : A→ Sw be a non-self mapping. We choose s ∈ A such that ϒs /∈ A, then there is an element
z ∈ ∂A such that

z = (1− µ) s+ µϒs where µ ∈ (0, 1) ,

which represents the fact that

wα (s,ϒs) = wα (s, z) + wα (z,ϒs) , z ∈ ∂A for all α > 0. (3.17)
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The inward condition used in the Definition 3.5 is more general since it does not require z in
equality (3.16) to belong to ∂A.

A non-self mapping ϒ : A → Sw is said to be defined on the modular metric space (Sw, w)
endowed with a graph Gw if it satisfies the property that

for all r, s ∈ A (r, s) ∈ E (Gw)

with ϒr,ϒs ∈ A, implies (ϒr,ϒs) ∈ E (Gw) ∩ (A×A) ,
(3.18)

for the subgraph of Gw induced by A.

Theorem 3.6. Suppose (Sw, w,Gw) be a complete modular metric space endowed with a weakly
connected and directed graph Gw provided that following property (T) holds, that is, for any
sequence {rn} ⊂ Sw along with rn → r as n→∞ and

(rn, rn+1) ∈ E (Gw) , ∀ n ∈ N,

there exist a subsequence {rsn} satisfying

(rsn , r) ∈ E (Gw) , ∀ n ∈ N. (3.19)

Let A be a nonempty, closed subset of Sw and ϒ : A→ Sw be a GwA-contraction, that is, there
exist a constant k ∈ (0, 1) such that

wkα (ϒr,ϒs) ≤ wα (r, s) for all (r, s) ∈ E (GwA) and α > 0, (3.20)

where GwA is the subgraph of Gw determined by A. If the set

Aϒ := {r ∈ ∂A : (r,ϒr) ∈ E (Gw)} ,

is nonempty and ϒ satisfies Rothe’s boundary condition

ϒ (∂A) ⊂ A. (3.21)

Then the mapping ϒ has a fixed point.

Proof. If ϒ(A) ⊂ A, then ϒ is a self-map of the closed set A and the conclusion follows by
Theorem 3.1. Now, we consider the case that ϒ(A) 6⊂ A. Let r0 ∈ Aϒ. It follows that (r0,ϒr0) ∈
E (Gw) and in view of equation (3.1) ,we have

(ϒnr0,ϒ
n+1r0) ∈ E (Gw) , for all n ∈ N. (3.22)

Let us denote rn := ϒnr0, for all n ∈ N. By virtue of (3.21) ϒr0 ∈ A.
Consider r1 ≡ s1 = ϒr0. Let ϒr1 ∈ A, set r2 ≡ s2 = ϒr1. If ϒr1 /∈ A, then we can select an

element r2 ∈ ∂A on the segment [r1,ϒr1] , that is,

r2 = (1− µ) r1 + µϒr1, where µ ∈ (0, 1) .

By following the same method we obtain two sequences {rn} and {sn} whose terms satisfy one
of the succeeding properties:

(i) rn ≡ sn = ϒrn−1, if ϒrn−1 ∈ A;

(ii) rn = (1− µ) rn−1 + µϒrn−1 ∈ ∂A, µ ∈ (0, 1) , ϒrn−1 /∈ A.

For the simplicity of arguments in the proof, let us denote

U = {ra ∈ {rn} : ra = sa = ϒra−1}

and
Z = {ra ∈ {rn} : ra 6= ϒra−1} .
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Note that {rn} ⊂ A for all n ∈ N. Moreover if ra ∈ Z, then both ra−1 and ra+1 belong to set U.
The sequence {rn} can have consecutive terms ra and ra+1 in set U, but this assertion is not true
for the set Z. First of all we have to prove that

ra 6= ϒra−1 implies ra−1 = ϒra−2.

Suppose contrarily that ra−1 6= ϒra−2 then ra−1 ∈ ∂A. Since ϒ (∂A) ⊂ A then ϒra−1 ∈ A,
hence ra = ϒra−1 which is a contradiction.

Here, we have three different cases to show that {rn} is Cauchy which are following:
Case 1. rn, rn+1 ∈ U.
Since both elements belong to set U, therefore, we have rn = sn = ϒrn−1 and rn+1 =

sn+1 = ϒrn. Hence,
wα (rn+1, rn) = wα (sn+1, sn)

= wα (ϒsn,ϒsn−1) ,

where (sn, sn−1) ∈ E (Gw) by virtue of (3.22), we have the following inequality by using con-
traction condition (3.20)

wα (ϒsn,ϒsn−1) = wα (ϒrn,ϒrn−1)

≤ wα
k
(rn, rn−1) .

