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1 Introduction

The quaternions were introduced by Irish mathematician Sir William R. Hamilton who
discovered that the appropriate generalization in which the real axis is left unchanged
whereas the vector(imaginary) axis is supplemented by adding two further vector axis
in 1843 [1]. Until the middle of the 20th century, the practical use of quaternions was
minimal in comparison with other methods. But, currently this situtation has changed.
Recently the theory of quaternion has developed rapidly and many mathematicians focus-
ing on this field by different point of view. One of them is the quaternion valued function
of a real variable Serret-Frenet formulae studied by Baharathi and Nagaraj [2]. Also an-
other study on Serret-Frenet formulas of quaternionic curves in Semi-Euclidean space E4

2
can be found in [14] in detail. Another is Keçilioğlu and İlarslan ’s study. They obtained
some characterizations for (1,3) type quaternionic Bertrand curves in Euclidean 4-space
by means of the curvature functions of the curve[3]. Yılmaz and Külahcı studied on the
quaternionic curve in Q4 and obtained some characterization about rectifying curves [9].

Involutes of a given curve is another attractive research subject among geometers. The
idea of a string involute is defined by C. Huygens (1658), who is also known as an opti-
cian. He discovered involutes trying to build a more accurate clock [4]. In particularly,
the involute-(evolute) of a given curve is a well known concept in the classsical difer-
ential geometry. For a general point of view in [12] Özyılmaz and Yılmaz focused on
involute-evolute curve couple in E4. T. Soyfidan and M. A. Güngör studied a quater-
nionic curve Euclidean 4-space E4 and gave the quaternionic involute-evolute curves for
quaternionic curves [15]. As and Sarıoğlugil obtained the Bishop curvatures on involute-
evolute curve couple in E3 [5]. In [11] the authors extended involute-evolute concept
to the n-dimensional simply isotropic space I1

n. In [13] Fukunaga and Takahashi studied
involutes of fronts in Euclidean plane.

In this paper, Serret-Frenet formulas are re-given for quaternionic curve in Q3 and Q4.
Firstly, the characterizations for a quaternionic involute curve are given and proved in Q3.
Because of the similarity of Euclidean version, we omit the proofs of the theorems in Q3.
In a similar manner, the characterizations for a quaternionic involute curve are given and
proved in Q4.

2 Preliminaries

In this section we briefly introduce quaternion theory in Euclidean space. Detailed infor-
mation can be found in [6].

A real quaternion is defined by

q = ae1 + be2 + ce3 + de4

(or q = Sq + Vq where the symbols Sq = d and Vq = ae1 + be2 + ce3 denote scalar and
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vectoral part of q) such that

i)ei × ei = −e4, (e4 = +1, 1 ≤ i ≤ 3)

ii)ei × ej = ek = −ej × ei, (1 ≤ i, j ≤ 3)

where (ijk) is an even permutation of (123) in the Euclidean space R4. Using these basic
products we can now arrange the product of two quaternions to get

p× q = SpSq− < Vp, Vq > +SpVq + SqVp + Vp ∧ Vq, ∀p, q ∈ Q

where we have used the dot and cross products in Euclidean space R3 [7]. The conjugate
of the quaternion q is denoted by q̂ and defined

q = Sq − Vq = de4 − ae1 − be2 − ce3.

Therefore, we define the symmetric real-valued, non-degenerate, bilinear form h as fol-
lows

h : Q×Q→ R

(p, q) → h (p, q) =
1
2
(p× q + q × p) .

So, it is named the quaternion inner product. The norm of a real quaternion q is

‖q‖2 = h (q, q) = q × q = a2 + b2 + c2 + d2.

