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Abstract In this study, we determine translation surfaces generated by spherical indicatrices
of space curves in E3 and obtain some characterizations based on the fact that such surfaces are
flat or minimal. Also, we give some examples of such surfaces by using Mathematica.

1 Introduction

The parameterization of a translation surface is in 3-dimensional Euclidean space is given by :

X(u, v) = (u, 0, f(u)) + (0, v, g(v))

where f and g are real valued differentiable functions on the open interval. In 1835, H. Scherk
was proved that the minimal translation surface, excluding planes, is only the Scherk surface
given by the parameterization:

X(u, v) =

(
u, v,

1
c

log
∣∣∣∣cos(cu)
cos(cv)

∣∣∣∣),where c is non-zero real constant

The generalized type of a translation surface is the surface shaped by moving α parallel to
itself in such a way that a point of the curve moves along β [6]. Therefore, the parameterization
of the surface is determined as:

X(u, v) = α(u) + β(v), (1.1)

where α and β are curves given by the parameters u and v, respectively. There are many papers
on translation surfaces. Vestraelen et al. studied minimal translation surfaces in n-dimensional
Euclidean space [16]. Liu obtained some characterizations about the translation surfaces with
constant mean curvature or constant Gauss curvature in 3-dimensional Euclidean space E3 and
3-dimensional Minkowski space E3

1 [9]. Muntenau and Nistor study the second fundamental
form of the translation surfaces in 3-dimensional Euclidean space E3 [10] and obtained some
characterizations by using the second Gaussian curvature KII of the translation surfaces . Cetin
et al. expressed some computations about the translation surface in terms of Frenet vector fields
and the curvatures of generator curves of the surface [3, 4]. Cetin et al. studied on parallel
surface to translation surfaces in E3 [5]. Ali et al. gave some results on some special points of
the translation surfaces in E3 [1]. Since the translation surfaces are surfaces produced by two
space curves, some basic calculations of the surface can be stated in terms of Frenet vectors and
curvatures of the curve. There is a different version of the relation between curve and surface
in the studies [11], [12], [13], [14]. In these studies, some special curves lying on the surface
are studied and Frenet vectors and curvatures of the curve are expressed in terms of some basic
calculations of the surface.

In this paper, we determine translation surfaces generated by tangent, normal and binormal
indicatrices of space curves in E3, respectively and obtain some characterizations based on the
fact that such surfaces are flat or minimal. Also we give some examples of such surfaces by
using Mathematica.
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2 Preliminaries

Let ϕ : I ⊂ R → E3 : s → ϕ(s) be an arbitrary curve given by the arc-length parameter s in
E3. Let {t, n, b} and κ, τ be the Frenet vector fields and curvature functions of the curve ϕ ,
respectively. There is a relation between the derivatives of Frenet vector fields with respect to
arc-length parameter s and themselves as follows: t′(s)

n′(s)

b′(s)

 =

 0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0


 t(s)

n(s)

b(s)

 ,
Definition 2.1. A curve ϕ : I ⊂ R→ E3 , with unit speed, is a general helix if there is a constant
vector u, so that 〈t, u〉 = cos θ is constant along the curve, where t(s) = ϕ′(s) is a unit tangent
vector of ϕ at s [7].

Theorem 2.2. A curve ϕ : I ⊂ R → E3, with unit speed, is a general helix if and only if( τ
κ

)
(s) = constant. If both of κ(s) 6= 0 and τ(s) are constant, then it is called a circular helix

[7].

Definition 2.3. Let ϕ be a unit speed regular curve in Euclidean 3-space with Frenet vectors t ,
n and b. The unit tangent vectors along the curve ϕ generate a curve (t) on the sphere of radius
1 about the origin. The curve (t) is called the spherical indicatrix of t or more commonly, (t)
is called tangent indicatrix of the curve ϕ. If ϕ = ϕ(s) is a natural representation of ϕ, then
(t) = t(s) will be a representation of (t). Similarly one considers the principal normal indicatrix
(n) = n(s) and binormal indicatrix (b) = b(s) [15].

