ON SOME INVARIANT SUBMANIFOLDS OF KENMOTSU MANIFOLDS

B.S. Anitha and C.S. Bagewadi

Communicated by Zafar Ahsan

MSC 2010 Classifications: Primary 53D15, 53C21; Secondary 53C25, 53C40.

Keywords and phrases: Invariant submanifold, Kenmotsu manifold, totally geodesic.

Abstract We show that invariant submanifolds of Kenmotsu manifolds are totally geodesic. When the second fundamental form σ is 2-semiparallel, pseudoparallel, 2-pseudoparallel, Riccigeneralized pseudoparallel, 2-Ricci-generalized pseudoparallel and establish their equivalence. Further examples are given.

1 Introduction

In 1972, K. Kenmotsu [5] studied a class of contact Riemannian manifolds called Kenmotsu manifolds, which is not Sasakian. In fact Kenmotsu proved that a locally Kenmotsu manifold is a warped product $I \times_f N$ of an interval I and a Kahlerian manifold with a warping function $f(t) = se^t$, where s is a non-zero constant. Hyperbolic space is an example of Kenmotsu manifold.

The study of the geometry of invariant submanifolds of Kenmotsu manifolds is carried out by V.S. Prasad and C.S. Bagewadi [5], Recently A.A. Shaikh, Y. Matsuyama and S.K. Hui [20] studied on invariant submanifolds of $(LCS)_n$ -manifolds and S.K. Hui, S. Uddin, A.H. Alkhaldi and P. Mandal [11] have studied on Invariant submanifolds of generalized Sasakian-space-forms. S. Sular and C. Ozgur [21] and M. Kobayashi [12]. The author [12] has shown that the submanifold M of a Kenmotsu manifold \widetilde{M} has parallel second fundamental form if and only if M is totally geodesic. The authors [5] have shown the equivalence of totally geodesicity of M, parallelism and semiparallelism of the second fundamental form σ . Also they have shown that invariant submanifold M of Kenmotsu manifold \widetilde{M} carries Kenmotsu structure and $K \leq \widetilde{K}$, where K, \widetilde{K} are sectional curvature of M and \widetilde{M} respectively and equality holds if M is totally geodesic. Further the authors [21] have shown the equivalence of totally geodesicity of M, recurrency of σ , parallelism of third fundamental form on M and generalized 2-recurrency of σ . In this paper we show that invariant submanifolds of Kenmotsu manifolds are totally geodesic when the second fundamental form σ is 2-semiparallel, pseudoparallel, 2-pseudoparallel, Riccigeneralized pseudoparallel, 2-Ricci-generalized pseudoparallel and establish their equivalence.

2 Basic Concepts

The covariant differential of the p^{th} order, $p \ge 1$ of a (0, k)-tensor field $T, k \ge 1$ denoted by $\nabla^p T$, defined on a Riemannian manifold (M, g) with the Levi-Civita connection ∇ . The tensor T is said to be recurrent [22], if the following condition holds on M:

$$(\nabla T)(X_1, ..., X_k; X)T(Y_1, ..., Y_k) = (\nabla T)(Y_1, ..., Y_k; X)T(X_1, ..., X_k)$$
(2.1)

respectively.

$$(\nabla^2 T)(X_1,...,X_k;X,Y)T(Y_1,...,Y_k) = (\nabla^2 T)(Y_1,...,Y_k;X,Y)T(X_1,...,X_k),$$

where $X, Y, X_1, Y_1, ..., X_k, Y_k \in TM$. From (2.1) it follows that at a point $x \in M$, if the tensor T is non-zero, then there exists a unique 1-form ϕ respectively, a (0,2)-tensor ψ , defined on a

neighborhood U of x such that

$$\nabla T = T \otimes \phi, \quad \phi = d(\log ||T||) \tag{2.2}$$

respectively.

$$\nabla^2 T = T \otimes \psi, \tag{2.3}$$

holds on U, where ||T|| denotes the norm of T and $||T||^2 = g(T,T)$. The tensor T is said to be generalized 2-recurrent if

$$((\nabla^2 T)(X_1, ..., X_k; X, Y) - (\nabla T \otimes \phi)(X_1, ..., X_k; X, Y))T(Y_1, ..., Y_k)$$