If ‖q‖ = 1, then q is called a unit quaternion. It is known that the groups of unit real
quaternions and unitary matrices SU (2) are isomorphic. Therefore, spherical concepts in
S3 such as meridians of longtitude and parallels of latitude are explained with assistance
elements of SU (2) . Besides, the element of SU (3) can match with each element of S3

[8].
The sphere S3 ⊂ Q in quaternionic calculus is like the unit circle S1 ⊂ C in complex

calculus. Indeed, S3 = {q ∈ Q, ‖q‖ = 1} constitutes a group under quaternionic multi-
plication. q is called spatial quaternion whenever q + q = 0 [2]. Furthermore, quaternion
product of two spatial is p× q = −〈p, q〉+p∧ q. q is a temporal quaternion whenever q−
q = 0. Any q can be written as
q = 1

2 (q + q) + 1
2 (q − q) [7].

We will deal with involutes of a curve. In what follows the orthogonal trajectories of
the first tangents of the curve are called the involutes of x [10]. Let x = x (s) be a regular
generic curve in En given with the arclength parameter s (i.e. ,

∥∥∥x′ (s) = (1)
∥∥∥). Then the

curves which are orthogonal to the system of k-dimensional osculating hyperplanes of x
are called the involutes of order k of the curve x [11]. Simply the curve has 1 st and 2 nd
order involutes for k = 3. If k = 4, then curve has 1 st, 2 nd and 3 rd order involutes.
Similar to E3 and E4, we obtain involutes of order k of a q curve given in Q3 and Q4,
respectively.

3 Higher Order Involutes in Quaternionic 3-Space

The 3-dimensional Euclidean space E3 is identified with the space of spatial quaternions
which is denoted by Q.

x : I ⊂ E3 → Q

s→ x(s)→
3∑

i=1

xi(s) (1 ≤ i ≤ 3)

be a smooth curve defined over the interval I = [0, 1] . Let the parameter s chosen such
that the tangent T = x

′
(s) has unit size. Let {V1 (s) , V2 (s) , V3 (s)} be Serret-Frenet
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frame of quaternionic curve x = x (s) in Q3 and {K (s) , k (s)} be its Frenet curvatures
given by

K (s) =

∥∥∥x′ (s)× x′′ (s)∥∥∥
‖x′ (s)‖3 (3.1)

k (s) =
〈x′ (s)× x′′ (s) , x′ (s)〉
‖x′ (s)× x′′ (s)‖2

The following part is anologous to the Euclidean case because of the similarity of
Frenet formulas in E3 and Q3. Hence, we only give theorems without proofs.

Theorem 3.1. Let x be a regular unit speed real quaternionic curve in Q3 and any real
quaternionic curve x (s) be first order involute of x (s) . Frenet curvatures Kx and kx of
the 1 st order involute x (s) is given as follows:

Kx =

√
r2 (s) + k2 (s)

|c− s| k (s)
, kx =

(
r(s)
k(s)

)′
k (s)

|c− s| r2 (s) + k2 (s)

Theorem 3.2. Let x be a regular unit speed real quaternionic curve in Q3 and any real
quaternionic curve x (s) be the second order involute of x (s) . Then Frenet curvatures
Kx and kx of x (s) is given as follows:

Kx =
sgn (r (s))

|λ2 (s)|
, kx =

k (s)

λ2 (s) r (s)

4 Higher Order Involutes in Quaternionic 4-Space

The 4-dimensional Euclidean space E4 is identified with the space of spatial quaternions
which is denoted by Q.

x : I ⊂ E4 → Q

s→ x (s)→
4∑

i=1

xi(s) (1 ≤ i ≤ 4) , e4 = 1

be a smooth curve defined over the interval I = [0, 1] . Let the parameter s chosen such
that the tangent T = x

′
(s) has the unit size.

Theorem 4.1: Let {V1 (s) , V2 (s) , V3 (s) , V4 (s)} be the Serret-Frenet frame of a quater-
nionic curve x = x (s) in Q. Then the Serret-Frenet equations are

V
′

1 (s) = K (s)V2 (s)

V
′

2 (s) = −K (s)V1 (s) + k (s)V3 (s) (4.1)

V
′

3 (s) = −k (s)V2 (s) + (r (s)−K (s))V4 (s)

V
′

4 (s) = − (r (s)−K (s))V3 (s)

where K (s) =
∥∥∥T ′ (s)∥∥∥ , [2] .