Let M : X = X(u, v) ⊂ E3 be a regular surface. Then the unit normal vector field of the
surface M is determined by

N =
Xu ×Xv

‖Xu ×Xv‖
,

where Xu =
∂X(u, v)

∂u
, Xv =

∂X(u, v)

∂v
are the parameter curves of M and × denotes the

vector product of E3. The coefficients of the first fundamental form and second fundamental
form are given by, respectively as follows:

E = 〈Xu, Xu〉, F = 〈Xu, Xv〉, G = 〈Xv, Xv〉

and
l = 〈Xuu, N〉, m = 〈Xuv, N〉, n = 〈Xvv, N〉.

Gauss and mean curvatures of the surface M are expressed as follows:

K =
ln−m2

EG− F 2 , (2.1)

H =
1
2
En+Gl − 2Fm

EG− F 2 . (2.2)

Definition 2.4. If Gauss curvature of a regular surface in E3 vanishes, the surface is called flat
and if its mean curvature vanishes, then the surface is called minimal surface [8].

Definition 2.5. A constant angle surface in E3 is a surface whose unit normal vector makes a
constant angle with an assigned direction field [2].

3 Translation Surfaces Generated by Spherical Indicatrices of Space Curves
in Euclidean 3-Space

Let α : I → E3 and β : J → E3 be non-degenerate curves given by arc-length parameters u
and v, respectively. Let {tα, nα, bα, κα, τα} and {tβ , nβ , bβ , κβ , τβ} be Frenet Apparatus of the
curves α and β, respectively. In this section, we investigate the translation surfaces generated by
tangent indicatrices, principal normal indicatrices and binormal indicatrices of the curves α and
β and obtain some characterizations for such surfaces.
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3.1 Translation Surfaces Generated by Tangent Indicatrices of Space Curves in
Euclidean 3-Space

Translation surface generated by tangent indicatrices of space curves in E3 is defined by :

M1 : X(u, v) = tα(u) + tβ(v). (3.1)

Calculating the partial derivative with respect to u and v of the translation surface is given by the
parametrization (3.1), we obtain

Xu = καnα, Xv = κβnβ .

Hence, the components of the first fundamental form of the surface M1 are obtained as:

E = κ2
α, (3.2)

F = κακβ cos[φ(u, v)], (3.3)

G = κ2
β . (3.4)

Note that φ = φ(u, v) is the smooth angle function between nα and nβ .
In that case, the unit normal vector of the translation surface M1 is obtained as:

N(u, v) =
nα × nβ

sin[φ(u, v)]
, (3.5)

Since the surface M1 is a regular surface, sin[φ(u, v)] 6= 0. The principal normal vector of the
curve α can be expressed as a linear combination of {tβ , nβ , bβ} as:

nα = µ1tβ + µ2nβ + µ3bβ , (3.6)

where

µ1 = 〈nα, tβ〉 = sin[φ(u, v)]cos[γ(u, v)],

µ2 = 〈nα, nβ〉 = cos[φ(u, v)],

µ3 = 〈nα, bβ〉 = sin[φ(u, v)]sin[γ(u, v)]. (3.7)

Similarly, the principal normal vector of the curve β can be expressed as a linear combination of
{tα, nα, bα} as:

nβ = λ1tα + λ2nα + λ3bα, (3.8)

where

λ1 = 〈nβ , tα〉 = sin[φ(u, v)]cos[θ(u, v)],

λ2 = 〈nβ , nα〉 = cos[φ(u, v)],

λ3 = 〈nβ , bα〉 = sin[φ(u, v)]sin[θ(u, v)]. (3.9)

We can write the unit normal vector of surface M1 in two different ways:
By using (3.5) and (3.8), it is determined by

