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Abstract We show that invariant submanifolds of Kenmotsu manifolds are totally geodesic.
When the second fundamental form o is 2-semiparallel, pseudoparallel, 2-pseudoparallel, Ricci-
generalized pseudoparallel, 2-Ricci-generalized pseudoparallel and establish their equivalence.
Further examples are given.

1 Introduction

In 1972, K. Kenmotsu [5] studied a class of contact Riemannian manifolds called Kenmotsu
manifolds, which is not Sasakian. In fact Kenmotsu proved that a locally Kenmotsu manifold
is a warped product I x y IV of an interval I and a Kahlerian manifold with a warping function
f(t) = set, where s is a non-zero constant. Hyperbolic space is an example of Kenmotsu
manifold.

The study of the geometry of invariant submanifolds of Kenmotsu manifolds is carried out
by V.S. Prasad and C.S. Bagewadi [5], Recently A.A. Shaikh, Y. Matsuyama and S.K. Hui
[20] studied on invariant submanifolds of (LCS),-manifolds and S.K. Hui, S. Uddin, A.H.
Alkhaldi and P. Mandal [11] have studied on Invariant submanifolds of generalized Sasakian-
space-forms. S. Sular and C. Ozgur [21] and M. Kobayashi [12]. The author [12] has shown
that the submanifold M of a Kenmotsu manifold M has parallel second fundamental form if and
only if M is totally geodesic. The authors [5] have shown the equivalence of totally geodesicity
of M, parallelism and semiparallelism of the second fundamental form o. Also they have shown
that invariant submanifold M of Kenmotsu manifold M carries Kenmotsu structure and K < K ,
where K, K are sectional curvature of M and M respectively and equality holds if M is totally
geodesic. Further the authors [21] have shown the equivalence of totally geodesicity of M,
recurrency of o, parallelism of third fundamental form on M and generalized 2-recurrency of o.
In this paper we show that invariant submanifolds of Kenmotsu manifolds are totally geodesic
when the second fundamental form ¢ is 2-semiparallel, pseudoparallel, 2-pseudoparallel, Ricci-
generalized pseudoparallel, 2-Ricci-generalized pseudoparallel and establish their equivalence.

2 Basic Concepts

The covariant differential of the pth order, p > 1 of a (0, k)-tensor field T, k& > 1 denoted by
VPT, defined on a Riemannian manifold (), g) with the Levi-Civita connection V. The tensor
T is said to be recurrent [22], if the following condition holds on M:

(VT) (X1, oo, Xis X)T(Y, ., Vi) = (V) (Y1, o, Yis X)T( X, oo, Xi) (2.1)
respectively.
(V2T) (X1, oo, Xy X, Y)T(Y1, .., Y3) = (V2T)(Y1, ., Yis X, Y)T( X, 0y X,

where XY, X1, Y1, ..., Xx,Yr € TM. From (2.1) it follows that at a point z € M, if the tensor
T is non-zero, then there exists a unique 1-form ¢ respectively, a (0, 2)-tensor v, defined on a
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neighborhood U of z such that
VT =T®¢, ¢=d(log|T|) 2.2)
respectively.
VT =T ®1, (2.3)

holds on U, where ||T| denotes the norm of 7' and ||T'||> = g(T,T). The tensor T is said to be
generalized 2-recurrent if

(V*T) (X1, oo, Xis X,Y) = (VT @ ¢) (X1, o0 Xis X, Y)T (Y1, 0, Vi)
= ((V*T)(Y1, ... Yis X, Y) = (VT @ $) (Y1, ..., Vis X, YN T(X1, ..., Xp.),

holds on M, where ¢ is a 1-form on M. From this it follows that at a point © € M if the tensor
T is non-zero, then there exists a unique (0, 2)-tensor 1, defined on a neighborhood U of z, such
that

VT =VT@¢+T R, (2.4)

holds on U.
Let f : (M,g) — (M,g) be an isometric immersion from an n-dimensional Riemannian mani-

fold (M, g) into (n + d)-dimensional Riemannian manifold (M, §), n > 2, d > 1. We denote by

V and V as Levi-Civita connection of M™ and M"+d respectively. Then the formulas of Gauss
and Weingarten are given by

VxY = VxY+0o(X,Y), (2.5)
VxN = —AnX+ V%N, (2.6)

for any tangent vector fields X, Y and the normal vector field N on M, where o, A and V+ are
the second fundamental form, the shape operator and the normal connection respectively. If the
second fundamental form o is identically zero then the manifold is said to be totally geodesic.
The second fundamental form o and Ay are related by

g(g(Xv Y)’N) = g(ANXa Y)7

for tangent vector fields X, Y. The first and second covariant derivatives of the second funda-
mental form o are given by