= $((\nabla^2 T)(Y_1, ..., Y_k; X, Y) - (\nabla T \otimes \phi)(Y_1, ..., Y_k; X, Y))T(X_1, ..., X_k),$

holds on M, where ϕ is a 1-form on M. From this it follows that at a point $x \in M$ if the tensor T is non-zero, then there exists a unique (0,2)-tensor ψ , defined on a neighborhood U of x, such that

$$\nabla^2 T = \nabla T \otimes \phi + T \otimes \psi, \tag{2.4}$$

holds on U.

Let $f:(M,g)\to (\widetilde{M},\widetilde{g})$ be an isometric immersion from an n-dimensional Riemannian manifold (M,g) into (n+d)-dimensional Riemannian manifold $(\widetilde{M},\widetilde{g}), n\geq 2, d\geq 1$. We denote by ∇ and $\widetilde{\nabla}$ as Levi-Civita connection of M^n and \widetilde{M}^{n+d} respectively. Then the formulas of Gauss and Weingarten are given by

$$\widetilde{\nabla}_X Y = \nabla_X Y + \sigma(X, Y),$$
 (2.5)

$$\widetilde{\nabla}_X N = -A_N X + \nabla_X^{\perp} N, \tag{2.6}$$

for any tangent vector fields X,Y and the normal vector field N on M, where σ , A and ∇^{\perp} are the second fundamental form, the shape operator and the normal connection respectively. If the second fundamental form σ is identically zero then the manifold is said to be *totally geodesic*. The second fundamental form σ and A_N are related by

$$\widetilde{g}(\sigma(X,Y),N) = g(A_NX,Y),$$

for tangent vector fields X,Y. The first and second covariant derivatives of the second fundamental form σ are given by

$$(\widetilde{\nabla}_X \sigma)(Y, Z) = \nabla_X^{\perp}(\sigma(Y, Z)) - \sigma(\nabla_X Y, Z) - \sigma(Y, \nabla_X Z), \tag{2.7}$$

$$(\widetilde{\nabla}^{2}\sigma)(Z, W, X, Y) = (\widetilde{\nabla}_{X}\widetilde{\nabla}_{Y}\sigma)(Z, W),$$

$$= \nabla_{X}^{\perp}((\widetilde{\nabla}_{Y}\sigma)(Z, W)) - (\widetilde{\nabla}_{Y}\sigma)(\nabla_{X}Z, W)$$

$$-(\widetilde{\nabla}_{X}\sigma)(Z, \nabla_{Y}W) - (\widetilde{\nabla}_{\nabla_{X}Y}\sigma)(Z, W)$$

$$(2.8)$$

respectively, where $\widetilde{\nabla}$ is called the van der Waerden-Bortolotti connection of M [7]. If $\widetilde{\nabla}\sigma=0$, then M is said to have parallel second fundamental form [7]. We next define endomorphisms R(X,Y) and $X\wedge_B Y$ of $\chi(M)$ by

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z,$$

$$(X \wedge_B Y)Z = B(Y,Z)X - B(X,Z)Y$$
(2.9)

respectively. where $X, Y, Z \in \chi(M)$ and B is a symmetric (0, 2)-tensor.

Now, for a (0,k)-tensor field $T, k \ge 1$ and a (0,2)-tensor field B on (M,g), we define the tensor Q(B,T) by

$$Q(B,T)(X_{1},...,X_{k};X,Y) = -(T(X \wedge_{B} Y)X_{1},...,X_{k})$$

$$- \cdots -T(X_{1},...,X_{k-1}(X \wedge_{B} Y)X_{k}).$$
(2.10)

Putting into the above formula $T=\sigma, \widetilde{\nabla}\sigma$ and B=g, B=S, we obtain the tensors $Q(g,\sigma), Q(S,\sigma), Q(g,\widetilde{\nabla}\sigma)$ and $Q(S,\widetilde{\nabla}\sigma)$.