N1 = sin[θ(u, v)]tα − cos[θ(u, v)]bα (3.10)

or by combining (3.5) and (3.6), it is given as:

N2 = − sin[γ(u, v)]tβ + cos[γ(u, v)]bβ . (3.11)

Also, the components of the second fundamental form of the surface M1 are computed as:

l = −κα2
[

cos[θ(u, v)]
τα
κα

+ sin[θ(u, v)]
]
, (3.12)

m = 0, (3.13)

n = κβ
2
[

cos[γ(u, v)]
τβ
κβ

+ sin[γ(u, v)]
]
. (3.14)
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Proposition 3.1. The Gaussian curvatureK and the mean curvatureH of the translation surface
M1 are found as the follows, respectively:

K = −

[
cos[θ(u, v)] τακα + sin[θ(u, v)]

] [
cos[γ(u, v)] τβκβ + sin[γ(u, v)]

]
sin2[φ(u, v)]

, (3.15)

H =
−
[
cos[θ(u, v)] τακα + sin[θ(u, v)]

]
+
[
cos[γ(u, v)] τβκβ + sin[γ(u, v)]

]
2 sin2[φ(u, v)]

. (3.16)

Proof. By substituting (3.2), (3.3), (3.4), (3.12), (3.13), (3.14) in (2.1) and (2.2), we obtain (3.15)
and (3.16), respectively. 2

Theorem 3.2. If the surface M1 is flat then

cos[θ(u, v)]
τα
κα

+ sin[θ(u, v)] = 0 or cos[γ(u, v)]
τβ
κβ

+ sin[γ(u, v)] = 0. (3.17)

Proof. It is obvious from Definition 2.4 and (3.15). 2

Theorem 3.3. If the surface M1 is flat, then the angle θ is a function that depends only on u or
the angle γ is a function that depends only on v.

Proof. Let the surface M1 be flat. Then (3.17) holds.
If cos[θ(u, v)] τακα + sin[θ(u, v)] = 0, then

τα
κα

= − tan[θ(u, v)]. Hence the angle θ becomes only

a function of u. Similarly, if cos[γ(u, v)] τβκβ + sin[γ(u, v)] = 0, then
τβ
κβ

= − tan[γ(u, v)]. So,

the angle γ becomes only a function of v. 2

Theorem 3.4. Let the surface M1 be flat. If the curves α and β are helices then the angles θ or
γ are constant.

Proof. We assume that the surface M1 is flat. In that case the equation (3.17) is satisfied. If
cos[θ(u, v)] τακα+sin[θ(u, v)] = 0, then

τα
κα

= − tan[θ(u, v)]. Since α is a helix curve, tan[θ(u, v)]

becomes constant and it is implies that θ is constant. If cos[γ(u, v)] τβκβ + sin[γ(u, v)] = 0, then
τβ
κβ

= − tan[γ(u, v)]. Since β is a helix curve, tan[γ(u, v)] is constant. Hence γ becomes a con-

stant angle. 2

Theorem 3.5. Let the surface M1 be flat. If the curves α and β are planar curves then the angles
θ = πk or γ = πk (k ∈ Z).

Proof. Let α and β be planar curves, then τα = 0 and τβ = 0. Since the surface M1 is flat,
from (3.17) we obtain that sin[θ(u, v)] = 0 or sin[γ(u, v)] = 0. If sin[θ(u, v)] = 0, then θ = πk,
k ∈ Z. Similarly, if sin[γ(u, v)] = 0, then γ = πk, k ∈ Z. 2

Theorem 3.6. Let the surface M1 be flat. If the curves α and β are helices, then the surface M1
is a constant angle surface.

Proof. We suppose that the surface M1 is flat and the curves α and β are helices. From Theorem
3.4, θ = θ0 or γ = γ0 are constant angles. Without loss of generality, we suppose that θ is
constant. Since α is helix, then there exists a unit constant direction uα which makes a constant
angle with unit tangent vector tα of the curve α. Then 〈tα, uα〉 = cos δ0 = constant. Hence we
can define uα as:

uα = cos δ0tα + sin δ0bα. (3.18)
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By using (3.10) and (3.18), we get

〈N1, uα〉 = sin θ0cos δ0 − cos θ0sin δ0

= constant.