The torsion, bitorsion and principal curvature of x is denoted by k, (r − k) and K, re-
spectively. In addition, the Serret-Frenet apparatus of the quaternionic curve x, are given
by

V1 (s) =
x
′
(s)

‖x′ (s)‖
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V2 (s) =

∥∥∥x′ (s)∥∥∥2
x
′′
(s)− h

(
x
′
(s) , x

′′
(s)
)
x
′
(s)∥∥∥‖x′ (s)‖2

x′′ (s)− h (x′ (s) , x′′ (s))x′ (s)
∥∥∥

V3 (s) = ηV4 (s) ∧ V1 (s) ∧ V2 (s)

V4 (s) = η
V1 (s) ∧ V2 (s) ∧ x

′′′
(s)

‖V1 (s) ∧ V2 (s) ∧ x′′′ (s)‖
, (η = ±1) (4.2)

K (s) =

∥∥∥∥∥∥∥x′ (s)∥∥∥2
x
′′
(s)− h

(
x
′
(s) , x

′′
(s)
)
x
′
(s)

∥∥∥∥
‖x′ (s)‖4

k (s) =

∥∥∥V1 (s) ∧ V2 (s) ∧ x
′′′
(s)
∥∥∥∥∥∥x′ (s)∥∥∥∥∥∥‖x′ (s)‖2

x′′ (s)− h (x′ (s) , x′′ (s))x′ (s)
∥∥∥

(r −K) (s) =
h
(
x
′′′′

(s) , V4 (s)
)

‖V1 (s) ∧ V2 (s) ∧ x′′′ (s)‖ ‖x′ (s)‖

Definition 4.1: Let x, x : I → Q3 be any regular real quaternionic curve with pa-
rameter s∗ and s, respectively. In addition, {V1x

(s∗) , V2x
(s∗) , V3x

(s∗) , V4x
(s∗)} and

{V1x (s) , V2x (s) , V3 (s) , V4x (s)} indicate the Serret-Frenet frame of the x and x, respec-
tively. If h

(
Tx(s∗), Tx(s)

)
= 0, then, we call curves {x, x} as real quaternionic involute-

(evolute) curves in Q4 [1] .

Soyfidan and Güngör studied on the properties of a regular unit speed curve in Q4 and
obtain following results for the involute of x (1 st order). We will re-call the theorems
without proofs for ensuring the integrity of the higher order involute subject [1] .

Theorem 4.2: Let x be a regular unit speed real quaternionic curve in Q4 and any real
quaternionic curve x be the involute of x. Then we have d (x (s) , x (s∗)) = |c− s| where
c is real number [1] .

Theorem 4.3: Let x be a regular unit speed real quaternionic curve in Q4 and any real
quaternionic curve x be the involute of x. The Serret-Frenet apparatus of quaternionic
curve x can be formed by apparatus of x [1] .

In the light of the above concept, we define 2 nd and 3 rd order involute of x in the
following.

Theorem 4.4: Let x be a regular unit speed real quaternionic curve in Q4 and any
real quaternionic curve x be the 2 nd order involute of x. The Serret-Frenet apparatus of
quaternionic curve x can be formed by the apparatus of x.

Proof: Let x = x (s) be a unit speed real quaternionic curve. Without loss of general-
ity, suppose that x (s∗) is 2 nd order involute of x.

Hence, we obtain

x (s∗) = x (s) + λ1 (s)V1x (s) + λ2 (s)V2x (s) (4.3)
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By using and we differentiating (4.3) with respect to s, we obtain

dx

ds∗
ds∗

ds
= =

[
1 + λ

′

1 (s)− λ2 (s)Kx

]
V1x (s)[

λ1 (s)Kx + λ
′

2 (s)
]
V2x (s)

[+λ2 (s) k]V3x (s)

Moreover, we have 〈
x
′
(s∗) , V1x (s)

〉
= 0,

〈
x
′
(s∗) , V2x (s)

〉
= 0

Thus, we get
dx

ds∗
ds∗

ds
= λ2 (s) kV3x (s) (4.4)