Definition 2.1. An immersion is said to be semiparallel [8], 2-semiparallel [17], pseudoparallel [3], 2-pseudoparallel [17] and Ricci-generalized pseudoparallel [15] respectively if the following conditions hold for all vector fields X, Y tangent to M

$$\widetilde{R} \cdot \sigma = 0, \tag{2.11}$$

$$\widetilde{R} \cdot \widetilde{\nabla} \sigma = 0, \tag{2.12}$$

$$\widetilde{R} \cdot \sigma = L_1 Q(g, \sigma),$$
 (2.13)

$$\widetilde{R} \cdot \widetilde{\nabla} \sigma = L_1 Q(q, \widetilde{\nabla} \sigma)$$
 and (2.14)

$$\widetilde{R} \cdot \sigma = L_2 Q(S, \sigma),$$
 (2.15)

where \widetilde{R} denotes the curvature tensor with respect to connection $\widetilde{\nabla}$. Now we introduce the definition of 2-Ricci-generalized pseudoparallel.

Definition 2.2. An immersion is said to be 2-Ricci-generalized pseudoparallel if

$$\widetilde{R} \cdot \widetilde{\nabla} \sigma = L_2 Q(S, \widetilde{\nabla} \sigma). \tag{2.16}$$

Here L_1 and L_2 are functions depending on σ and $\widetilde{\nabla}\sigma$. From the Gauss and Weingarten formulas, we obtain

$$(\widetilde{R}(X,Y)Z)^T = R(X,Y)Z + A_{\sigma(X,Z)}Y - A_{\sigma(Y,Z)}X.$$
 (2.17)

By (2.11), we have

$$(\widetilde{R}(X,Y)\cdot\sigma)(U,V) = R^{\perp}(X,Y)\sigma(U,V) - \sigma(R(X,Y)U,V)$$

$$-\sigma(U,R(X,Y)V),$$
(2.18)

for all vector fields X, Y, U and V tangent to M, where

$$R^{\perp}(X,Y) = \left[\nabla_X^{\perp}, \nabla_Y^{\perp}\right] - \nabla_{(X,Y)}^{\perp}. \tag{2.19}$$

Similarly, we have

$$\begin{split} &(\widetilde{R}(X,Y)\cdot\widetilde{\nabla}\sigma)(U,V,W)=R^{\perp}(X,Y)(\widetilde{\nabla}\sigma)(U,V,W)\\ &-(\widetilde{\nabla}\sigma)(R(X,Y)U,V,W)-(\widetilde{\nabla}\sigma)(U,R(X,Y)V,W)-(\widetilde{\nabla}\sigma)(U,V,R(X,Y)W), \end{split} \tag{2.20}$$

for all vector fields X, Y, U, V, W tangent to M, where $(\widetilde{\nabla}\sigma)(U, V, W) = (\widetilde{\nabla}_U\sigma)(V, W)$ [2].

3 Preliminaries

Let \widetilde{M} be a (2n+1)-dimensional almost contact metric manifold with structure (ϕ, ξ, η, g) , where ϕ is a tensor field of type (1,1), ξ is a vector field, η is a 1-form and g is the Riemannian metric satisfying

$$\phi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1, \quad \eta \circ \phi = 0, \quad \phi \xi = 0, \tag{3.1}$$

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \quad g(X, \xi) = \eta(X),$$
 (3.2)

for all vector fields X, Y on M. If

$$(\nabla_X \phi) Y = q(\phi X, Y) \xi - \eta(Y) \phi X, \tag{3.3}$$

$$\nabla_X \xi = X - \eta(X)\xi, \tag{3.4}$$

where ∇ denotes the Riemannian connection of g, then (M, ϕ, ξ, η, g) is called an almost Kenmotsu manifold [4].