From Definition 2.5 it completes the proof. 2

Theorem 3.7. If the surface M1 is minimal then

cos[θ(u, v)]
τα
κα

+ sin[θ(u, v)] = cos[γ(u, v)]
τβ
κβ

+ sin[γ(u, v)]. (3.19)

Proof. It is obvious from Definition 2.4 and (3.16). 2

Theorem 3.8. Let the surface M1 be minimal. If the curves α and β are planar curves then the
angle between nα and bβ and the angle between bα and nβ are the same.

Proof. Let α and β be planar curves, then τα = 0 and τβ = 0. Since the surface M1 is minimal,
from (3.19) we have that sin[θ(u, v)] = sin[γ(u, v)]. In that case (3.7) and (3.9) are equal to each
other. 2

Example 3.9. Let α and β be curves in E3 given by

α(u) =

(
cos
[
u√
5

]
,

2u√
5
, sin

[
u√
5

])
,

β(v) =
1
2

(
v +

√
1 + v2, (v +

√
1 + v2)−1,

√
2 ln(v +

√
1 + v2)

)
where α and β are curves given by the arc-length parameters u and v, respectively. The tangent
indicatrices of the curve α and β are as:

tα(u) =
1√
5

(
− sin

[
u√
5

]
, 2, cos

[
u√
5

])
and

tβ(v) =
1
2

(
v +
√

1 + v2
√

1 + v2
,− 1√

1 + v2(v +
√

1 + v2)
,

√
2√

1 + v2

)
.

Then the translation surface generated by tα and tβ tangent indicatrices of space curves is as:

M1(u, v) =

(
−

sin
[
u√

5

]
√

5
+
v +
√

1 + v2

2
√

1 + v2
,

2√
5
− 1

2
√

1 + v2(v +
√

1 + v2)
,

cos
[
u√

5

]
√

5
+

√
2

2
√

1 + v2

)
.
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Figure 1. Translation surface generated by tangent indicatrices of space curves

3.2 Translation Surfaces Generated by Principal Normal Indicatrices of Space
Curves in Euclidean 3-Space

Translation surface generated by principal normal indicatrices of space curves in E3 is deter-
mined by:

M2 : X(u, v) = nα(u) + nβ(v). (3.20)

By calculating the partial derivative with respect to u and v of the translation surface is given by
the parametrization (3.20), we obtain

Xu = −καtα + ταbα, Xv = −κβtβ + τβbβ .

The Frenet vector fields of the curve α can be written as a linear combination of {tβ , nβ , bβ} as:

tα = λ1tβ + λ2nβ + λ3bβ , (3.21)

nα = λ4tβ + λ5nβ + λ6bβ , (3.22)

bα = λ7tβ + λ8nβ + λ9bβ . (3.23)

Similarly, the Frenet vector fields of the curve β can be written as a linear combination of
{tα, nα, bα} as:

tβ = λ1tα + λ4nα + λ7bα, (3.24)

nβ = λ2tα + λ5nα + λ8bα, (3.25)

bβ = λ3tα + λ6nα + λ9bα, (3.26)

where

〈tα, tβ〉 = λ1, 〈tα, nβ〉 = λ2, 〈tα, bβ〉 = λ3,

〈nα, tβ〉 = λ4, 〈nα, nβ〉 = λ5, 〈nα, bβ〉 = λ6,

〈bα, tβ〉 = λ7, 〈bα, nβ〉 = λ8, 〈bα, bβ〉 = λ9.

