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Abstract The present paper studies the Drinfeld-Sokolov-Wilson (DSW) equation. We per-
form the S(&)-expansion method to take some exact solutions and create different solitary wave
aspects for each equation. The received perspectives provide the firm mathematical foundation
as well as describe the wave generation in soliton physics. As a result, we get some new soliton
solutions. Finally, the exact solution and its geometrical properties are constructed, considering
Mean curvature and Gaussian curvature as for the DSW equation. The S(£)-expansion method
analyzes the solution follow through instantaneously with this equation.

1 Introduction

Soliton theory has fascinated the observation of experts from all over the world. For constructing
soliton solutions in numerous forms, different efficient techniques, such as the Hirota bilinear
method [1], Bilinear neural network method [2], (G'/G, 1/G)-expansion method [3], Improved
(G'/G)-expansion method [4], the modified exp-function method [5], extended Exp-function
method [6], transformed rational function method [7], New generalized (G’/G)-expansion
method [8, 9] and many more have been developed.

Drinfel’d and Sokolov [10] and Wilson [11] has been proposed the DSW model for disper-
sive water waves and that play an important role in fluid dynamics [12]. To study of the model
is given by

= V=0, (1.1a)
oV % oV oU
E+OZ2W+Q3U%+Q4V%—O, (11b)

where o, aj, a3, and oy are nonzero parameters. Recently, several researchers have been
showed their interested on this model [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. Qin
and Yan [13] construct doubly periodic solutions of the coupled DSW equation by using an
improve F-expansion method. Ayub et al. [14] have introduced the Exp-function method to
look for solitary solutions of the generalized DSW system. Sweet and Gorder [15] applied
the method of homotopy analysis to obtain analytical solutions of the generalized DSW sys-
tem. Jawad [16] has introduced the traveling wave solutions and new solitary wave solutions of
the DSW equation, Fornberg-Whitham equation, potential-TSF equation, Jimbo-Miwa equation,
Modified Zakharov-Kuznetsov equation, and (2 + 1)-dimensional Konopelchenko-Dubrovsky
equation via the tanh and Sech function methods. Cesar [17] obtained exact solutions of this
model by applying the improved tanh-coth. Abdelaziz and Ibrahim [18] has been proposed the
enhanced of the G’/G-expansion method combined with Liu’s theorem to find new exact so-
lutions of the nonlinear (1+1)-dimensional DSW equation. Zhang [19] established variational
principles of the DSW equation Via the semi-inverse method and also obtained an exact soli-
tary solution and exact singular periodic wave solution using the variational scheme. Gurefe
and Misirli [20] applied the Exp-function method to obtain generalized solitary solutions of the
generalized (2+1)dimensional Burgers-type equation and the generalized DSW system.
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Niu and Liu [21] re-examined the well known coupled system as the DSW equation. Its
proper Darboux transformation is constructed with the help of a Lax operator of fourth order
and some solutions are calculated and a nonlinear superposition formula is worked out for the
associated Backlund transformation. Arnous et al. [22] employed two integration schemes to
draw solitons, singular periodic waves and other types of solutions of the DSW equation. Jin
and Lu [23] applied the variational iteration method to solve the classical DSW equation. Hirota
et al. [24] present this equation a novel type of solutions called static solitons and this static
solutions interact with moving solitons without deformations.

Therefore, Our aim of this article to establish exact solutions and geometrical formation
namely, Normal curvature, Gaussian curvatures and Mean curvature of the selected modal as the
DSW model through the S(¢)-expansion method.

The synopsis of this paper as seen below In Section 2, we have given the algorithm of the
S(&)-expansion method and obtained new solutions of the DSW equation through the S(&)-
expansion method. In Section 3, we firstly provides some basic definitions of the differential
geometry and Minkowski space R® and then derived Normal curvature, Mean curvature and
Gaussian curvature for the exact solution of DSW equation. In Section 2.2, graphical represen-
tations and numerical experiment of the derived solutions are depicted. Finally, the conclusion
of our study is given.

