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Abstract In this paper we have studied Lorentzian Para - Sasakian Manifold(LP - Sasakain)
and Lorentizian Special Para Sasakian manifold(LSP - Sasakian) manifold admitting conformal
Ricci soliton and conformal gradient Ricci soliton equation.

1 Introduction

Matsumoto [1] has initiated the study of Lorentzian almost Paracontact manifold. After
him many scientists studied Lorentizian almost paracontact manifolds and their different classes
namely LP- Sasakian and manifolds [2],[3],[4].

An n−dimensional Lorentzian manifold M is a smooth connected para-contact Housdroff
manifold with a Lorentizian metric g, i.e. M admits a smooth symmetric second order tensor
field g such that for each point p ∈M , the tensor gp : TpM×TpM −→ R is a non-degenerate in-
ner product of signature (−,+,+, ....,+) where TpM denotes the tangent vector space ofM at p.

In Riemannian manifold (M, g), the Ricci soliton[5] equation is given by

Ric+
1
2
£Xg + λg = 0, (1.1)

where £ is the Lie derivative, S is the Ricci tensor, V is a vector field on M and λ is a constant.
Ricci solitons are the natural generalization of Einstein metrics and are self-similar solutions
to the Ricci flow. Ricci solitons have been used as a popular tool in Physics and called quasi-
Einstein metric [6],[7].

A.E. Fischer [8] has introduced the concept of conformal Ricci flow during 2004-2005. Lu,
Qing and Zheng[9] used DeTurck’s trick to rewrite conformal Ricci flow as a strong parabolic-
elliptic partial differential equations. Then they proved short time existences for conformal Ricci
flow on compact manifolds as well as on asymptotically flat manifolds. The concept of confor-
mal Ricci soliton [10] was introduced by N.Basu and A.Bhattacharyya in 2015. The conformal
Ricci soliton equation is given by

£V g + 2S = [2λ− (p+
2
n
)]g, (1.2)

where p is the non-dynamical scalar field and the scalar curvature R(g) = −1. The equation
is the generalization of the Ricci soliton equation and it also satisfies the conformal Ricci flow
equation and it also satisfies the conformal Ricci flow equation.

If in the conformal Ricci soliton equation the tangent vector V is gradient of a smooth
funtion f the equation will be called conformal gradient Ricci soliton equation and written as

∇∇f + 2S = [2λ− (p+
2
n
)]g. (1.3)
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We shall study conformal Ricci soliton and conformal gradient Ricci soliton in LP- Sasakian
and LSP- Sasakain manifold.

2 Preliminaries:

Let M be an n−dimensional Lorientzian para Sasakian Manifold ( LP - Sasakian)[11]
manifold with structure (φ, ξ, η, g) where φ is a (1,1) tensor field, ξ is a contravariant vector
field, η is a 1-form and g is a Lorentzian metric if

η(ξ) = −1, φ2 = I + η ⊗ ξ. (2.1)

φ(ξ) = 0; ηφ = 0; ∇Xξ = φX; rank(φ) = n− 1. (2.2)

η(X) = g(ξ,X); g(φX, φY ) = g(X,Y ) + η(X)η(Y ) (2.3)

(∇Xη)(Y ) = Ω(X,Y ), Ω(X,Y ) = Ω(Y,X), (2.4)

where Ω(X,Y ) = g(φY,X).

An n− dimensional Lorentzian manifold (M, g) is said to be Lorentzin special para Sasakian
(LSP- Sasakian) manifold if M admits a timelike unit vector field ξ with associated 1-form η
satisfies

Ω(X,Y ) = (∇Xη)(Y ) = εg(X,Y ) + η(X)η(Y ), ε2 = 1. (2.5)

An LSP Sasakian manifold is always LP Sasakian manifold but the converse is not true.

On the other hand, the eigenvalues of φ are −1, 0, 1 and the multiplicity of 0 is 1 by (2.2). Let
k and l be the multiplicities of−1 and 1 respectively. Then trφ = l−k. So, if (trφ)2 = (n−1)2,
then either l = 0 or k = 0. In this case, we call our structure is a trivial LP- Sasakian structure.

