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Abstract We show that invariant submanifolds of Kenmotsu manifolds are totally geodesic.
When the second fundamental form σ is 2-semiparallel, pseudoparallel, 2-pseudoparallel, Ricci-
generalized pseudoparallel, 2-Ricci-generalized pseudoparallel and establish their equivalence.
Further examples are given.

1 Introduction

In 1972, K. Kenmotsu [5] studied a class of contact Riemannian manifolds called Kenmotsu
manifolds, which is not Sasakian. In fact Kenmotsu proved that a locally Kenmotsu manifold
is a warped product I ×f N of an interval I and a Kahlerian manifold with a warping function
f(t) = set, where s is a non-zero constant. Hyperbolic space is an example of Kenmotsu
manifold.

The study of the geometry of invariant submanifolds of Kenmotsu manifolds is carried out
by V.S. Prasad and C.S. Bagewadi [5], Recently A.A. Shaikh, Y. Matsuyama and S.K. Hui
[20] studied on invariant submanifolds of (LCS)n-manifolds and S.K. Hui, S. Uddin, A.H.
Alkhaldi and P. Mandal [11] have studied on Invariant submanifolds of generalized Sasakian-
space-forms. S. Sular and C. Ozgur [21] and M. Kobayashi [12]. The author [12] has shown
that the submanifold M of a Kenmotsu manifold M̃ has parallel second fundamental form if and
only if M is totally geodesic. The authors [5] have shown the equivalence of totally geodesicity
of M , parallelism and semiparallelism of the second fundamental form σ. Also they have shown
that invariant submanifold M of Kenmotsu manifold M̃ carries Kenmotsu structure and K ≤ K̃,
where K, K̃ are sectional curvature of M and M̃ respectively and equality holds if M is totally
geodesic. Further the authors [21] have shown the equivalence of totally geodesicity of M ,
recurrency of σ, parallelism of third fundamental form on M and generalized 2-recurrency of σ.
In this paper we show that invariant submanifolds of Kenmotsu manifolds are totally geodesic
when the second fundamental form σ is 2-semiparallel, pseudoparallel, 2-pseudoparallel, Ricci-
generalized pseudoparallel, 2-Ricci-generalized pseudoparallel and establish their equivalence.

2 Basic Concepts

The covariant differential of the pth order, p ≥ 1 of a (0, k)-tensor field T , k ≥ 1 denoted by
∇pT , defined on a Riemannian manifold (M, g) with the Levi-Civita connection ∇. The tensor
T is said to be recurrent [22], if the following condition holds on M :

(∇T )(X1, ..., Xk;X)T (Y1, ..., Yk) = (∇T )(Y1, ..., Yk;X)T (X1, ..., Xk) (2.1)

respectively.

(∇2T )(X1, ..., Xk;X,Y )T (Y1, ..., Yk) = (∇2T )(Y1, ..., Yk;X,Y )T (X1, ..., Xk),

where X,Y,X1, Y1, ..., Xk, Yk ∈ TM . From (2.1) it follows that at a point x ∈ M , if the tensor
T is non-zero, then there exists a unique 1-form φ respectively, a (0, 2)-tensor ψ, defined on a
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neighborhood U of x such that

∇T = T ⊗ φ, φ = d(log ‖T‖) (2.2)

respectively.

∇2T = T ⊗ ψ, (2.3)

holds on U , where ‖T‖ denotes the norm of T and ‖T‖2 = g(T, T ). The tensor T is said to be
generalized 2-recurrent if

((∇2T )(X1, ..., Xk;X,Y )− (∇T ⊗ φ)(X1, ..., Xk;X,Y ))T (Y1, ..., Yk)

= ((∇2T )(Y1, ..., Yk;X,Y )− (∇T ⊗ φ)(Y1, ..., Yk;X,Y ))T (X1, ..., Xk),

holds on M , where φ is a 1-form on M . From this it follows that at a point x ∈ M if the tensor
T is non-zero, then there exists a unique (0, 2)-tensor ψ, defined on a neighborhood U of x, such
that

∇2T = ∇T ⊗ φ+ T ⊗ ψ, (2.4)

holds on U .
Let f : (M, g) → (M̃, g̃) be an isometric immersion from an n-dimensional Riemannian mani-
fold (M, g) into (n+ d)-dimensional Riemannian manifold (M̃, g̃), n ≥ 2, d ≥ 1. We denote by
∇ and ∇̃ as Levi-Civita connection of Mn and M̃n+d respectively. Then the formulas of Gauss
and Weingarten are given by