(3.27)
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Hence, the components of the first fundamental form of the surface M2 are obtained as the
following:

E = κ2
α + τ 2

α, (3.28)

F = κακβ

(
λ1 −

τβ
κβ
λ3

)
− τακβ

(
λ7 −

τβ
κβ
λ9

)
, (3.29)

G = κ2
β + τ 2

β . (3.30)

Then, the unit normal vector of the translation surface M2 is found as:

N(u, v) =
κακβ

[
(tα × tβ)− τβ

κβ
(tα × bβ)

]
− τακβ

[
(bα × tβ)− τβ

κβ
(bα × bβ)

]
√
EG− F 2

, (3.31)

where

EG− F 2 = (κ2
α + τ 2

α)(κ
2
β + τ 2

β)−
[
κακβ

(
λ1 −

τβ
κβ
λ3
)
− τακβ

(
λ7 −

τβ
κβ
λ9
)]2

.

By using (3.24), (3.26) and (3.31), the unit normal vector of the surface M2 is written as:

N1 =
κακβ

[
τα
κα

(
λ4 − τβ

κβ
λ6
)
tα −

[(
λ7 − τβ

κβ
λ9
)
+ τα

κα

(
λ1 − τβ

κβ
λ3
)]
nα +

(
λ4 − τβ

κβ
λ6
)
bα

]
√
EG− F 2

or by using (3.21), (3.23) and (3.31), the unit normal vector of the surface M2 can be expressed
as:

N2 =
κακβ

[
τβ
κβ

(
τα
κα
λ8 − λ2

)
tβ +

[(
λ3 +

τβ
κβ
λ1
)
− τα

κα

(
λ9 +

τβ
κβ
λ7
)]
nβ +

(
τα
κα
λ8 − λ2

)
bβ

]
√
EG− F 2

,

Also, the components of the second fundamental form of the surface M2 are computed as:

l =
κακβ√
EG− F 2

[
κα

( τα
κα

)′(
λ4 −

τβ
κβ
λ6
)
−
(
κα

2 + τα
2)[( τβ

κβ
λ9 − λ7

)
+
τα
κα

( τβ
κβ
λ3 − λ1

)]]
,(3.32)

m = 0, (3.33)

n = − κακβ√
EG− F 2

[
κβ

( τβ
κβ

)′(
λ2 −

τα
κα
λ8
)
+
(
κβ

2 + τβ
2)[(λ3 +

τβ
κβ
λ1
)
− τα
κα

(
λ9 +

τβ
κβ
λ7
)]]

.(3.34)

Proposition 3.10. The Gaussian curvature K and the mean curvature H of the translation sur-
face M2 are obtained as follows, respectively:

K = − κα
2κβ

2

(
√
EG− F 2)4


κα

(
τα
κα

)′(
λ4 − τβ

κβ
λ6
)

−
(
κα

2 + τα
2
)( τβ
κβ
λ9 − λ7

)
−
(
κα

2 + τα
2
)
τα
κα

( τβ
κβ
λ3 − λ1

)



κβ

(
τβ
κβ

)′(
λ2 − τα

κα
λ8
)

+
(
κβ

2 + τβ
2
)(
λ3 +

τβ
κβ
λ1
)

−
(
κβ

2 + τβ
2
)
τα
κα

(
λ9 +

τβ
κβ
λ7
)
,

(3.35)

H =
κακβ

2(
√
EG− F 2)3



κα

(
τα
κα

)′
(κβ2 + τβ

2)
(
λ4 − τβ

κβ
λ6
)

−
(
κα

2 + τα
2
)
(κβ2 + τβ

2)
( τβ
κβ
λ9 − λ7

)
−
(
κα

2 + τα
2
)
(κβ2 + τβ

2) τακα
( τβ
κβ
λ3 − λ1

)
−κβ

(
τβ
κβ

)′
(κα2 + τα

2)
(
λ2 − τα

κα
λ8
)

−(κα2 + τα
2)
(
κβ

2 + τβ
2
)(
λ3 +

τβ
κβ
λ1
)