2 The S(&)-expansion method

In this section, we discussed the main features of analytical methods as considering the S(&)-
expansion method [25, 26, 27].

« Phase 1: Regarding the general NLEE with space variables z;, x;, x3, ...., z,, and time
variable ¢ form

oV ov? oV ov? oV ov?  oV?

P ..)=0 2.1
(V, ot’ ot? 781‘1 oxt’ 8.%‘2 Ox122 Oxaxy’ ) ’ 21

where V (z1,x2, %3, ..., Tn, t) is an unknown function and P is a polynomial in

V($1,$2,$3, ceeey Ty t).

» Phase 2: The traveling wave variable
V =V(z1,22,23, 0, T, t) = 0(€), & = Zk x; + Bt, (2.2)
i=1

where k; forall i = 1,2, ...,n are constants and /3 is the speed of the traveling wave. From
Eq. 2.2 and Eq. 2.1, we have

v, dv PV
R(V,B—= k1—— 6

T df 5 2d d§2 k1 B— s ,.r) = 0. 2.3)

 Phase 3: Considering the traveling wave solution of Eq. 2.3 can be expressed as the form
V() =) siS(e), 24)

where S(¢) = e~T(©) and s,(i = 0, ..., n) are constants to be determined, such that s # 0
and T' = T'(¢) satisfies the following auxiliary equation:

(T(&) =e T + pe™® + A, 2.5)

where sy ....... , B, A\, i are constants to be determined latter.

Next, we have five solutions of Eq. 2.5.
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— when p # 0, \> — 44 > 0,, the solution of Eq. 2.5 is

—VFtanh(GE) (€ + E) — A

T(€) = log( 2

). (2.6)

— when p # 0, \> — 44 < 0, the solution of Eq. 2.5 is

\/jtan( YE+E) = A

T (&) = log( o ). (2.7

— when 1 =0, A # 0, A2 — 41 > 0,, the solution of Eq. 2.5 is
7(€) = log e mr— ) e8)

e -1

— when p # 0, X\ # 0, \2 — 45 = 0,, the solution of Eq. 2.5 is
760 = loo(~3 + e 5 @9)

— when p =0, \ =0, Az — 4 = 0,, the solution of Eq. 2.5 is
T(€) = log(¢ + E). 2.10)

» Phase 4: Eq. 2.3 can be constructed as analytical methods, i.e.,the S(&)-expansion method.

« Phase 5: The form of V' is obvious and making the hight order derivatives and the nonlinear
term of Eq. 2.3 to find the coefficients of V.

« Phase 6: Finally, the solitary wave solutions of Eq. 2.1 have been obtained by combining
consequently given steps.

2.1 The Drinfel’d-Sokolov-Wilson (DSW) equation via the S(£)-expansion method

Herein, applied traveling wave variable V(§) = V(z,t), £ = x + 0t, Eq. 1.1a and 1.1b converts
into a nonlinear ODE

dU dV
8 TV G =0. @.11)
dV >V dV dU
— — — —V =0. 2.12
6d§+ 2d£3+a3Ud£+a4d§V 0 ( )

U=- 27 (2.13)

From Eq. 2.13 and Eq. 2.12 , we obtain

3V av
2 4o _ 2a4)V? : 2.14
Boy —— prS + 283 i ai(az +2a4) V- — i =0 (2.14)
Again integrating Eq. 2.14, we obtain
2

2/3a2% 128V - MW ~0. (2.15)

Applying the homogeneous balance between V> and V' of Eq. 2.15, we have N = 1 .
substituting the value of N in Eq. (13), we obtain

V(§) = so+ s15(¢), (2.16)
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where S(¢) = exp(—¢(&)) and the coefficients sy and s; are constants to be evaluated.
From Eq. 2.16 and Eq. 2.15 and then equating each coefficients of T'(€) to zero, we get

4Bans; — (%alcm + %alag)s? =0, 2.17)

— (2o + aya3)s9sT + 6Bax)s; = 0, (2.18)

(2BcaN? +4Banp +26%)s; — (2aay + araz)sis; =0, (2.19)
2 2 1 3

2Bap sy + 23750 — (§a1a4 + §a1a3)sl =0. (2.20)

Applying Maple, we calculate the Eq. 2.17 to Eq. 2.20

(XN —4p) _ 6(N2—4p) _ 6(N2—4p)
B = 5 , 80 = (& za,a4+a,a3)0¢2)‘ and s; = (= 2ula4+a]a3)a2, where )\ and p are
constants.