Therefore, we have

wα (rn+1, rn) ≤ wα
k
(rn, rn−1) < w α

2k
(rn, rn−1) , (3.23)

by virtue of inequality (2.1).
Case 2. rn ∈ U, rn+1 ∈ Z.
In this case, we have rn = sn = ϒrn−1, but rn+1 6= sn+1 = ϒrn, therefore we have

wα (rn,ϒrn) = wα (rn, rn+1) + wα (rn+1,ϒrn) for all α > 0.

The above equality implies wα (rn+1,ϒrn) 6= 0. Therefore,

wα (rn, rn+1) = wα (rn,ϒrn)− wα (rn+1,ϒrn)

< wα (rn,ϒrn)

= wα (ϒrn−1,ϒrn) ,

(3.24)

since rn ∈ U. By using (3.24) we obtain

wα (rn, rn+1) < wα (ϒrn−1,ϒrn)

= wα (ϒsn−1,ϒsn) .

We can obtain again inequality (3.23) by using the similar arguments to that in Case 1.
Case 3. rn ∈ Z, rn+1 ∈ U.
In this case, we have rn+1 = ϒrn, and rn 6= sn = ϒrn−1. Since rn ∈ Z, so we have

wα
2
(rn−1,ϒrn−1) = wα

2
(rn−1, rn) + wα

2
(rn,ϒrn−1) for all α > 0. (3.25)

Hence, by inequality (F3) from Definition 2.1,

wα (rn, rn+1) ≤ wα
2
(rn,ϒrn−1) + wα

2
(ϒrn−1, rn+1)

= wα
2
(rn,ϒrn−1) + wα

2
(ϒrn−1,ϒrn)

= wα
2
(rn,ϒrn−1) + wα

2
(ϒsn−1,ϒsn).

(3.26)

By virtue of (3.22) (sn−1, sn) ∈ E (Gw) , and the following inequality is obtained by the con-
traction condition (3.20)

wα
2
(ϒsn−1,ϒsn) ≤ w α

2k
(sn−1, sn) = w α

2k
(rn−1, rn). (3.27)
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Thus, by using (2.1), (3.25), (3.27) in inequality (3.26) and the fact that k ∈ (0, 1) , we have

wα (rn, rn+1) ≤ wα
2
(rn,ϒrn−1) + w α

2k
(rn−1, rn)

< wα
2
(rn,ϒrn−1) + wα

2
(rn−1, rn)

= wα
2
(rn−1,ϒrn−1) .

By using (3.22), (rn−2, rn−1) = (sn−2, sn−1) ∈ E (Gw) and by virtue of contraction condition
(3.20), we get

wα (rn, rn+1) ≤ wα
2
(rn−1,ϒrn−1)

= wα
2
(ϒrn−2,ϒrn−1)

≤ w α
2k
(rn−2, rn−1) .

(3.28)

Now, we summarize all above mentioned three cases, by virtue of (3.23) and (3.28), it follows
that the sequence {wα (rn, rn+1)} satisfies the inequality

wα (rn, rn+1) ≤ max
{
w α

2k
(rn−2, rn−1) , w α

2k
(rn−1, rn)

}
, (3.29)

for all n ≥ 2. We obtain the following inequality by simple induction for n ≥ 2, and using (3.29)

wα (rn, rn+1) ≤ max
{
w α

2k
[n/2]

(r0, r1) , w α

2k
[n/2]

(r1, r2)
}
, (3.30)

where
[
n
2

]
denotes the greatest integer not exceeding n

2 .
Further, by using (3.30) and (2.1), we have

wα (rn, rn+q) ≤ wα
q
(rn, rn+1) + · · ·+ wα

q
(rn+q−1, rn+q)

≤ max
{
w α

2qk[n/2]
(r0, r1) , w α

2qk[n/2]
(r1, r2)

}
+ · · ·

+max
{
w α

2qk[n+q−1/2]
(r0, r1) , w α

2qk[n+q−1/2]
(r1, r2)

}
≤ qmax

{
w α

2qk
[n/2]

(r0, r1) , w α

2qk[n/2]
(r1, r2)

}
,

(3.31)

for any positive integer q.
By using (3.31) and (3.9), we have

lim
n→∞

wα (rn, rn+q) ≤ 0 + · · ·+ 0 = 0,

which shows that {rn} is a Cauchy sequence, hence convergent. Since {rn} ⊂ A andA is closed,
{rn} converges to some point r

′ ∈ A, i.e., limn→∞ rn = r
′
.

By property (T), there exist a subsequence {rsn} satisfying

(rsn , r
′
) ∈ E (Gw) , for all n ∈ N.