+(κα2 + τα
2)
(
κβ

2 + τβ
2
)
τα
κα

(
λ9 +

τβ
κβ
λ7
)


. (3.36)



TRANSLATION SURFACES IN EUCLIDEAN 3-SPACE 463

Proof. By substituting (3.28), (3.29), (3.30), (3.32), (3.33), (3.34) in (2.1) and (2.2), we obtain
(3.35) and (3.36), respectively. 2

Theorem 3.11. If the surface M2 is flat then

κα

( τα
κα

)′(
λ4 −

τβ
κβ
λ6
)
−
(
κα

2 + τα
2)[( τβ

κβ
λ9 − λ7

)
+
τα
κα

( τβ
κβ
λ3 − λ1

)]
= 0

or

κβ

( τβ
κβ

)′(
λ2 −

τα
κα
λ8
)
+
(
κβ

2 + τβ
2)[(λ3 +

τβ
κβ
λ1
)
− τα
κα

(
λ9 +

τβ
κβ
λ7
)]

= 0. (3.37)

Proof. It is obvious from Definition 2.4 and (3.35). 2

Theorem 3.12. Let the surface M2 be flat. If the curves α and β are planar curves then tα and
bβ are orthogonal or bα and tβ are orthogonal.

Proof. Let α and β be planar curves. Then τα = 0 and τβ = 0. Since the surface M2 is flat from
(3.37) we obtain that λ3 = 0 or λ7 = 0. If λ3 = 0, from (3.27) 〈tα, bβ〉 = 0. Then it implies that
tα and bβ are orthogonal. Similarly, if λ7 = 0, then from (3.27) 〈bα, tβ〉 = 0. Then it implies
that bα and tβ are orthogonal. 2

Theorem 3.13. If the surface M2 is minimal then

κα

(
τα
κα

)′
(κβ2 + τβ

2)
(
λ4 − τβ

κβ
λ6
)

−
(
κα

2 + τα
2
)
(κβ2 + τβ

2)
( τβ
κβ
λ9 − λ7

)
−
(
κα

2 + τα
2
)
(κβ2 + τβ

2) τακα
( τβ
κβ
λ3 − λ1

)
−κβ

(
τβ
κβ

)′
(κα2 + τα

2)
(
λ2 − τα

κα
λ8
)

−(κα2 + τα
2)
(
κβ

2 + τβ
2
)(
λ3 +

τβ
κβ
λ1
)

+(κα2 + τα
2)
(
κβ

2 + τβ
2
)
τα
κα

(
λ9 +

τβ
κβ
λ7
)


= 0. (3.38)

Proof. It is obvious from Definition 2.4 and (3.36). 2

Theorem 3.14. If the surface M2 is minimal and the curves α and β are planar curves then the
angle between tα and bβ and the angle between bα and tβ are the same.

Proof. Let α and β be planar curves, then τα = 0 and τβ = 0. Since the surface M2 is minimal
from (3.38) we obtain λ3 = λ7. Hence, from (3.27) 〈tα, bβ〉 = 〈bα, tβ〉. 2

Example 3.15. Let α and β be curves in E3 given by

α(u) =
1√
5

(√
1 + u2, 2u, ln(u+

√
1 + u2)

)
,

β(v) =

(
5

13
cos[v],

8
13
− sin[v],−12

13
cos[v])

)
where α and β are curves given by the arc-length parameters u and v, respectively. The principal
normal indicatrices of the curve α and β are as follows:

nα(u) =

(
1√

1 + u2
, 0,− u√

1 + u2

)
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and

nβ(v) =

(
− 5

13
cos[v], sin[v],

12
13

cos[v]
)
.

Then the translation surface generated by nα and nβ principal normal indicatrices of space curves
is as:

M2(u, v) =

(
1√

1 + u2
− 5

13
cos[v], sin[v],− u√

1 + u2
+

12
13

cos[v]
)
.