Substituting the values of 3, s, s; into Eq. 2.16, we have

V(€) = DA+ DS(€), 2.21)

o (\2_d 6(A2—4
where £ = x — %t and @ = (& m)az.

A substitution of Eq. 2.6 to Eq. 2.10 into Eq. 2.21, leads to the following five traveling wave
solutions of the Drinfel’d-Sokolov-Wilson (DSW) equation.
if 4 # 0 and A2 — 4 > 0, then

2
Vi) :(D/\_q)(\/‘?tanh(\é‘?l;(g—ﬁ—E)ﬁ—/\). (2.22)
if 11 # 0 and A% — 4y < 0, then
2

VZ(Q:qDAJrq)(\/Wmn(Vf/;(ngE)—A)' (2.23)

if 1 =0, A\ # 0and A> — 4y > 0, then
Vi(¢) = d)A—i—d)(ﬁ). (2.24)

if 4 #0, A # 0and \> — 4y = 0, then
Vi(6) = @A+ (5 4+ ), (2.25)

A XN(E+E)

if =0, \=0and \> — 4y = 0, then

V5(€) = <I>A+<I>((£+E). (2.26)

2.2 Graphical representations of the obtained solutions

Herein, we have been established five traveling wave solution by using the S(¢)-expansion
method. Namely, exponential function, rational function, trigonometric function, and hyperbolic
function are obtained from encompassing of explicit solutions. If we provided the particular
value of an unknown parameter of the traveling wave solutions, then the solitary wave might be
produced. As for, we have illustrated some figure of the solitary wave for considering a particu-
lar value of an unknown parameter. In this section, We constructed the graphical representation
as regrading the results of DSW equation through the S(¢)-expansion method.
2D Graph of the exact equation via the S(¢)-expansion method:
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+ Referring to Figure 1, 2D Graph of the exact solution V;(z,¢) at the particular values of
oq:1,a2:2,a3:3,a4:4,)\:1,E:1,u:—%andt:1.

+ Referring to Figure 2, 2D Graph of the exact solution V5(z,t) at the particular values of
o) = 1,0&2:%7013:0.3704420.1,/\: LLE=1lpu=1andt=1.

» Referring to Figure 3, 2D Graph of the exact solution V3(z, ) at the particular values of
ap=lx=2,3=3,cu=4 =1, E=1,p=0andt = 1.

Figure 1. 2D graph of the exact solutions for the DSW equation via the S(£)-expansion method.

Figure 2. 2D graph of the exact solutions for the DSW equation via the S(£)-expansion method.

Figure 3. 2D graph of the exact solutions for the DSW equation via the S(&)-expansion method.

3D and contour plot graph of the exact equation via the S(¢)-expansion method:

» Referring to Figure 4, The shape of the exact solution V;(z,t) at the particular values of
ag =1l aw=2a3 =3, g =4 =1 F =1and p = —% within the interval
—10 < z,t < 10.

+ Referring to Figure 5, Graph of the exact solution V3(x, t) at the particular values of a; = 1,
ay=2, 03 =3, a4 =4, =1, E =1 and p = 0 within the interval —10 < z,¢ < 10.
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Figure 5. Graph of the exact solutions for the DSW equation via the S(£)-expansion method.

3 Geometrical properties through the surfaces of the DSW model

Several researchers have been showed their interested on geometrical properties through the
exact solutions in various ways by authors [28, 29, 30]. All the exact solutions of the DSW model
try to generalize the surface structures. In this section, we firstly review the basic definitions
of the some differential geometry and Minkowski space R? and then derived surface normal
curvature, mean curvature and gaussian curvature of the surface structures of the DSW model.