Example of Kenmotsu manifold: Consider the 3-dimensional manifold $M = \{(x, y, z) \in \mathbb{R}^3; z \neq 0\}$. Let (E_1, E_2, E_3) be linearly independent vectors are given by

$$E_1 = z \frac{\partial}{\partial x}, \quad E_2 = z \frac{\partial}{\partial y}, \quad E_3 = -z \frac{\partial}{\partial z}.$$

Let g be the Riemannian metric defined by

$$g(E_i, E_j) = \delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

and is given by

$$g = \frac{1}{z^2}(dx^2 + dy^2 + dz^3).$$

 (ϕ, ξ, η) is given by $\xi = E_3 = -z \frac{\partial}{\partial z}$, $\eta = -\frac{1}{z} dz$ and $\phi E_1 = -E_2$, $\phi E_2 = E_1$, $\phi E_3 = 0$. The above (ϕ, ξ, η, g) satisfies

$$(\nabla_X \phi) Y = g(\phi X, Y) \xi - \eta(Y) \phi X.$$

Hence (ϕ, ξ, η, g) is a Kenmotsu structure for $C^* \times R$.

In Kenmotsu manifolds the following relations hold [4]:

$$R(X,Y)Z = \{g(X,Z)Y - g(Y,Z)X\}, \tag{3.5}$$

$$R(X,Y)\xi = \{\eta(X)Y - \eta(Y)X\},$$
 (3.6)

$$R(\xi, X)Y = \{ \eta(Y)X - g(X, Y)\xi \}, \tag{3.7}$$

$$R(\xi, X)\xi = \{X - \eta(X)\xi\},$$
 (3.8)

$$S(X,\xi) = -(n-1)\eta(X),$$
 (3.9)

$$Q\xi = -(n-1)\xi. \tag{3.10}$$

A submanifold M of a Kenmotsu manifold \widetilde{M} is called an invariant submanifold of \widetilde{M} , if for each $x \in M$, $\phi(T_xM) \subset T_xM$. As a consequence, ξ becomes tangent to M. In an invariant submanifold of a Kenmotsu manifold

$$\sigma(X,\xi) = 0, (3.11)$$

for any vector X tangent to M.

4 2-semiparallel, pseudoparallel, 2-pseudoparallel, Ricci-generalized pseudoparallel and 2-Ricci-generalized pseudoparallel Invariant submanifolds of Kenmotsu manifolds

We consider invariant submanifolds of Kenmotsu manifolds satisfying the conditions $\widetilde{R} \cdot \widetilde{\nabla} \sigma = 0$, $\widetilde{R} \cdot \sigma = L_1 Q(g, \sigma)$, $\widetilde{R} \cdot \widetilde{\nabla} \sigma = L_1 Q(g, \widetilde{\nabla} \sigma)$ $\widetilde{R} \cdot \sigma = L_2 Q(S, \sigma)$ and $\widetilde{R} \cdot \widetilde{\nabla} \sigma = L_2 Q(S, \widetilde{\nabla} \sigma)$.

Theorem 4.1. Let M be an invariant submanifold of a Kenmotsu manifold \widetilde{M} . Then M is 2-semiparallel if and only if it is totally geodesic.

Proof. Let M be 2-semiparallel $\widetilde{R} \cdot \widetilde{\nabla} \sigma = 0$. Put $X = V = \xi$ in (2.20), we get the relation

$$R^{\perp}(\xi,Y)(\widetilde{\nabla}\sigma)(U,\xi,W) - (\widetilde{\nabla}\sigma)(R(\xi,Y)U,\xi,W) - (\widetilde{\nabla}\sigma)(U,R(\xi,Y)\xi,W)$$
 (4.1)
$$-(\widetilde{\nabla}\sigma)(U,\xi,R(\xi,Y)W) = 0.$$

In view of (2.7), (3.4), (3.7), (3.8) and (3.11), we have the following equalities:

$$(\widetilde{\nabla}\sigma)(U,\xi,W) = (\widetilde{\nabla}_U\sigma)(\xi,W),$$

$$= \nabla_U^{\perp}\sigma(\xi,W) - \sigma(\nabla_U\xi,W) - \sigma(\xi,\nabla_UW),$$

$$= -\sigma(U,W),$$
(4.2)

$$(\widetilde{\nabla}\sigma)(R(\xi,Y)U,\xi,W) = (\widetilde{\nabla}_{R(\xi,Y)U}\sigma)(\xi,W),$$