∇̃XY = ∇XY + σ(X,Y ), (2.5)

∇̃XN = −ANX +∇⊥XN, (2.6)

for any tangent vector fields X,Y and the normal vector field N on M , where σ, A and ∇⊥ are
the second fundamental form, the shape operator and the normal connection respectively. If the
second fundamental form σ is identically zero then the manifold is said to be totally geodesic.
The second fundamental form σ and AN are related by

g̃(σ(X,Y ), N) = g(ANX,Y ),

for tangent vector fields X,Y . The first and second covariant derivatives of the second funda-
mental form σ are given by

(∇̃Xσ)(Y,Z) = ∇⊥X(σ(Y,Z))− σ(∇XY,Z)− σ(Y,∇XZ), (2.7)

(∇̃2σ)(Z,W,X, Y ) = (∇̃X∇̃Y σ)(Z,W ), (2.8)

= ∇⊥X((∇̃Y σ)(Z,W ))− (∇̃Y σ)(∇XZ,W )

−(∇̃Xσ)(Z,∇YW )− (∇̃∇XY σ)(Z,W )

respectively, where ∇̃ is called the van der Waerden-Bortolotti connection of M [7]. If ∇̃σ = 0,
then M is said to have parallel second fundamental form [7]. We next define endomorphisms
R(X,Y ) and X ∧B Y of χ(M) by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

(X ∧B Y )Z = B(Y,Z)X −B(X,Z)Y (2.9)

respectively. where X,Y, Z ∈ χ(M) and B is a symmetric (0, 2)-tensor.
Now, for a (0, k)-tensor field T , k ≥ 1 and a (0, 2)-tensor field B on (M, g), we define the

tensor Q(B, T ) by

Q(B, T )(X1, ..., Xk;X,Y ) = −(T (X ∧B Y )X1, ..., Xk) (2.10)

− · · · −T (X1, ..., Xk−1(X ∧B Y )Xk).

Putting into the above formula T = σ, ∇̃σ and B = g, B = S, we obtain the tensors Q(g, σ),
Q(S, σ), Q(g, ∇̃σ) and Q(S, ∇̃σ).



410 B.S. Anitha and C.S. Bagewadi

Definition 2.1. An immersion is said to be semiparallel [8], 2-semiparallel [17], pseudoparallel
[3], 2-pseudoparallel [17] and Ricci-generalized pseudoparallel [15] respectively if the following
conditions hold for all vector fields X,Y tangent to M

R̃ · σ = 0, (2.11)

R̃ · ∇̃σ = 0, (2.12)

R̃ · σ = L1Q(g, σ), (2.13)

R̃ · ∇̃σ = L1Q(g, ∇̃σ) and (2.14)

R̃ · σ = L2Q(S, σ), (2.15)

where R̃ denotes the curvature tensor with respect to connection ∇̃. Now we introduce the
definition of 2-Ricci-generalized pseudoparallel.

Definition 2.2. An immersion is said to be 2-Ricci-generalized pseudoparallel if

R̃ · ∇̃σ = L2Q(S, ∇̃σ). (2.16)

Here L1 and L2 are functions depending on σ and ∇̃σ. From the Gauss and Weingarten
formulas, we obtain

(R̃(X,Y )Z)T = R(X,Y )Z +Aσ(X,Z)
Y −Aσ(Y,Z)

X. (2.17)

By (2.11), we have

(R̃(X,Y ) · σ)(U, V ) = R⊥(X,Y )σ(U, V )− σ(R(X,Y )U, V ) (2.18)

−σ(U,R(X,Y )V ),

for all vector fields X,Y, U and V tangent to M , where

R⊥(X,Y ) = [∇⊥X ,∇⊥Y ]−∇⊥[X,Y ]. (2.19)

Similarly, we have

(R̃(X,Y ) · ∇̃σ)(U, V,W ) = R⊥(X,Y )(∇̃σ)(U, V,W ) (2.20)

−(∇̃σ)(R(X,Y )U, V,W )− (∇̃σ)(U,R(X,Y )V,W )− (∇̃σ)(U, V,R(X,Y )W ),

for all vector fields X,Y, U, V,W tangent to M , where (∇̃σ)(U, V,W ) = (∇̃Uσ)(V,W ) [2].