3.1 Basic definitions and surface normal of the surface of the DSW model

This section provides some basic definitions of the differential geometry and Minkowski space
R? [28, 29, 30]

Let R? be the vector structure of the real vector space. Let E(z,y,2) = {E1, Ea, Es} be the
canonical basis of R? such as E; = (1,0,0), F> = (0,1,0) and E; = (0,0,1) and (z,v, z) the
coordinates of a vector with respect to E.

Definition 3.1. let X and 7" ba any vector fields in the metric space E13 = (R3.So, the Lorentz-
Minkowski space is the metric space E; = (R3,()) if there exist X = (x1,22,23) and T =
(t1,t2,t3) and the inner product () such that

(X, T) =zt + x2tp — x3t3. (3.1
Henceforth X as:
« |X| = /(X, X) if X is a spacelike vector,
« | X = —/(X, X) if X is a timelike vector.
Definition 3.2. A vector X € E3 also called
« spacelike vector if (X, X) > 0or X =0,
- timelike vector if (X, X) < 0 and X # 0,
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« lightlike vector if (X, X) = 0 and X # 0.

Definition 3.3. A vector subspace U C R? is given, so we assume that z,¢ € S and the induced
metric (,)g:
(z,t)s = (z,1)
. The inner product on P classifies of the three types such as
 The metric is positive definite and S is called spacelike.

« The metric has index 1 and S is said timelike.

 The metric is degenerate and U is called lightlike.

Definition 3.4. A smooth surface is a surface whose parametrization consists of regular surface
patches.

Definition 3.5. Let S is the smooth function and let the graph of .S denoted by :
S(x,t) = (x,t,V(x,t)),

where V' (z,t) is the exact solution of the DSW equation.

Definition 3.6. The first fundamental form of a surface in E? is the expression
Eda? 4 2Fdxdt + Gdt?,

suchas £ = (V,,,V,), F = (V,, ;) and G = (V4, V;). The first fundamental form describes the
intrinsic geometry of a surface

Definition 3.7. If S(z,t) = (z,t,V(z,t)) is a parametrization of a surface in E°, then the unit
vector normal to the surface at any point is given by

Sz A St

N=_—2""0_
HS:v/\St”

where A denotes the wedge product in R?, S, (x, t) is the partial derivatives with respect to
and S;(w,t) is the partial derivatives with respect to ¢. A surface in E? is said to be

- a spacelike surface if IV is a timelike,
- atimelike surface if IV is a spacelike,

- alightlike (ot degenerate) surface if NV is a lightlike.
Remark 3.8. We note that a point is called regular if NV # 0 and singular if N = 0.
Remark 3.9. We note that the regular parameterization that is ||S; A S¢|| # O.
Definition 3.10. The second fundamental form of a surface is the expression:

eda? + 2 fdxdt + gdt?*,

such as e = (Vyu, N), f = (Voy, N) and g = (Vi, N), where V., = OV = g:—v and

N ou?? ot
_ oV
Vvtt — o2

Definition 3.11. The Gaussian curvature of a surface in E? is the function:
K(p) = g1
EG - F?’
Definition 3.12. The mean curvature of a surface in E? is the function:

by 1eG=2fF+gE
2 EG-F*

where V(x,t) is the exact solutions of the DSW equation, V,.(z,t) is the partial derivative
with respect to x and V;(z, ) is the partial derivative with respect to ¢.
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3.2 Surface normal through the exact solution of the DSW equation

From the definition of Surface normal, we have

SmXSt

N=_22250
15a x S|

where S(z,t) = (z,t,V(x,t)), S (z,t) is the partial derivatives with respect to = and S; (=, t)
is the partial derivatives with respect to t. Now from the above equation and Eq. 2.26, we get

P 3
7€l — 7€1 €3
N (¢+E) (E+E) . (3'2)

VL+B2) et + 1

Similarly, we could provide the surface normal of the other exact solution for the DSW equation,
which are omitted for convenience.