Figure 2. Translation surface generated by principal normal indicatrices of space curves

3.3 Translation Surfaces Generated by Binormal Indicatrices of Space Curves in
Euclidean 3-Space

Translation surface generated by binormal indicatrices of non-planar space curves in E3 is deter-
mined by :

M3 : X(u, v) = bα(u) + bβ(v). (3.39)

Calculating the partial derivative with respect to u and v of the translation surface is given by the
parametrization (3.39), we obtain

Xu = −ταnα, Xv = −τβnβ .

Hence, the components of the first fundamental form of the surface M3 are obtained as the
following:

E = τ 2
α, (3.40)

F = τατβ cos[θ(u, v)], (3.41)

G = τ 2
β . (3.42)

Note that θ = θ(u, v) is the smooth angle function between nα and nβ .
Then, the unit normal vector of the translation surface M3 is given by the parametrization (3.39)
is as:

N(u, v) =
nα × nβ

sin[θ(u, v)]
, (3.43)

Since the surface M3 is a regular surface, sin[θ(u, v)] 6= 0. Principal normal vector of the curve
α can be expressed as a linear combination of {tβ , nβ , bβ} as:

nα = µ1tβ + µ2nβ + µ3bβ , (3.44)
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where

µ1 = 〈nα, tβ〉 = sin[θ(u, v)]cos[φ(u, v)],

µ2 = 〈nα, nβ〉 = cos[θ(u, v)],

µ3 = 〈nα, bβ〉 = sin[θ(u, v)]sin[φ(u, v)]. (3.45)

Similarly, the principal normal vector of the curve β can be expressed as a linear combination of
{tα, nα, bα} as:

nβ = λ1tα + λ2nα + λ3bα, (3.46)

where

λ1 = 〈nβ , tα〉 = sin[θ(u, v)]cos[γ(u, v)],

λ2 = 〈nβ , nα〉 = cos[θ(u, v)],

λ3 = 〈nβ , bα〉 = sin[θ(u, v)]sin[γ(u, v)]. (3.47)

We can have the unit normal vector of the surface M3 in two different ways:
By using (3.43) and (3.46), it is obtained by

N1 = sin[γ(u, v)]tα − cos[γ(u, v)]bα (3.48)

or by combining (3.43) and (3.44), it is found as:

N2 = − sin[φ(u, v)]tβ + cos[φ(u, v)]bβ (3.49)

Also, the components of the second fundamental form of the surface M3 are computed as fol-
lows:

l = κατα

[
cos[γ(u, v)]

τα
κα

+ sin[γ(u, v)]
]
, (3.50)

m = 0, (3.51)

n = −κβτβ
[

cos[φ(u, v)]
τβ
κβ

+ sin[φ(u, v)]
]
. (3.52)

Proposition 3.16. The Gaussian curvature K and the mean curvature H of the translation sur-
face M3 are obtained as, respectively:

K = −
κακβ

[
cos[γ(u, v)] τακα + sin[γ(u, v)]

] [
cos[φ(u, v)] τβκβ + sin[φ(u, v)]

]
τατβ sin2 θ

, (3.53)

H =
κακβ

[
τβ
κβ

[
cos[γ(u, v)] τακα + sin[γ(u, v)]

]
− τα

κα

[
cos[φ(u, v)] τβκβ + sin[φ(u, v)]

]]
2τατβ sin2 θ

. (3.54)

Proof. By substituting (3.40), (3.41), (3.42), (3.50), (3.51), (3.52) in (2.1) and (2.2), we get
(3.53) and (3.54), respectively. 2

Theorem 3.17. If the surface M3 is flat then

cos[γ(u, v)]
τα
κα

+ sin[γ(u, v)] = 0 or cos[φ(u, v)]
τβ
κβ

+ sin[φ(u, v)] = 0. (3.55)

Proof. It is obvious from Definition 2.4 and (3.53). 2
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Theorem 3.18. If the surface M3 is flat, then the angle γ is a function that depends only on u or
the angle φ is a function that depends only on v.