3 Preliminaries

Let M̃ be a (2n + 1)-dimensional almost contact metric manifold with structure (φ, ξ, η, g),
where φ is a tensor field of type (1, 1), ξ is a vector field, η is a 1-form and g is the Riemannian
metric satisfying

φ2 = −I + η ⊗ ξ, η(ξ) = 1, η ◦ φ = 0, φξ = 0, (3.1)

g(φX, φY ) = g(X,Y )− η(X)η(Y ), g(X, ξ) = η(X), (3.2)

for all vector fields X,Y on M . If

(∇Xφ)Y = g(φX, Y )ξ − η(Y )φX, (3.3)

∇Xξ = X − η(X)ξ, (3.4)

where ∇ denotes the Riemannian connection of g, then (M,φ, ξ, η, g) is called an almost Ken-
motsu manifold [4].
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Example of Kenmotsu manifold: Consider the 3-dimensional manifoldM =
{
(x, y, z)εR3; z 6= 0

}
.

Let (E1, E2, E3) be linearly independent vectors are given by

E1 = z
∂

∂x
, E2 = z

∂

∂y
, E3 = −z

∂

∂z
.

Let g be the Riemannian metric defined by

g(Ei, Ej) = δij =

{
1 if i = j

0 if i 6= j

and is given by

g =
1
z2 (dx

2 + dy2 + dz3).

(φ, ξ, η) is given by ξ = E3 = −z ∂
∂z , η = − 1

zdz and φE1 = −E2, φE2 = E1, φE3 = 0.
The above (φ, ξ, η, g) satisfies

(∇Xφ)Y = g(φX, Y )ξ − η(Y )φX.

Hence (φ, ξ, η, g) is a Kenmotsu structure for C∗ ×R.
In Kenmotsu manifolds the following relations hold [4]:

R(X,Y )Z = {g(X,Z)Y − g(Y,Z)X} , (3.5)

R(X,Y )ξ = {η(X)Y − η(Y )X} , (3.6)

R(ξ,X)Y = {η(Y )X − g(X,Y )ξ} , (3.7)

R(ξ,X)ξ = {X − η(X)ξ} , (3.8)

S(X, ξ) = −(n− 1)η(X), (3.9)

Qξ = −(n− 1)ξ. (3.10)

A submanifold M of a Kenmotsu manifold M̃ is called an invariant submanifold of M̃ , if for
each x ∈ M , φ(TxM) ⊂ TxM . As a consequence, ξ becomes tangent to M . In an invariant
submanifold of a Kenmotsu manifold

σ(X, ξ) = 0, (3.11)

for any vector X tangent to M .

4 2-semiparallel, pseudoparallel, 2-pseudoparallel, Ricci-generalized
pseudoparallel and 2-Ricci-generalized pseudoparallel Invariant
submanifolds of Kenmotsu manifolds

We consider invariant submanifolds of Kenmotsu manifolds satisfying the conditions R̃·∇̃σ = 0,
R̃ · σ = L1Q(g, σ), R̃ · ∇̃σ = L1Q(g, ∇̃σ) R̃ · σ = L2Q(S, σ) and R̃ · ∇̃σ = L2Q(S, ∇̃σ).

Theorem 4.1. Let M be an invariant submanifold of a Kenmotsu manifold M̃ . Then M is 2-
semiparallel if and only if it is totally geodesic.

Proof. Let M be 2-semiparallel R̃ · ∇̃σ = 0. Put X = V = ξ in (2.20), we get the relation

R⊥(ξ, Y )(∇̃σ)(U, ξ,W )− (∇̃σ)(R(ξ, Y )U, ξ,W )− (∇̃σ)(U,R(ξ, Y )ξ,W ) (4.1)

−(∇̃σ)(U, ξ,R(ξ, Y )W ) = 0.
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In view of (2.7), (3.4), (3.7), (3.8) and (3.11), we have the following equalities:

(∇̃σ)(U, ξ,W ) = (∇̃Uσ)(ξ,W ), (4.2)

= ∇⊥Uσ(ξ,W )− σ (∇Uξ,W )− σ (ξ,∇UW ) ,

= −σ(U,W ),

(∇̃σ)(R(ξ, Y )U, ξ,W ) = (∇̃R(ξ,Y )Uσ)(ξ,W ), (4.3)