$$= \nabla_{R(\xi,Y)U}^{\perp}\sigma(\xi,W) - \sigma(\nabla_{R(\xi,Y)U}\xi,W) - \sigma(\xi,\nabla_{R(\xi,Y)U}W),$$

$$= -\eta(U)\sigma(Y,W),$$
(4.3)

$$(\widetilde{\nabla}\sigma)(U, R(\xi, Y)\xi, W) = (\widetilde{\nabla}_{U}\sigma)(R(\xi, Y)\xi, W),$$

$$= \nabla_{U}^{\perp}\sigma(R(\xi, Y)\xi, W) - \sigma(\nabla_{U}R(\xi, Y)\xi, W) - \sigma(R(\xi, Y)\xi, \nabla_{U}W),$$

$$= \nabla_{U}^{\perp}\sigma\left(\left\{Y - \eta(Y)\xi\right\}, W\right) - \sigma\left(\nabla_{U}\left\{Y - \eta(Y)\xi\right\}, W\right)$$

$$-\sigma(Y, \nabla_{U}W)$$
(4.4)

and

$$(\widetilde{\nabla}\sigma)(U,\xi,R(\xi,Y)W) = (\widetilde{\nabla}_U\sigma)(\xi,R(\xi,Y)W),$$

$$= \nabla_U^{\perp}\sigma(\xi,R(\xi,Y)W) - \sigma(\nabla_U\xi,R(\xi,Y)W) - \sigma(\xi,\nabla_UR(\xi,Y)W),$$

$$= -n(W)\sigma(U,Y).$$
(4.5)

Substituting (4.2) - (4.5) into (4.1), we obtain

$$-R^{\perp}(\xi, Y)\sigma(U, W) + \eta(U)\sigma(Y, W) - \nabla_{U}^{\perp}\sigma\left(\left\{Y - \eta(Y)\xi\right\}, W\right)$$

$$+\sigma\left(\nabla_{U}\left\{Y - \eta(Y)\xi\right\}, W\right) + \sigma(Y, \nabla_{U}W) + \eta(W)\sigma(U, Y) = 0.$$

$$(4.6)$$

Replacing W by ξ and using (3.4), (3.11) in (4.6), we get $\sigma(U,Y)=0$. The converse statement is trivial. This proves the theorem.

Theorem 4.2. Let M be an invariant submanifold of a Kenmotsu manifold \widetilde{M} . Then M is pseudoparallel if and only if it is totally geodesic.

Proof. Let M be pseudoparallel $\widetilde{R} \cdot \sigma = L_1Q(g,\sigma)$. Setting $X = V = \xi$ in (2.10), (2.18) and adding, it becomes

$$R^{\perp}(\xi, Y)\sigma(U, \xi) - \sigma(R(\xi, Y)U, \xi) - \sigma(U, R(\xi, Y)\xi) = -L_1 \{g(\xi, \xi)\sigma(U, Y) - g(\xi, U)\sigma(\xi, Y) + g(\xi, Y)\sigma(\xi, U) - g(Y, U)\sigma(\xi, \xi)\}.$$
(4.7)

With the help of equations (3.1), (3.8) and (3.11) in (4.7), we obtain $\sigma(U, Y) = 0$ and if $L_1 \neq 1$. The converse statement is trivial and thus we can state the above theorem.

Theorem 4.3. Let M be an invariant submanifold of a Kenmotsu manifold \widetilde{M} . Then M is 2-pseudoparallel if and only if it is totally geodesic.

Proof. Let M be 2-pseudoparallel $\widetilde{R} \cdot \widetilde{\nabla} \sigma = L_1 Q(g, \widetilde{\nabla} \sigma)$. Putting $X = V = \xi$ in (2.10), (2.20) and adding, by view of (3.1) and (3.11), takes the form

$$R^{\perp}(\xi,Y)(\widetilde{\nabla}\sigma)(U,\xi,W) - (\widetilde{\nabla}\sigma)(R(\xi,Y)U,\xi,W) - (\widetilde{\nabla}\sigma)(U,R(\xi,Y)\xi,W)$$