Hence, by the contraction condition (3.20),

wα

(
ϒrsn ,ϒr

′
)
≤ wα

k

(
rsn , r

′
)
. (3.32)

Therefore, by (F3) from Definition 2.1, we have

wα

(
r
′
,ϒr

′
)
≤ wα

2

(
r
′
, rsn+1

)
+ wα

2

(
rsn+1,ϒr

′
)

= wα
2

(
r
′
, rsn+1

)
+ wα

2

(
ϒrsn ,ϒr

′
)
.

By using (3.32), the above inequality yields

wα

(
r
′
,ϒr

′
)
≤ wα

2

(
r
′
, rsn+1

)
+ w α

2k

(
rsn , r

′
)
, (3.33)

for all n ≥ 1. Taking limit n → ∞ and using (3.33), we obtain wα
(
r
′
,ϒr

′
)
≤ 0 and, then by

(F1) we get r
′
= ϒr

′
, which shows that r

′
is a fixed point of ϒ.
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Remark 3.7. Let S be a Banach space, d (r, s) is the metric induced from norm and the modular

function is defined as: wα (r, s) =
d (r, s)

α
, for α > 0. This modular is convex and satisfies

axioms (a) and (b) of Proposition 2.8. Consequently, for center r0 = 0, S∗w (0) = S∗ρ (0) and
the functional ‖r − s‖ρ = d∗w (r, s) , r ∈ S∗ρ (0). The modular set S∗w (0) = Sw (0) = S and
d∗w (r, s) = d (r, s) . If α = 1, then the contraction condition (3.4) used in [2] is equivalent to
contraction (3.20) condition used in Theorem 3.6, i.e., for a nonempty, closed A ⊂ Sw, if there
exist a constant k ∈ (0, 1) for a mapping ϒ : A→ Sw such that

wkα (ϒr,ϒs) ≤ wα (r, s) for all (r, s) ∈ E (GwA) and α > 0,

implies
d (ϒr,ϒs) ≤ kd (r, s) .

Therefore, Theorem 3.6 is the extension of [2, Theorem 3.1].

Example 3.8. Let S = R, (S, d) be the usual metric. In view of Example 2.2, the modular metric
function is defined as

wα (r, s) =
|r − s|
α

, for α > 0.

This function satisfies the axioms (a) and (b) of Proposition 2.8 and convexity property (3.15)
for all α > 0 and r, s ∈ S (cf. Example 3.4). It is convex metric modular, so we have S∗w (0) =
Sw (0) = R and dw (r, s) = |r − s| as well as modular and metric convergence is equivalent
to usual d-convergence in S. Since R is complete, (Sw, w) is a complete metric modular and
A = (−∞, 0] is a closed subset of Sw. Let the mapping ϒ : A→ Sw be defined as

ϒr =

{
0 if r ∈ [−1, 0]
0.5 if r ∈ (−∞,−1) .

The edge set of graph Gw and the subgraph GwA determined by A is defined as

E (Gw) = {(r, s) ∈ Sw × Sw : r ≤ s}

and
E (GwA) = {(r, s) ∈ A×A : r ≤ s} ,

respectively. It is easy to check that (3.18) holds, that is, for all r, s ∈ A (r, s) ∈ E (Gw) with
ϒr,ϒs ∈ A, implies (ϒr,ϒs) ∈ E (Gw) ∩ (A×A) . In view of (3.18), for t, u ∈ (−∞,−1) and
r, s ∈ [−1, 0] , the edges (t, u) , (t, r) has to be removed and for the rest of edges we have

(ϒr,ϒs) = (0, 0) ∈ E (GwA) .

Moreover, Gw is a weakly connected and ϒ is a non-self GwA-contraction on A with contraction
cofficient k = 1

4 , since

|ϒr − ϒs|
α

=
1

2α
<

1
4
× |r − s|

α
for r ∈ (−∞,−1) and s ∈ [−1, 0] .

(for the rest of edges of E (GwA) , the contraction condition (3.20) is obvious, since the quantity
in its left-hand side is always zero). Property (T) holds with constant sequences {rn = r} sat-
isfying the property (rn, rn+1) ∈ E (GwA) , for all n ∈ N. Rothe’s boundary condition is also
satisfied, as ∂A = {0} and so ϒ (∂A) ⊂ A. Finally, since we also have Aϒ = {0} 6= ∅, all
assumptions in Theorem 3.6 are satisfied, and r

′
= 0 is the fixed point of ϒ.

4 Conclusion

In this paper, we have presented the fixed point theorems for self and non-self Gw-contractions
on modular metric spaces endowed with a graph. This immediately implies the generalization of
recently fixed point theorems for self mappings on metric spaces and also fixed point theorems
for non-self mappings in Banach spaces or convex metric spaces.

Concluding this paper, we remark that all statements remain true if we replace the modular
metric spaces by metric spaces.
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