In an n− dimensional LP- Sasakian manifold with structure (φ, ξ, η, g), we know the fol-
lowing relations hold

η(R(X,Y )Z) = g(Y,Z)η(X)− g(X,Z)η(Y )
S(X, ξ) = (n− 1)η(X).

(2.6)

R(ξ, Y )X = g(Y,X)ξ − η(X)Y

R(Y,X)ξ = η(X)Y − η(Y )X.
(2.7)

φ(R(X,φY )Z) = R(X,Y )Z + 2[η(Y )X − η(X)Y ]η(Z) + 2[g(X,Z)η(y)

−g(Y,Z)η(X)]ξ + Ω(X,Z)φY −Ω(Y,Z)φX

+g(Y,Z)X − g(X,Z)Y.
(2.8)

Here R is the curvature tensor and S is the Ricci tensor.

An n− dimensional LP-Sasakian manifold is said to be η- Einstein if the Ricci tensor S
satisfies

S = ag + bη ⊗ η, (2.9)

where a, b are smooth functions on the manifold.

In η-Einstein LP-Sasakian manifold, the Ricci tensor S is of the form

S(X,Y ) =
n

1− n
g(X,Y ) +

n− 1− n2

n− 1
η(X)η(Y ). (2.10)

We have considered scalar curvature is -1, as it is so, for conformal Ricci flow Ricci operator
is of the form

QX =
n

1− n
X +

n− n2 − 1
n− 1

η(X)ξ. (2.11)
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3 Conformal Ricci soliton:

Theorem 3.1. If an LP Sasakian manifold admits conformal Ricci soliton and a symmetric
parallel (0, 2) tensor field, then the soliton is steady, shirking or expanding according as
λ = 1

2(p+
2
n), λ >

1
2(p+

2
n) or λ <

1
2(p+

2
n).

Proof: We consider an LP- Sasakian manifold which admits conformal Ricci soliton equation.
Now as [2λ− (p+ 2

n)] is constant, we have ∇[2λ− (p+ 2
n)]g = 0. From [11], we know that if

an LP- Sasakian manifold admits a symmetric parallel (0,2) tensor, then the tensor is a constant
multiple of the metric tensor. Hence we can write £V g + 2S = cg, where c is a constant. Now
from (1.2) we get 1

2 [c+ (p+ 2
n ] = λ. The soliton is steady, shrinking or expanding according as

c = 0, c > 0 or c < 0. So, we can say the soliton is steady, Shirking or expanding according as
λ = 1

2(p+
2
n), λ >

1
2(p+

2
n) or λ <

1
2(p+

2
n).2

Theorem 3.2. If LP-Sasakian manifold admits conformal Ricci soliton and V is pointwise collinear
with ξ, then V is a constant multiple of ξ provided λ = p

2 + 1 + 1−n2

n .

Proof: Let V be point-wise collinear with ξ, i.e. V = bξ, where b is a function on the LP-
Sasakian manifold. Then we have

£V g + 2S = [2λ− (p+
2
n
)]g.

Putting V = bξ, we have

g(∇Xbξ, Y ) + g(∇Y bξ,X) + 2S(X,Y ) + [(p+
2
n
)− 2λ]g(X,Y ) = 0.

Using (2.2), we get

2bg(φX, Y ) + (Xb)η(Y ) + (Y b)η(X) + 2S(X,Y ) + [(p+
2
n
)− 2λ]g(X,Y ) = 0. (3.1)

Putting Y = ξ in (3.1), we have

(Xb) + (ξb)η(X) + 2(n− 1)η(X) + [(p+
2
n
)− 2λ]η(X) = 0. (3.2)

If we put X = ξ in (3.2), the equation reduces into

ξb =
1
2
(p+

2
n
)− λ− (n− 1). (3.3)

Now putting the value of (3.3) in (3.2), we get

Xb = [
1
2
(p+

2
n
)− λ− (n− 1)]η(X). (3.4)

If we consider Xb = 0, we get

1
2
(p+

2
n
)− λ− (n− 1) = 0

=⇒ λ =
p

2
+ 1 +

1− n2

n
.