By using equation (4.1) and differentiating (4.3) three time with respect to s, we obtain
and

d2x

ds∗2

ds∗
2

ds
= −λ2 (s) k

2V2x (s) +
(
λ
′

2 (s) k + λ2 (s) k
′
)
V3x (s) (4.5)

(+λ2 (s) k (r −Kx))V4x (s)

d3x

ds∗3

ds∗
3

ds
=
[
λ2 (s) k

2Kx

]
V1x (s) (4.6)[

−2λ
′

2 (s) k
2 − 3λ2 (s) k

′
k
]
V2x (s)

−λ2 (s) k3 + λ
′′

2 (s) k

+2λ
′

2 (s) k
′
+ λ2 (s) k

′′

−
(
λ2 (s) k (r −Kx)

2
)
V3x (s)

 2λ
′

2 (s) k (r −Kx)

+2λ2 (s) k
′
(r −Kx)

+λ2 (s) k (r −Kx)
′

V4x (s)

d4x

ds∗4

ds∗
4

ds
=

[
3λ
′

2 (s) k
2Kx

+5λ2 (s) k
′
kKx + λ2 (s) k2K

′

x

]
V1x (s) (4.7)


λ2 (s) k2K2

x − 3λ
′′

2 (s) k2

−9λ
′

2 (s) k
′
k − 4λ2 (s) k

′′
k

−3λ2 (s)
(
k
′
)2

+ λ2 (s) k4

+λ2 (s) k2 (r −Kx)
2

V2x (s)


−3λ

′

2 (s) k
3 − 6λ2 (s) k2k

′
+ λ

′′′

2 (s) k

+3λ
′′

2 (s) k
′
+ 3λ

′

2 (s) k
′′
+ λ2 (s) k

′′′

− (r −Kx)
2
[
3λ
′

2 (s) k + 3λ2 (s) k
′
]

−3λ2 (s) k (r −Kx) (r −Kx)
′

V3x (s)


−λ2 (s) k3 (r −Kx) + 3λ

′′

2 (s) k (r −Kx)

+6λ
′

2 (s) k
′
(r −Kx) + 3λ2 (s) k

′′
(r −Kx)

+3λ
′

2 (s) k (r −Kx)
′
+ 3λ2 (s) k

′
(r −Kx)

′

+λ2 (s) k (r −Kx)
′′
− λ2 (s) k (r −Kx)

3

V4x (s)

Taking the quaternion norm of the equation (4.4), we have
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∥∥∥∥ dxds∗ ds∗ds
∥∥∥∥2

= λ2
2 (s) k

2

Thus, we obtain ∥∥∥∥ dxds∗ ds∗ds
∥∥∥∥ = λ2 (s) k (4.8)

and by using the equations (4.2), (4.4) and (4.8), we get

V1x
(s∗) =

ds∗

ds λ2 (s) kV3X (s)∣∣ds∗
ds

∣∣√λ2
2 (s) k

2

Hence, we obtain
V1x

(s∗) = ±V3x (s) (4.9)

and let us calculate ±V3x (s) . From the equations (4.4) and (4.5), we get

h

(
dx

ds∗
,
d2x

ds∗2

)
=

ds3

ds∗3

[
−λ2

2 (s) k
3] ·

[
1
2
[V3X (s)× V2X (s) + V2X (s)× V3X (s)]

+
[
λ2 (s)λ

′

2 (s) k
2 + λ2

2 (s) k
′
k
]

1
2
[V3X (s)× V3X (s) + V3X (s)× V3X (s)]

+λ2
2 (s) k

2 (r −Kx)

1
2
[V3X (s)× V4X (s) + V4X (s)× V3X (s)]]

=
ds3

ds∗3

[
λ2 (s) k

(
λ
′

2 (s) k + λ2 (s) k
′
)]

Therefore, by using the equations (4.2), (4.4), (4.5), (4.8) and the last equation, we attain

V2x
(s∗) =

(−kV2x (s) + (r −Kx)V4x (s) )√
k2 + (r −Kx)

2
(4.10)