$$-(\widetilde{\nabla}\sigma)(U,\xi,R(\xi,Y)W) = -L_{1}[\eta(W)\left\{\nabla_{\xi}^{\perp}\sigma(Y,U) - \sigma(\nabla_{\xi}Y,U) - \sigma(Y,\nabla_{\xi}U)\right\}$$

$$-\nabla_{W}^{\perp}\sigma(Y,U) + \sigma(\nabla_{W}Y,U) + \sigma(Y,\nabla_{W}U) - \eta(Y)\left\{\nabla_{\xi}^{\perp}\sigma(W,U) - \sigma(\nabla_{\xi}W,U) - \sigma(W,\nabla_{\xi}U)\right\}$$

$$-\sigma(W,\nabla_{\xi}U)\} - \eta(U)\left\{\nabla_{\xi}^{\perp}\sigma(Y,W) - \sigma(\nabla_{\xi}Y,W) - \sigma(Y,\nabla_{\xi}W)\right\}].$$

$$(4.8)$$

Applying (4.2) - (4.5) into (4.8) reduces to

$$-R^{\perp}(\xi,Y)\sigma(U,W) + \eta(U)\sigma(Y,W) - \nabla_{U}^{\perp}\sigma\left(\left\{Y - \eta(Y)\xi\right\},W\right)$$

$$+\sigma\left(\nabla_{U}\left\{Y - \eta(Y)\xi\right\},W\right) + \sigma(Y,\nabla_{U}W) + \eta(W)\sigma(U,Y)$$

$$= -L_{1}[\eta(W)\left\{\nabla_{\xi}^{\perp}\sigma(Y,U) - \sigma(\nabla_{\xi}Y,U) - \sigma(Y,\nabla_{\xi}U)\right\} - \nabla_{W}^{\perp}\sigma(Y,U)$$

$$+\sigma(\nabla_{W}Y,U) + \sigma(Y,\nabla_{W}U) - \eta(Y)\left\{\nabla_{\xi}^{\perp}\sigma(W,U) - \sigma(\nabla_{\xi}W,U) - \sigma(W,\nabla_{\xi}U)\right\} - \eta(U)\left\{\nabla_{\xi}^{\perp}\sigma(Y,W) - \sigma(\nabla_{\xi}Y,W) - \sigma(Y,\nabla_{\xi}W)\right\} \right].$$

$$(4.9)$$

Which, by $W = \xi$ and using (3.4), (3.11) in (4.9), we procure $\sigma(U, Y) = 0$ and the converse statement is trivial. In view of above discussions we can state the above theorem.

Theorem 4.4. Let M be an invariant submanifold of a Kenmotsu manifold \widetilde{M} . Then M is Ricci-generalized pseudoparallel if and only if it is totally geodesic.

Proof. Let M be Ricci-generalized pseudoparallel $\widetilde{R} \cdot \sigma = L_2Q(S, \sigma)$. If we choose $X = \xi$ and $V = \xi$ in (2.10), (2.18) and adding, turns to

$$R^{\perp}(\xi, Y)\sigma(U, \xi) - \sigma(R(\xi, Y)U, \xi) - \sigma(U, R(\xi, Y)\xi) = -L_2 \{S(\xi, \xi)\sigma(U, Y) \ (4.10) - S(\xi, U)\sigma(\xi, Y) + S(\xi, Y)\sigma(\xi, U) - S(Y, U)\sigma(\xi, \xi) \}.$$

Making use of (3.8), (3.9) and (3.11) in (4.10), we get $\sigma(U,Y)=0$ and if $L_2\neq\frac{-1}{(n-1)}$. The converse statement is trivial.

Theorem 4.5. Let M be an invariant submanifold of a Kenmotsu manifold \widetilde{M} . Then M is 2-Ricci-generalized pseudoparallel if and only if it is totally geodesic.