So we can conclude that V is constant multiple of ξ, provided λ = p
2 + 1 + 1−n2

n .2

Corollary 3.3. If a LP- Sasakian manifold admits conformal Ricci soliton and the vector field V
is collinear with ξ, then the constant λ = n2−1

n + p
2 .
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Proof. Putting V = ξ in the conformal Ricci soliton equation (1.2), we get

2g(φX, Y ) + 2S(X,Y ) = [2λ− (p+
2
n
)]g(X,Y ). (3.5)

Now putting X = ξ in the above equation and using (2.6), we get λ = n2−1
n + p

2 .2

Theorem 3.4. If a LSP- Sasakian manifold admits conformal Ricci soliton, then the manifold
must be an Einstein manifold and moreover if V is collinear with ξ then the metric g can be
expressed as a product of two one-forms.

Proof. For LSP- Sasakian manifold

(∇Xη)Y = g(φX, Y ) = ε[g(X,Y ) + η(X)η(Y )]; ε2 = 1. (3.6)

From (3.1) we have

2bg(φX, Y ) + (Xb)η(Y ) + (Y b)η(X) + 2S(X,Y ) + [(p+
2
n
)− 2λ]g(X,Y ) = 0. (3.7)

Now using (3.6) and (3.4) in (3.1), we get

2S(X,Y ) = [2(λ− n+ 1)− 2bε− (p+
2
n
)]η(X)η(Y ) + [2λ− (p+

2
n
)− 2bε]g(X,Y ), (3.8)

which shows that the manifold is η-Einstein manifold.

Lets us put [2(λ− n+ 1)− 2bε− (p+ 2
n)] = γ and [2λ− (p+ 2

n)− 2bε] = δ.
Here γ and δ are constants.
Putting V = ξ in (1.2), we have

g(∇Xξ, Y ) + g(∇Y ξ,X) + 2S(X,Y ) + [(p+
2
n
)− 2λ]g(X,Y ) = 0.

Using (3.7), we get

g(φX, Y ) + g(φY,X) + [(p+
2
n
)− 2λ+ 2γ]g(X,Y ) + 2γη(X)η(Y ) = 0. (3.9)

From (2.4), we have

2Ω(X,Y ) + [(p+
2
n
)− 2λ+ 2γ]g(X,Y ) + 2δη(X)η(Y ) = 0.

Using (2.5), we get

[(p+
2
n
)− 2λ+ 2δ + 2ε]g(X,Y ) + [2δ + 2ε]η(X)η(Y ) = 0 (3.10)

So we can conclude that g can be expressed as product of two one forms.2

Example: Consider the 3− dimensional manifold M = (x, y, z) ∈ R3 where (x, y, z) are
the standard notation of R3 and lets us consider the vector fields

e1 = ez ∂
∂y , e2 = ez( ∂∂x + ∂

∂y ), e3 =
∂
∂z

where e1, e2, e3 are linearly independent at each point of M .
Let g be the metric defined by

g(e1, e1) = g(e2, e2) = g(e3, e3) = −1

and g(e1, e2) = g(e1, e3) = g(e2, e3) = 0.



Chac. of Conf. Ricci sol....... 443

Let η be the one form defined by η(x) = g(x, e3) for any vector field X ∈ χ(M). Let φ be
the (1, 1) tensor field defined by

φ(e1) = −e1, φ(e2) = −e2, φ(e3) = 0.

Then using the linearity of φ and g we have

η(e3) = −1, φ2X = x+ η(X)e3, g(φX, φY ) = g(X,Y ) + η(X)η(Y )

for all vector fields X,Y ∈ χ(M). Hence for e3 = ξ, the structure defined a Lorentzian para
contact structure on M . Let ∇ be the Levi-Civita connection with respect to the Lorentizian
metric g, then we obtain

[e1, e2] = 0, [e1, e3] = −e1, [e2, e3] = −e2.