(Vxo)(Y,Z) = Vi(o(Y,2)) - a(VxY,2) - o(Y,Vx2), Q.7)
(V26)(Z,W,X,Y) = (VxVyo)(Z,W), (2.8)
= Vx((Vyo)(Z,W)) = (Vyo)(VxZ,W)
—(Vx0)(Z,VyW) = (Vv yo)(Z, W)

respectively, where V is called the van der Waerden-Bortolotti connection of M [7]. If Vo = 0,
then M is said to have parallel second fundamental form [7]. We next define endomorphisms
R(X,Y)and X Ap Y of x(M) by
R(X,Y)Z — VXVYZ—VYVXZ—V[X’}/]Z,
(XApY)Z = B(Y,Z)X - B(X,2)Y 2.9)
respectively. where X, Y, Z € x(M) and B is a symmetric (0, 2)-tensor.

Now, for a (0, k)-tensor field T', k¥ > 1 and a (0, 2)-tensor field B on (M, g), we define the
tensor Q(B,T) by

QB,T) (X1, X X,Y) = —(T(X Ap Y)X1,.s X3) (2.10)
— o =T(Xy, o, Xt (X ABY) X))

Putting into the above formula 7" = o, Vo and B = g, B = S, we obtain the tensors Q(g, o),
Q(S,0), Q(g, Vo) and Q(S, Vo).
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Definition 2.1. An immersion is said to be semiparallel [8], 2-semiparallel [17], pseudoparallel
[3], 2-pseudoparallel [ 17] and Ricci-generalized pseudoparallel [15] respectively if the following
conditions hold for all vector fields X, Y tangent to M

R-c = 0, (2.11)
R-Vo = 0, (2.12)
R-c = LiQ(g,0), (2.13)
R-Vo = LiQ(g,Vo) and (2.14)
R-c = IL,Q(S,0), (2.15)

where R denotes the curvature tensor with respect to connection V. Now we introduce the
definition of 2-Ricci-generalized pseudoparallel.

Definition 2.2. An immersion is said to be 2-Ricci-generalized pseudoparallel if
R-Vo = L,Q(5, Vo). (2.16)

Here L, and L, are functions depending on ¢ and Vo. From the Gauss and Weingarten
formulas, we obtain

(RX,Y)2)T = R(X,Y)Z + Ag, )Y — Agy , X. (2.17)

(Y, 2)

By (2.11), we have

(R(X,Y)-0)(U,V) = R*X,Y)o(U,V)-o(R(X,Y)U,V) (2.18)
—o(U,R(X,Y)V),

for all vector fields X,Y, U and V tangent to M, where
RH(X,Y) = [Vx, Vy] = Vix y;- (2.19)
Similarly, we have
(R(X,Y)-Vo)(U,V,W) = R*(X,Y)(Vo)(U,V, W) (2.20)
~(Vo)(R(X,Y)U,V,W) = (Vo)(U, R(X,Y)V,W) - (Vo) (U, V. R(X,Y)W),

for all vector fields X, Y, U, V, W tangent to M, where (Vo )(U,V, W) = (Vyo)(V, W) [2].

3 Preliminaries

Let M be a (2n + 1)-dimensional almost contact metric manifold with structure (¢, £, 7, g),
where ¢ is a tensor field of type (1, 1), £ is a vector field, 7 is a 1-form and g is the Riemannian
metric satisfying

¢ = —I+n@& nE) =1, nod=0, ¢£=0, (3.1)

for all vector fields X, Y on M. If
(Vxo)Y = g(¢X,Y){—n(Y)oX, (3.3)
Vx§ = X —n(X)E, (3.4)

where V denotes the Riemannian connection of g, then (M, ¢, £, 7, g) is called an almost Ken-
motsu manifold [4].
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Example of Kenmotsu manifold: Consider the 3-dimensional manifold M = {(x, y,2)eR3; 2 # 0}.
Let (E), E,, Ej3) be linearly independent vectors are given by

0 0 0
El —Z%, Ez*ziy’ E3——Z&

Let g be the Riemannian metric defined by

1 ifi=j
B By)=6;=1{
9(Ei By) = 0y {0 if i
and is given by

1
g= ;(dmz + dy* + d2°).

(6,€,m) is givenby & = B3y = —2 7, 1) = —1dz and ¢E| = — B, 9F» = Ey, ¢E3 = 0.
The above (¢, &,n, g) satisfies

(Vx9)Y = g(¢X,Y)E —n(Y)pX.