By using equations (4.6), (4.9) and (4.10), we obtain

V1x
(s∗) ∧ V2x

(s∗) ∧ x
′′′
(s∗) =

k√
k2 + (r −Kx)

2
(4.11)



 4λ
′

2 (s) k (r −Kx)

+5λ2 (s) k
′
(r −Kx)

+λ2 (s) k (r −Kx)
′

V1x (s)

[−λ2 (s) kKx (r −Kx)]V2x (s)[
−λ2 (s) k2Kx

]
V4x (s)


Hence, by taking the quaternion norm of equation (4.11), we get∥∥∥V1x

(s∗) ∧ V2x
(s∗) ∧ x

′′′
(s∗)

∥∥∥ = k√
k2 + (r −Kx)

2
(4.12)

(
16λ

′2

2 (s) k2 (r −Kx)
2

+25λ2
2 (s) k

′2

(r −Kx)
2

+λ2
2 (s) k

2
(
(r −Kx)

′)2

+λ
2

2 (s) k
2K2

x (r −Kx)
2

+λ
2

2 (s) k
4K2

x )
1
2
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Moreover, using the equations (4.2), (4.11) and (4.12), we have

V4x
(s∗) = η



 4λ
′

2 (s) k (r −Kx)

+5λ2 (s) k
′
(r −Kx)

+λ2 (s) k (r −Kx)
′

V1x (s)

[−λ2 (s) kKx (r −Kx)]V2x (s)[
−λ2 (s) k2Kx

]
V4x (s)


(

16λ
′2

2 (s) k2 (r −Kx)
2

+25λ2
2 (s) k

′2

(r −Kx)
2
+ λ2

2 (s) k
2(

(r −Kx)
′)2

+ λ
2

2 (s) k
2K2

x

(r −Kx)
2
+ λ

2

2 (s) k
4K2

x )
1
2

(4.13)

where η = ±1 providing that det (V1x
(s∗) , V2x

(s∗) , V3x
(s∗) , V4x

(s∗)) = ±1. Similarly,
using the equations (4.2), (4.9), (4.10), (4.13) and essential arrangements, the binormal
vector V3x

(s∗) is obtained as follows that

V3x
(s∗) = η

 (
−λ2 (s) kKx (r −Kx)

2
+ λ2 (s) k3Kx

)
V1x (s)(

−4λ
′

2 (s) k (r −Kx)
2 − 5λ2 (s) k

′
(r −Kx)

2
)
V2x (s)




(
16λ

′2

2 (s) k2 (r −Kx)
2
+ 25λ2

2 (s) k
′2

(r −Kx)
2
+ λ

2

2 (s) k
2K2

x

(
(r −Kx)

′)2

+λ
2

2 (s) k
2K2

x (r −Kx)
2
+ λ

2

2 (s) k
4K2

x )(
k2 + (r −Kx)

2
)



1
2

(4.14)

Conclusion 4.1 Let x be a regular unit speed real quaternionic curve in Q4 and any real
quaternionic curve x be the 2 nd order involute of x. The Frenet curvatures of the curve x
can be given as follows by the virtue of (4.2) .

Kx (s
∗) =

√
(r −Kx)

2
+ k2

λ2 (s) k
(4.15)

k∗ (s∗) =

(
16λ

′2

2 (s) k2 (r −Kx)
2
+ 25λ2

2 (s) k
′2

(r −Kx)
2
+ λ

2

2 (s) k
2K2

x

(
(r −Kx)

′)2

+λ
2

2 (s) k
2K2

x (r −Kx)
2
+ λ

2

2 (s) k
4K2

x )
1
2

λ2
2 (s) k (r −Kx)

2
+ k2 (s)

r∗ (s∗)−Kx (s
∗) =

√
k2 + (r −Kx)

2

k2λ2 (s)
(

16λ
′2

2 (s) k2 (r −Kx)
2
+ 25λ2

2 (s)

k
′2

(r −Kx)
2
+ λ2

2 (s) k
2
(
(r −Kx)

′)2

+λ
2

2 (s) k
2K2

x (r −Kx)
2

+λ
2

2 (s) k
4K2

x )