= ∇⊥R(ξ,Y )Uσ(ξ,W )− σ(∇R(ξ,Y )Uξ,W )− σ(ξ,∇R(ξ,Y )UW ),

= −η(U)σ(Y,W ),

(∇̃σ)(U,R(ξ, Y )ξ,W ) = (∇̃Uσ)(R(ξ, Y )ξ,W ), (4.4)

= ∇⊥Uσ(R(ξ, Y )ξ,W )− σ(∇UR(ξ, Y )ξ,W )− σ(R(ξ, Y )ξ,∇UW ),

= ∇⊥Uσ ({Y − η(Y )ξ} ,W )− σ (∇U {Y − η(Y )ξ} ,W )

−σ(Y,∇UW )

and

(∇̃σ)(U, ξ,R(ξ, Y )W ) = (∇̃Uσ)(ξ,R(ξ, Y )W ), (4.5)

= ∇⊥Uσ(ξ,R(ξ, Y )W )− σ(∇Uξ,R(ξ, Y )W )− σ(ξ,∇UR(ξ, Y )W ),

= −η(W )σ(U, Y ).

Substituting (4.2)− (4.5) into (4.1), we obtain

−R⊥(ξ, Y )σ(U,W ) + η(U)σ(Y,W )−∇⊥Uσ ({Y − η(Y )ξ} ,W ) (4.6)

+σ (∇U {Y − η(Y )ξ} ,W ) + σ(Y,∇UW ) + η(W )σ(U, Y ) = 0.

Replacing W by ξ and using (3.4), (3.11) in (4.6), we get σ(U, Y ) = 0. The converse statement
is trivial. This proves the theorem.

Theorem 4.2. Let M be an invariant submanifold of a Kenmotsu manifold M̃ . Then M is pseu-
doparallel if and only if it is totally geodesic.

Proof. Let M be pseudoparallel R̃ · σ = L1Q(g, σ). Setting X = V = ξ in (2.10), (2.18) and
adding, it becomes

R⊥(ξ, Y )σ(U, ξ)− σ(R(ξ, Y )U, ξ)− σ(U,R(ξ, Y )ξ) = −L1 {g(ξ, ξ)σ(U, Y ) (4.7)

− g(ξ, U)σ(ξ, Y ) + g(ξ, Y )σ(ξ, U)− g(Y,U)σ(ξ, ξ)} .

With the help of equations (3.1), (3.8) and (3.11) in (4.7), we obtain σ(U, Y ) = 0 and if L1 6= 1.
The converse statement is trivial and thus we can state the above theorem.

Theorem 4.3. Let M be an invariant submanifold of a Kenmotsu manifold M̃ . Then M is 2-
pseudoparallel if and only if it is totally geodesic.

Proof. Let M be 2-pseudoparallel R̃ · ∇̃σ = L1Q(g, ∇̃σ). Putting X = V = ξ in (2.10), (2.20)
and adding, by view of (3.1) and (3.11), takes the form

R⊥(ξ, Y )(∇̃σ)(U, ξ,W )− (∇̃σ)(R(ξ, Y )U, ξ,W )− (∇̃σ)(U,R(ξ, Y )ξ,W ) (4.8)

−(∇̃σ)(U, ξ,R(ξ, Y )W ) = −L1[η(W )
{
∇⊥ξ σ(Y, U)− σ(∇ξY, U)− σ(Y,∇ξU)

}
−∇⊥Wσ(Y,U) + σ(∇WY, U) + σ(Y,∇WU)− η(Y )

{
∇⊥ξ σ(W,U)− σ(∇ξW,U)

−σ(W,∇ξU)} − η(U)
{
∇⊥ξ σ(Y,W )− σ(∇ξY,W )− σ(Y,∇ξW )

}
].
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Applying (4.2)− (4.5) into (4.8) reduces to

−R⊥(ξ, Y )σ(U,W ) + η(U)σ(Y,W )−∇⊥Uσ ({Y − η(Y )ξ} ,W ) (4.9)

+σ (∇U {Y − η(Y )ξ} ,W ) + σ(Y,∇UW ) + η(W )σ(U, Y )

= −L1[η(W )
{
∇⊥ξ σ(Y,U)− σ(∇ξY,U)− σ(Y,∇ξU)

}
−∇⊥Wσ(Y,U)

+σ(∇WY,U) + σ(Y,∇WU)− η(Y )
{
∇⊥ξ σ(W,U)− σ(∇ξW,U)

−σ(W,∇ξU)} − η(U)
{
∇⊥ξ σ(Y,W )− σ(∇ξY,W )− σ(Y,∇ξW )

}
].