Proof. Let the surface M3 be flat. Then (3.55) holds. If cos[γ(u, v)] τακα + sin[γ(u, v)] = 0, then
τα
κα

= − tan[γ(u, v)]. Hence the angle γ is only a function of u. Similarly, if cos[φ(u, v)] τβκβ +

sin[φ(u, v)] = 0, then
τβ
κβ

= − tan[φ(u, v)]. So, the angle φ depends only on v. 2

Theorem 3.19. Let the surface M3 be flat. If the curves α and β are helices, then the angles γ
or φ are constant.

Proof. We assume that the surface M3 is flat. In that case the equation (3.55) is satisfied.
If cos[γ(u, v)] τακα + sin[γ(u, v)] = 0, then

τα
κα

= − tan[γ(u, v)]. Since α is a helix curve,

tan[γ(u, v)] becomes constant and it is implies that γ is constant. If cos[φ(u, v)] τβκβ+sin[φ(u, v)] =

0, then
τβ
κβ

= − tan[φ(u, v)]. Since β is a helix curve, tan[φ(u, v)] is constant. Hence φ becomes

a constant angle. 2

Theorem 3.20. Let the surface M3 be flat. If the curves α and β are helices, then the surface M3
is a constant angle surface.

Proof. We suppose that the surface M3 is flat and the curves α and β are helices. From Theorem
3.19, γ = γ0 or φ = φ0 are constant angles. Without loss of generality, we assume that γ is
constant. Since α is helix, then there exists a unit constant direction uα which makes a constant
angle with unit tangent vector tα of the curve α. Then 〈tα, uα〉 = cosψ0 = constant. Hence we
can define uα as:

uα = cosψ0tα + sinψ0bα. (3.56)

By using (3.48) and (3.56), we get

〈N1, uα〉 = sin γ0cosψ0 − cos γ0sinψ0

= constant.

From Definition 2.5 it completes the proof. 2

Theorem 3.21. If the surface M3 is minimal then

τβ
κβ

[
cos[γ(u, v)]

τα
κα

+ sin[γ(u, v)]
]
=
τα
κα

[
cos[φ(u, v)]

τβ
κβ

+ sin[φ(u, v)]
]
. (3.57)

Proof. It is obvious from Definition 2.4 and (3.54). 2

Example 3.22. Let α and β be curves in E3 given by

α(u) =

(
1 +

u√
3

)(
cos
[

ln
(
1 +

u√
3

)]
, sin

[
ln
(
1 +

u√
3

)]
, 1
)
,

β(v) =
1
2

(
v +

√
1 + v2, (v +

√
1 + v2)−1,

√
2 ln(v +

√
1 + v2)

)
where α and β are curves given by the arc-length parameters u and v, respectively. The binormal
indicatrices of the curve α and β are as follows:

bα(u) =
1√
6

(
sin
[

ln
(
1+

u√
3

)]
−cos

[
ln
(
1+

u√
3

)]
,− sin

[
ln
(
1+

u√
3

)]
−cos

[
ln
(
1+

u√
3

)]
, 2
)
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and

bβ(v) =
1
2

(
− 1√

1 + v2(v +
√

1 + v2)
,
v +
√

1 + v2
√

1 + v2
,

√
2√

1 + v2

)
.

Then the translation surface generated by bα and bβ binormal indicatrices of space curves is as:

M3(u, v) =


sin
[

ln
(

1+ u√
3

)]
−cos

[
ln
(

1+ u√
3

)]
√

6
− 1

2
√

1+v2(v+
√

1+v2)
,

− sin
[

ln
(

1+ u√
3

)]
−cos

[
ln
(

1+ u√
3

)]
√

6
+ v+

√
1+v2

2
√

1+v2 ,
2√
6
+

√
2

2
√

1+v2

.

Figure 3. Translation surface generated by binormal indicatrices of space curves
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