Hence (¢, £, 7, g) is a Kenmotsu structure for C* x R.
In Kenmotsu manifolds the following relations hold [4]:

R(X,Y)Z = {9(X,2)Y —g(Y,2)X}, (3.5)
RX,Y)S = {n(X)Y —n(Y)X}, (3.6)
R(EX)Y = {n(Y)X —g(X,Y)¢}, (3.7
R(§X)E = {X —n(X)¢}, (3.8)
S(X,8) = —(n—1n(X), (3.9)
Q¢ = —(n—1)¢. (3.10)

A submanifold M of a Kenmotsu manifold M is called an invariant submanifold of M. , if for
eachx € M, ¢(T, M) C T, M. As a consequence, £ becomes tangent to M. In an invariant
submanifold of a Kenmotsu manifold

7(X,€) =0, (3.11)

for any vector X tangent to M.

4 2-semiparallel, pseudoparallel, 2-pseudoparallel, Ricci-generalized
pseudoparallel and 2-Ricci-generalized pseudoparallel Invariant
submanifolds of Kenmotsu manifolds

We consider invariant submanifolds of Kenmotsu manifolds satisfying the conditions Jt%:%a =0,
R-0=L1Q(g,0), R-Vo=L1Q(g,Vo) R-c = L,Q(S,0) and R- Vo = L,Q(S, Vo).

Theorem 4.1. Let M be an invariant submanifold of a Kenmotsu manifold M. Then M is 2-
semiparallel if and only if it is totally geodesic.

Proof. Let M be 2-semiparallel R - Vo = 0. Put X = V = ¢ in (2.20), we get the relation

RY(&,Y) (Vo) (U, £, W) — (Vo) (R(,Y)U,&, W) — (Vo) (U, R(§,Y)E, W) (4.1)
~(Vo)(U,& R(&,Y)W) =0.
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In view of (2.7), (3.4), (3.7), (3.8) and (3.11), we have the following equalities:

(Vo)(U,&, W) = (Vyo) (&, W), (4.2)
=V§o(&E,W) — o (Vu&, W) — o (6, VyW),
= _U(U’ W)a
(Vo) (R(&Y)U,E,W) = (Ve yyoo) (&, W), (4.3)
= Ve yiwo (& W) = o(Vreywé W) — o6, Ve W),
=-—n(U)a(Y,W),

(Vo) (U, R(£,Y)E, W) = (Vyo)(R(E,Y)E, W), (4.4)

= Vio(R(EY)EW) — o(VuR(EY)EW) — o(R(E,Y)E, VW),
= Vo ({Y —=n(Y)&}, W) —o (Vo {Y —n(Y)&}, W)

—o(Y,VyW)

and
(Vo) (U, & R(&,Y)W) = (Vuo)(& R(E,Y)W), 4.5)
= Vio(& R(EYI)W) —a(Vué, R(E,Y)W) —o(&, Vo R(E, Y)W),
=-n(W)o(U,Y).

Substituting (4.2) — (4.5) into (4.1), we obtain

—RYEY)o(UW) + (U)o (Y, W) = Vo ({Y —n(Y)E}, W) (4.6)
+o (Vul{Y —=n(Y)E W) +o(Y, VuW) +n(W)a(U,Y) = 0.

Replacing W by ¢ and using (3.4), (3.11) in (4.6), we get o(U,Y") = 0. The converse statement
is trivial. This proves the theorem. O

Theorem 4.2. Let M be an invariant submanifold of a Kenmotsu manifold M. Then M is pseu-
doparallel if and only if it is totally geodesic.

Proof. Let M be pseudoparallel R - o = L;Q(g,0). Setting X = V = ¢ in (2.10), (2.18) and
adding, it becomes
R(&,Y)o(U,€) = o(R(&,Y)U,€) = o (U, R(&,Y)) = ~Li {g(§, o (U Y)  (4.7)
—9(&U)a(&,Y) +9(&,Y)o(§,U) —g(Y, U)o (£, €)} -

With the help of equations (3.1), (3.8) and (3.11) in (4.7), we obtain o(U,Y) = O and if Ly # 1.
The converse statement is trivial and thus we can state the above theorem. m|

Theorem 4.3. Let M be an invariant submanifold of a Kenmotsu manifold M. Then M is 2-
pseudoparallel if and only if it is totally geodesic.