3.3 Mean and Gaussian curvature through the exact solution of the DSW equation

We compute the curvatures, namely, the Mean curvature and Gaussian curvature x(p) of a non-
degenerate surface by using a local parametrization. Here we follow the same ideas as in [29].
Consider a local parametrization V = (z,t), where V is spacelike or timelike. Let S = (V,,, V;)
be a local basis of the tangent plane at each point of V' = (z,¢). With respect to S = (V,,, V;), let

E F
F G

M =

be the matricial expression of the first fundamental form, where £ = (V,,, V,), F' = (V,, V;) and
G = (V;,V;). Denote U = EG — F?. The surface is

- a spacelike surface if U > 0

 a timelike surface if U < 0
Take the unit normal vector field

Vo AV,
IV AVE]

Again, we use the notation (N, N) = r. Here ||V, A V;|| = V=71 (EG — F?) = /=rU.
Let

N = (3.3)

e f
I g

be the matricial expression with respect to S = (V,,, V;) , where e = (V,,., N), f = (V,, N) and
g = <V;St7 N>
Therefore the Gauss curvature x(p) and the mean curvature H are

eg— f?

K(p) = PG (3.4
and leG —-2fF +gFE
e e il )
H= T (3.5)
According to 3.3, we have
E= <Vwavx>’
F=(Vy, Vi)
G = (Vi,Va);
e = <V$1, N> — det(Vl7 ‘/t7 Vlz) .

vV=ru
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det(Vy, Vi, Vi
f= <th7N> = w;

det(Vy, Vi, Vir)
= (Vy, Ny = — &0 %
9= (Vi N) V=rU
Thus, the Gauss curvature x(p) and the mean curvature H can be written as

det(an ‘/fm wa)det(vah ‘/ta ‘/tt) - dEt(VIa ‘/t) th)Z
K(p) - - U2 )

and
_det(Vgg7 Vi, Var )G — 2det(Vy, Vi, Vit ) F + det (Vi Vi, Vi ) E

2(—rU)3

where V (x,t) is the exact solutions of the DSW equation, V,.(z,t) is the partial derivative
with respect to = and V;(z, t) is the partial derivative with respect to ¢.

Examples Let V' be the exact solutions of the DSW equation and consider the surface S =
V(z,t). Let S(z,t) = (z,t,V(x,t)). The coefficients of the first fundamental form are £ =
1-V2, F=-V,V;andG =1-V2 Thus EG — F> =1-V2? -V} =1~ |VV]% If the
plunge of S = V (x,t) is spacelike (resp. timelike), we have [VV|*> < 1 (resp. > 1). The mean
curvature H satisfies

H =

)

(1 = VA)Vao 4+ 2VaVi + (1 = VA Vo = —2H(—r(1 — [VV]?))3.
Similarly, the gauss curvature x(p) is

_ sz‘/;ft_vzzt
klp) = T2

The examples for component V(x,t) are shown in the exact solutions of the DSW equation. Of
course, with the help of the results presented in this paper more sophisticated solutions may be
calculated.

We note that

« the surface S(z,t) is an elliptic paraboloid near the point p, p is called an elliptic point if
k(p) > 0.

« the surface S(x, 1) is a hyperbolic paraboloid near the point p, p is called a hyperbolic point
if k(p) <0,

« the surface S(z,t) is a parabolic cylinder near the point p, p is called a parabolic point if
k(p) <O0.

4 Conclusion

In this study, some of the new exact solutions are secured from the DSW equation by applying
S(¢)-expansion method. Hence, the studied scheme is a useful and outspoken computational
scheme that provides outstanding results. Furthermore, the studied process is significantly di-
minishing the size of the computational work. Finally, we investigated its geometrical charac-
teristics by solving Mean curvature and Gaussian curvature for these surfaces from the DSW
equation. As for these methods could be useful for future research.
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