Taking e3 = ξ and using Koszul’s formula for the Lorentizian metric g, we obtain

∇e1e1 = −e3, ∇e1e2 = 0, ∇e1e3 = −e1,

∇e2e1 = 0, ∇e2e2 = −e3, ∇e2e3 = −e2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

with the help of above results we get

R(e1, e2)e3 = 0, R(e2, e3)e3 = −e2, R(e1, e3)e3 = −e1

R(e1, e2)e2 = e1, R(e2, e3)e2 = −e3, R(e1, e3)e2 = 0

R(e1, e2)e1 = −e2, R(e2, e3)e1 = 0, R(e1, e3)e3 = −e1.

From the above expression the Ricci tensor is given by

S(e1, e1) = g(R(e1, e2)e2, e1)− g(R(e1, e3)e3, e1) = 2.

Similarly, we get, S(e2, e2) = 2, S(e3, e3) = 2

and S(e1, e2) = S(e2, e3) = S(e1, e3) = 0.

Now from (3.5), we obtain

S(ei, ei) + g(φei, ei) = [λ− 1
2
(p+

2
3
)]g(ei, ei) (3.11)

where i = 1, 2, 3
we get λ = p

2 + 4
3 .

Therefore λ = p
2 + 4

3 > 0, so we can conclude that the Lorentizian metric satisfies confor-
mal Ricci Soliton equation on (M,φ, ξ, g) and the conformal Ricci soliton is expanding as λ is
positive.2

4 Conformal gradient Ricci soliton

Theorem 4.1. If a LP- Sasakian manifold admits conformal gradient Ricci soliton then the man-
ifold must be Einstein manifold.
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Proof. Conformal gradient Ricci soliton equation (1.3) can be written as

∇YDf = QY + [2λ− (p+
2
n
)]Y, (4.1)

where D is gradient operator of g. So, we can write

R(X,Y )Df = (∇XQ)Y − (∇YQ)X, (4.2)

=⇒ g(R(ξ, Y )Df, ξ) = g((∇ξQ)Y, ξ)− g((∇YQ)ξ, ξ). (4.3)

Now using (2.11) and (2.2), we have

(∇YQ)X =
1

n− 1
(X + η(X)ξ) + (

n− n2 − 1
n− 1

)[g(Y, φX)ξ + η(X)φY ], (4.4)

=⇒ g((∇XQ)ξ − (∇ξQ)X, ξ) = 0. (4.5)

Then from (4.3), we have
g(R(ξ,X)Df, ξ) = 0. (4.6)

From (2.7) and (4.6), we get

g(R(ξ, Y )Df, ξ) = −g(Y,Df)− η(Df)η(Y ) = 0.

Hence
Df = −η(Df)ξ = −g(Df, ξ)ξ = −(ξf)ξ. (4.7)

Using (4.7) in (1.3), we have

S(X,Y ) + [2λ− (p+
2
n
)]g = −Y (ξf)η(X)− ξfg(X,φY ). (4.8)

Now if we put X = ξ, we get

S(ξ, Y ) + [2λ− (p+
2
n
)]g(ξ, Y ) = −Y (ξf)η(ξ)− ξfg(ξ, φY ).

Using (2.7) and (3.5), we have

[2λ+ n− 1− (p+
2
n
)]η(Y ) = Y (ξf). (4.9)

From this it is clear that if 2λ+n−1−(p+ 2
n) = 0, i.e. λ = 1

2 +
p
2 +

1
n−

n
2 , then ξf = constant.

From (4.7), we get Df = −(ξf)ξ = cf . In particular taking a frame field ξf = 0, we get
f = constant.

Also from (1.3), we have

2S = [2λ− (p+
2
n
)]g. (4.10)

Now putting the value of λ = 1
2 + p

2 + 1
n −

n
2 , we get

S(X,Y ) =
1− n

2
g(X,Y ). (4.11)

Which shows that the manifold is Einstein.2
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