(4.16)

(
−λ2

2 (s) k
3K3

x (r −Kx) + 3λ
′′

2 (s)λ2 (s) k3Kx

(r −Kx)

+9λ
′

2 (s)λ2 (s) k
2k
′
Kx (r −Kx)

+4λ
2

2 (s) k
′′
k2Kx (r −Kx) + 3λ

2

2 (s) kk
′2

Kx (r −Kx)
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−λ
2

2 (s) k
5
Kx (r −Kx)λ

2

2 (s) k
3
Kx (r −Kx)

3

−λ
2

2 (s) k
3Kx (r −Kx)− 3λ

′′

2 (s)λ2 (s) k
3Kx (r −Kx)

−6λ
′

2 (s)λ2 (s) k
2k
′
Kx (r −Kx)− 3λ

2

2 (s) k
2k
′′
Kx (r −Kx)

−3λ
′

2 (s)λ2 (s) k
3Kx (r −Kx)

′
− 3λ2

2 (s) k
2k
′
Kx (r −Kx)

′

−λ
2

2 (s) k
3Kx (r −Kx)

′′
+ λ2

2 (s) k
3Kx (r −Kx)

3

+12λ
′2

2 (s) k3Kx (r −Kx) + 35λ
′

2 (s)λ2 (s) k
2k
′
Kx (r −Kx)

+3λ
′

2 (s)λ2 (s) k
3Kx (r −Kx)

′
+ 5λ

2

2 (s) k
2k
′
Kx

(r −Kx)
′
+ 25λ2

2 (s) k
′2

Kx (r −Kx) + 4λ
′

2 (s)λ2 (s)

k3K
′

x (r −Kx) + 5λ2
2 (s) k

2k
′
K
′

x (r −Kx)

+λ2 (s) k
3K
′

x (r −Kx)
′
)

This completes the proof.

Theorem 4.5: Let x be a regular unit speed real quaternionic curve in Q4 and any
real quaternionic curve x be 3 rd order involute of x. The Serret-Frenet apparatus of a
quaternionic curve x can be formed by apparatus of x.

Proof: Let x = x (s) be a unit speed real quaternionic curve. Without loss of general-
ity, suppose that x (s∗) is the 3 rd order involute of x.

Hence, we obtain

x (s∗) = x (s) + λ1 (s)V1x (s) + λ2 (s)V2x (s) + λ3 (s)V3x (s) (4.17)

By using equation (4.1) and we differentiating (4.17) with respect to s, we obtain

dx

ds∗
ds∗

ds
=

[
1 + λ

′

1 (s)− λ2 (s)Kx

]
V1x (s)[

λ1 (s)Kx + λ
′

2 (s)− λ3 (s) k
]

[
λ2 (s) k + λ

′

3 (s)
]
V3x (s) + [λ3 (s) (r −Kx)]V4x (s)

Moreover, we have〈
x
′
(s∗) , V1x (s)

〉
= 0,

〈
x
′
(s∗) , V2x (s)

〉
= 0 ,

〈
x
′
(s∗) , V3x (s)

〉
= 0

Thus, we get
dx

ds∗
ds∗

ds
= λ3 (s) (r −Kx)V4x (s) (4.18)

By using equation (4.1) and we differentiating (4.17) three time with respect to s, we
obtain

d2x

ds∗2

ds∗
2

ds
= −λ3 (s) (r −Kx)

2
V3x (s) (4.19)(

λ
′

3 (s) (r −Kx) + λ3 (s) (r −Kx)
′)
V4x (s)

d3x

ds∗3

ds∗
3

ds
=
[
λ3 (s) (r −Kx)

2
k
]
V2x (s) (4.20)
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[
−2λ

′

3 (s) (r −Kx)
2 − 3λ3 (s) (r −Kx) (r −Kx)

′]
V3x (s)[

λ
′′

3 (s) (r −Kx) + 2λ
′

3 (s) (r −Kx)
′

+λ3 (s) (r −Kx)
′′
− λ3 (s) (r −Kx)