Proof. Let M be 2-pseudoparallel R - Vo = LiQ(g, Vo). Putting X = V = ¢ in (2.10), (2.20)
and adding, by view of (3.1) and (3.11), takes the form
R(EY)(Vo)(U.&W) = (Vo) (R(EY)U.EW) = (Vo) (U, R(EY)E W) (48)
~(Vo)(U.& R(&,Y)W) = —Liln(W) {VEo(Y,U) = 0(VeY,U) — o (Y, VeU)}
~Viypo(Y,U) +o(VwY,U) +o(Y,ViwU) = n(Y) {VEa(W.U) = o(VeW. U)
—o(W,VeU)} = n(U) {Vgo (Y, W) = a(VeY, W) — o (Y, VW) }].
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Applying (4.2) — (4.5) into (4.8) reduces to
—RH(&Y)o (U W) + (U)o (Y, W) = Vo ({Y = n(Y)E}, W) (4.9)
+o (Vu {Y -nY )5} W)+ oY, VuW) +n(W)o(U,Y)
= —Lilp(W) {Vga(Y,U) = o(VeY,U) = o(Y,VeU)} = Vigo(Y,U)
+U(VWY7 U)+a(Y, VWU) —n(Y){Veo(W,U) — o(V:W,U)
—a(W,VeU)} = n(U) {VEa(Y,W) — o(VeY, W) — o(Y, VW) }.

Which, by W = ¢ and using (3.4), (3.11) in (4.9), we procure o(U,Y’) = 0 and the converse
statement is trivial. In view of above discussions we can state the above theorem. O

Theorem 4.4. Let M be an invariant submanifold of a Kenmotsu manifold M. Then M is Ricci-
generalized pseudoparallel if and only if it is totally geodesic.

Proof. Let M be Ricci-generalized pseudoparallel R - o = Ly,Q(S, o). If we choose X = ¢ and
V = ¢in (2.10), (2.18) and adding, turns to
RL (g? Y)U(U7 f) - U(R(€7 Y)U7 f) - U(U7 R(&a Y)f) =—IL, {S(f, g)U(U? Y) (410)
- S(gv U)U(€7 Y) + 5(57 Y)U(fv U) - S(Ya U)J(f,é)} :

Making use of (3.8), (3.9) and (3.11) in (4.10), we get o(U,Y) =
converse statement is trivial. O

Theorem 4.5. Let M be an invariant submanifold of a Kenmotsu manifold M. Then M is 2-
Ricci-generalized pseudoparallel if and only if it is totally geodesic.

Proof. Let M be 2-Ricci-generalized pseudoparallel R-Vo = LQ(S, %U). Changing X and
V with £ in (2.10), (2.20) and adding, which in view of (3.9) and (3.11), it follows that

RY(&,Y) (Vo) (U, &, W) = (Vo) (R(E, YU, s W) — (Vo) (U, R(&, )&, W) (4.11)
~(Vo)(U,&, R(E,Y)W) = —Lo[~(n — 1)n(W) {VEo(Y,U) — o(VY,U)

—o(Y, ng)} + (n—1){Vyo(Y,U) - J(VWY, U)—o(Y,VwU)}

+(n = )n(Y) {VEa(W,U) — o(VeW,U) — o(W,VeU) }
+(n = (V) {VEa(Y, W) = o(VeV, W) — oY, VW) )]

Taking (4.2), (4.3), (4.4) and (4.5) into (4.11), we obtain by some calculation

—RH(EY)o(UW) + (U)o (Y, W) = Vo ({Y = n(Y)E}, W) (4.12)
+o (Vo {Y —n(Y )5} W)+ o (Y, Vo W) +n(W)o(U,Y)

= —Ly[-(n = 1)n(W) {Veo(Y,U) — 0(VcY,U) = o(Y,VeU)}

+(n—1) {v YU)—U(VWY U)—o(Y,VwU)}

+(n = 1Y) {Veo(W,U) = o(VeW,U) — o(W, VeU) }

+(n = )n(U){V¢o YW) o(VeY, W) —o(Y, VW) ).

If one substitues W = ¢ and fetching equations (3.4), (3.11) in (4.12), we find that o (U,Y) = 0.
The converse statement is trivial. Hence we state the above theorem. O

Combining all the above results and the results of [5, 12, 21], we have the following:

Corollary 4.6. Let M be an invariant submanifold of a Kenmotsu manifold M. Then the Sfollow-
ing statements are equivalent:

(i) o is parallel;
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(ii) o is recurrent;

(iii) M has parallel third fundamental form;

(iv) o is generalized 2-recurrent;

(v) M is semiparallel;

(vi) M is 2-semiparallel;
(vii) M is pseudoparallel and if Ly # 1;

(viii) M is 2 pseudoparallel;

(ix) M is Ricci-generalized pseudoparallel and if Ly # ﬁ;

(x) M is 2-Ricci-generalized pseudoparallel;
(xi) K = K;

(xii) M is totally geodesic.
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