Proof. Let M be 2-Ricci-generalized pseudoparallel $\widetilde{R} \cdot \widetilde{\nabla} \sigma = L_2 Q(S, \widetilde{\nabla} \sigma)$. Changing X and V with ξ in (2.10), (2.20) and adding, which in view of (3.9) and (3.11), it follows that

$$R^{\perp}(\xi,Y)(\widetilde{\nabla}\sigma)(U,\xi,W) - (\widetilde{\nabla}\sigma)(R(\xi,Y)U,\xi,W) - (\widetilde{\nabla}\sigma)(U,R(\xi,Y)\xi,W) \quad (4.11)$$

$$-(\widetilde{\nabla}\sigma)(U,\xi,R(\xi,Y)W) = -L_{2}[-(n-1)\eta(W)\left\{\nabla_{\xi}^{\perp}\sigma(Y,U) - \sigma(\nabla_{\xi}Y,U) - \sigma(Y,\nabla_{\xi}U)\right\} + (n-1)\left\{\nabla_{W}^{\perp}\sigma(Y,U) - \sigma(\nabla_{\xi}W,U) - \sigma(Y,\nabla_{\xi}U)\right\}$$

$$+(n-1)\eta(Y)\left\{\nabla_{\xi}^{\perp}\sigma(W,U) - \sigma(\nabla_{\xi}W,U) - \sigma(W,\nabla_{\xi}U)\right\}$$

$$+(n-1)\eta(U)\left\{\nabla_{\xi}^{\perp}\sigma(Y,W) - \sigma(\nabla_{\xi}Y,W) - \sigma(Y,\nabla_{\xi}W)\right\}.$$

Taking (4.2), (4.3), (4.4) and (4.5) into (4.11), we obtain by some calculation

$$-R^{\perp}(\xi,Y)\sigma(U,W) + \eta(U)\sigma(Y,W) - \nabla_{U}^{\perp}\sigma\left(\left\{Y - \eta(Y)\xi\right\},W\right)$$

$$+\sigma\left(\nabla_{U}\left\{Y - \eta(Y)\xi\right\},W\right) + \sigma(Y,\nabla_{U}W) + \eta(W)\sigma(U,Y)$$

$$= -L_{2}[-(n-1)\eta(W)\left\{\nabla_{\xi}^{\perp}\sigma(Y,U) - \sigma(\nabla_{\xi}Y,U) - \sigma(Y,\nabla_{\xi}U)\right\}$$

$$+(n-1)\left\{\nabla_{W}^{\perp}\sigma(Y,U) - \sigma(\nabla_{W}Y,U) - \sigma(Y,\nabla_{W}U)\right\}$$

$$+(n-1)\eta(Y)\left\{\nabla_{\xi}^{\perp}\sigma(W,U) - \sigma(\nabla_{\xi}W,U) - \sigma(W,\nabla_{\xi}U)\right\}$$

$$+(n-1)\eta(U)\left\{\nabla_{\xi}^{\perp}\sigma(Y,W) - \sigma(\nabla_{\xi}Y,W) - \sigma(Y,\nabla_{\xi}W)\right\}].$$
(4.12)

If one substitues $W = \xi$ and fetching equations (3.4), (3.11) in (4.12), we find that $\sigma(U, Y) = 0$. The converse statement is trivial. Hence we state the above theorem.

Combining all the above results and the results of [5, 12, 21], we have the following:

Corollary 4.6. Let M be an invariant submanifold of a Kenmotsu manifold \widetilde{M} . Then the following statements are equivalent:

(i) σ is parallel;

- (ii) σ is recurrent;
- (iii) M has parallel third fundamental form;
- (iv) σ is generalized 2-recurrent;
- (v) M is semiparallel;
- (vi) M is 2-semiparallel;
- (vii) M is pseudoparallel and if $L_1 \neq 1$;
- (viii) M is 2 pseudoparallel;
 - (ix) M is Ricci-generalized pseudoparallel and if $L_2 \neq \frac{-1}{(n-1)}$;
 - (x) M is 2-Ricci-generalized pseudoparallel;
 - (xi) $K = \widetilde{K}$;
- (xii) M is totally geodesic.