3

]
V4x (s)

d4x

ds∗4

ds∗
4

ds
=
[
−λ3 (s)Kx (r −Kx)

2
k
]
V1x (s) (4.21) 3λ

′

3 (s) k (r −Kx)
2

+5λ3 (s) k (r −Kx)

+ (r −Kx)
′
+ λ3 (s) k

′
(r −Kx)

2

V2x (s)


λ3 (s) k2 (r −Kx)

2 − 3λ
′′

3 (s) (r −Kx)
2

−9λ
′

3 (s) (r −Kx)

+ (r −Kx)
′
− 3λ3 (s) (r −Kx)

−4λ3 (s) (r −Kx) (r −Kx)
′′

+λ3 (s) (r −Kx)
4

V3x (s)


−3λ

′

3 (s) (r −Kx)
3 − 3λ3 (s) (r −Kx)

2
(r −Kx)

′

+λ
′′′

3 (s) (r −Kx) + 3λ
′′

3 (s) (r −Kx)
′

+3λ
′

3 (s) (r −Kx)
′′
− 3λ3 (s) (r −Kx)

2
(r −Kx)

′

+λ3 (s) (r −Kx)
′′′

V4x (s)

Taking the quaternion norm of the equation (4.18), we have∥∥∥∥ dxds∗ ds∗ds
∥∥∥∥ = |λ3 (s)| (r −Kx) (4.22)

and by using equations (4.2), (4.18) and (4.22), we get

V1x
(s∗) =

ds∗

ds λ3 (s) (r −Kx)∣∣ds∗
ds

∣∣ |λ3 (s)| (r −Kx)
V4x (s)

Hence, we obtain
V1x

(s∗) = ±V4x (s) (4.23)

and let us calculate ±V4x (s) . From the equations (4.18) and (4.19), we get

h

(
dx

ds∗
,
d2x

ds∗2

)
=

ds3

ds∗3


λ3 (s) (r −Kx)(

λ
′

3 (s) (r −Kx) + λ3 (s) (r −Kx)
′)

1
2

[
V4x (s)× V4x (s)

+V4x (s)× V4x (s)

]


=
ds3

ds∗3

[
λ3 (s)λ

′

3 (s) (r −Kx)
2

+λ2
3 (s) (r −Kx) (r −Kx)

′

]

Therefore, by using the equations (4.2), (4.18), (4.19), (4.22) and the last equation, we
attain

V2x
(s∗) =

−λ3
3 (s) (r −Kx)

4
V3x (s)

λ3
3 (s) (r −Kx)

4

= −V3x (s) (4.24)

By using the equations (4.20), (4.23) and (4.24), we obtain

V1x
(s∗) ∧ V2x

(s∗) ∧ x
′′′
(s∗) =

[
λ3 (s) k (r −Kx)

2
]
V1x (s) (4.25)
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Hence, by taking the quaternion norm of the equation (4.25), we get∥∥∥V1x
(s∗) ∧ V2x

(s∗) ∧ x
′′′
(s∗)

∥∥∥ = λ3 (s) k (r −Kx)
2 (4.26)

Moreover, using the equations (4.2), (4.25) and (4.26), we have

V4x
(s∗) = ηV1x (s)

where η = ±1 providing that det (V1x
(s∗) , V2x

(s∗) , V3x
(s∗) , V4x

(s∗)) = ±1. Similarly,
using the equations (4.2), (4.23), (4.24), (4.27) and essential arrangements, the binormal
vector V3x

(s∗) is obtained as follows that

V3x
(s∗) = ηV2x (s)

Conclusion 4.2 Let x be a regular unit speed real quaternionic curve in Q4 and any real
quaternionic curve x be the 3 rd order involute of x. The Frenet curvatures of the curve x
can be given as follows by the virtue of (4.2) .

Kx (s
∗) =

1
λ3 (s)

(4.27)

k∗ (s∗) =
k

λ3 (s) (r −Kx)
(4.28)

r∗ (s∗)−Kx (s
∗) =

Kx

λ3 (s) (r −Kx)
(4.29)

This completes the proof.
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