Which, by W = ξ and using (3.4), (3.11) in (4.9), we procure σ(U, Y ) = 0 and the converse
statement is trivial. In view of above discussions we can state the above theorem.

Theorem 4.4. Let M be an invariant submanifold of a Kenmotsu manifold M̃ . Then M is Ricci-
generalized pseudoparallel if and only if it is totally geodesic.

Proof. Let M be Ricci-generalized pseudoparallel R̃ · σ = L2Q(S, σ). If we choose X = ξ and
V = ξ in (2.10), (2.18) and adding, turns to

R⊥(ξ, Y )σ(U, ξ)− σ(R(ξ, Y )U, ξ)− σ(U,R(ξ, Y )ξ) = −L2 {S(ξ, ξ)σ(U, Y ) (4.10)

− S(ξ, U)σ(ξ, Y ) + S(ξ, Y )σ(ξ, U)− S(Y,U)σ(ξ, ξ)} .

Making use of (3.8), (3.9) and (3.11) in (4.10), we get σ(U, Y ) = 0 and if L2 6= −1
(n−1) . The

converse statement is trivial.

Theorem 4.5. Let M be an invariant submanifold of a Kenmotsu manifold M̃ . Then M is 2-
Ricci-generalized pseudoparallel if and only if it is totally geodesic.

Proof. Let M be 2-Ricci-generalized pseudoparallel R̃ · ∇̃σ = L2Q(S, ∇̃σ). Changing X and
V with ξ in (2.10), (2.20) and adding, which in view of (3.9) and (3.11), it follows that

R⊥(ξ, Y )(∇̃σ)(U, ξ,W )− (∇̃σ)(R(ξ, Y )U, ξ,W )− (∇̃σ)(U,R(ξ, Y )ξ,W ) (4.11)

−(∇̃σ)(U, ξ,R(ξ, Y )W ) = −L2[−(n− 1)η(W )
{
∇⊥ξ σ(Y,U)− σ(∇ξY,U)

−σ(Y,∇ξU)}+ (n− 1)
{
∇⊥Wσ(Y, U)− σ(∇WY,U)− σ(Y,∇WU)

}
+(n− 1)η(Y )

{
∇⊥ξ σ(W,U)− σ(∇ξW,U)− σ(W,∇ξU)

}
+(n− 1)η(U)

{
∇⊥ξ σ(Y,W )− σ(∇ξY,W )− σ(Y,∇ξW )

}
].

Taking (4.2), (4.3), (4.4) and (4.5) into (4.11), we obtain by some calculation

−R⊥(ξ, Y )σ(U,W ) + η(U)σ(Y,W )−∇⊥Uσ ({Y − η(Y )ξ} ,W ) (4.12)

+σ (∇U {Y − η(Y )ξ} ,W ) + σ(Y,∇UW ) + η(W )σ(U, Y )

= −L2[−(n− 1)η(W )
{
∇⊥ξ σ(Y,U)− σ(∇ξY, U)− σ(Y,∇ξU)

}
+(n− 1)

{
∇⊥Wσ(Y,U)− σ(∇WY, U)− σ(Y,∇WU)

}
+(n− 1)η(Y )

{
∇⊥ξ σ(W,U)− σ(∇ξW,U)− σ(W,∇ξU)

}
+(n− 1)η(U)

{
∇⊥ξ σ(Y,W )− σ(∇ξY,W )− σ(Y,∇ξW )

}
].

If one substituesW = ξ and fetching equations (3.4), (3.11) in (4.12), we find that σ(U, Y ) = 0.
The converse statement is trivial. Hence we state the above theorem.

Combining all the above results and the results of [5, 12, 21], we have the following:

Corollary 4.6. Let M be an invariant submanifold of a Kenmotsu manifold M̃ . Then the follow-
ing statements are equivalent:

(i) σ is parallel;
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(ii) σ is recurrent;

(iii) M has parallel third fundamental form;

(iv) σ is generalized 2-recurrent;

(v) M is semiparallel;

(vi) M is 2-semiparallel;

(vii) M is pseudoparallel and if L1 6= 1;

(viii) M is 2 pseudoparallel;

(ix) M is Ricci-generalized pseudoparallel and if L2 6= −1
(n−1) ;

(x) M is 2-Ricci-generalized pseudoparallel;

(xi) K = K̃;

(xii) M is totally geodesic.
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