References

- [1] Ahmet Yildiz and Cengizhan Murathan, Invariant submanifolds of Sasakian space forms, *J. Geom.* **95**, 135–150 (2009).
- [2] K. Arslan, U. Lumiste, C. Murathan and C. Ozgur, 2-semi-parallel surfaces in space forms. I. Two particular cases, *Proc. Estonian Acad. Sci. Phys. math.* **49**(3), 139–148 (2000).
- [3] A. C. Asperti, G. A. Lobos and F. Mercuri, Pseudo-parallel immersions in space forms, *Math. Contemp.* **17**, 59–70 (1999).
- [4] Avik De, On Kenmotsu manifold, Bulletin of mathematical analysis and applications. 2(3), 1-6 (2010).
- [5] C. S. Bagewadi and V. S. Prasad, Invariant submanifolds of Kenmotsu manifolds, *Kuvempu University Science Journal.* **1**(1), 92–97 (2001).
- [6] D. E. Blair, Contact manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer-Verlag, Berlin. (1976).
- [7] B. Y. Chen, Geometry of submanifolds and its applications, Science University of Tokyo, Tokyo. (1981).
- [8] J. Deprez, Semi-parallel surfaces in the Euclidean space, *Journal of Geometry.* 25, 192–200 (1985).
- [9] F. Dillen, Semi-parallel Hypersurfaces of a Real Space form, Israel J. Math. 75, 193–202 (1991).
- [10] C. E. Hretcanu and M. Crasmareanu, On some invariant submanifolds in a Riemannian manifolds with golden structure, Ann. Mat. Pura Appl. 123(4), 35–58 (1980).
- [11] S. K. Hui, S. Uddin, A. H. Alkhaldi and P. Mandal, Invariant submanifolds of generalized Sasakian-space-forms, *International Journal of Geometric Methods in Modern Physics.* **15**, 1–21 (2018).
- [12] M. Kobayashi, Semi-invariant submanifolds of a certain class of almost contact manifolds, *Tensor (NS)*. 43(1), 28–36 (1986).
- [13] M. Kon, Invariant submanifolds in normal contact metric manifolds, *Kodai Math. Sem. rep.* 25, 330-336 (1973).
- [14] C. Murathan, On invariant submanifolds satisfying a nullity condition, *An. Univ. Bucuresh. Mat. Inform.* **50**(162), 103-113 (2001).
- [15] C. Murathan, K, Arslan and R. Ezentas, Ricci generalized pseudo-parallel immersions, *Differential geometry and its applications, Matfyzpress, Prague.*, 99–108 (2005).
- [16] C. Ozgur, S. Sular and C. Murathan, On pseudoparallel invariant submanifolds of contact metric manifolds, *Bull. Transilv. Univ. Bra sov ser. B (N.S.).* 14(49 Suppl.), 227-234 (2007).
- [17] C. Ozgur and C. Murathan, On invariant submanifolds of Lorentzian para-sasakian manifolds, *The Arabian J. Sci. Engg.* **34**(2A), 177–185 (2008).
- [18] V. S. Prasad and C. S. Bagewadi, Note on Kenmotsu manifolds, *Bulletian of calcutta math. Soc.*. **91**(5), (1999).
- [19] B. Ravi and C. S. Bagewadi, Invariant submanifolds in a conformal K-contact Riemannian manifolds, Indian J. Pure appl. Math. 20(11), 1119-1125 (1989).
- [20] A. A. Shaikh, Y. Matsuyama and S. K. Hui, On invariant submanifolds of $(LCS)_n$ -manifolds, *Journal of Egyptian Mathematical Society.* **24**, 263-269 (2016).

- [21] S. Sular and C. Ozgur, On some submanifolds of Kenmotsu manifolds, Chaos, Solitons and Fractals. 42, 1990-1995 (2009).
- [22] W. Roter, On conformally recurrent Ricci-recurrent manifolds, Collog Math. 46(1), 45-57 (1982).
- [23] K. Yano and M. Kon, Structures on manifolds, World Scientific Publishing., (1984).

Author information

B.S. Anitha and C.S. Bagewadi, Department of Mathematics, RajaRajeswari College of Engineering, Bengaluru - 560 074 and Kuvempu University, Shankaraghatta - 577 451, INDIA. E-mail: abanithabs@gmail.com, prof_bagewadi@yahoo.co.in

Received: May 7, 2020. Accepted: October 22, 2020