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Abstract The spatially homogeneous and totally anisotropic Bianchi type-II cosmological mod-
els has been investigated with null radiation flow and magnetic field for perfect fluid in the
framework of general relativity. With the help of special law of variation for Hubble’s parameter
proposed by Berman (Nuovo Cimento 74B:182, 1983) cosmological model is obtained in this
theory. We use the power law relation between average Hubble parameter H and average scale
factor a to find the solution. The assumption of constant deceleration parameter leads to two
models of universe, i.e. power law model and exponential model. Some physical and kinemati-
cal properties of the model are also discussed.

1 Introduction

Having studied the physics of stars and stellar remnants, one might be tempted to proceed di-
rectly to the next level in astrophysical structure, as galaxies. But the formation of galaxies is
so closely linked up with cosmological considerations that it is necessary to grapple with the
aspects of cosmology to understand galaxies in their totality. The matter in the visible universe
is concentrated in galaxies, of which our own is typical, its stars populates a pancake-shaped
region of diameter 30 kpc and about 1 kpc thick. It contains about 1011 stars whose average mass
is comparable with that of our own sun. The galaxies form clusters and super clusters extending
over tens to hundreds of mega parsec. One large cluster Virgo containing about 2000 galaxies,
is about 15Mpc from the earth, it forms the core of the local super cluster that includes our own
galaxy and the local group of some 24 galaxies. Structure is visible up to the largest distances
studied, super clusters and clusters form threads and sheets that are separated by huge voids
where galaxies are very rare. These voids can by 100Mpc across. The evolution of the universe
in its early stages near the big bang singularity, the only thing we can say about the nature of
matter is that it would be in a highly dense state having very exotic and unusual behavior.

Bianchi type models have been studied by several authors in an attempt to understand better
the observed small amount of anisotropy in the universe . The same models have also been used
to examine the role of certain anisotropic sources during the formation of the large-scale struc-
ture that we see in the universe today. Some Bianchi type cosmologies, for example, are natural
hosts of large scale magnetic fields and therefore, their study can shed light on the implications
of cosmic magnetism for galaxy formation. The simplest Bianchi family is the Bianchi type-I
space time that contains the flat FRW universe as a special case. Several authors studied the
cosmological models with constant and time dependent displacement field [1]-[15]. The matter
content universe is not expected to attain thermal equilibrium at the time of its evolution, it is
evident that there would be heat flow in the universe. The dominant component of matter is
supposed to be the incoherent radiation which could be some pure null radiation flowing along a
particular direction. Patel and Dadhich [16] have discussed cylindrically symmetric models with
the Kasnerian time evolution containing heat flow and null radiation flow with the perfect fluid.
The null radiation flux has been investigated by Vaidya and Patel [17]-[18] and Singh [19].

In this paper we discuss Bianchi type-II cosmological model with null radiation flow and
magnetic field in general relativity.
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2 Metric and Field Equations

The Bianchi type-II metric is given by

ds2 = dt2 −A2(dx− zdy)2 −B2dy2 − C2dz2, (0.1)

where the metric potentials A, B and C are functions of cosmic time t.
The Einstein field equations for nonempty space-time is given by

Rij −
1
2
Rgij = −8πTij . (0.2)

The energy-momentum tensor Tij for perfect fluid with null radiation flow and magnetic field
which is along the direction of the null radiation flow is given by

Tij = (ρ+ p)uiuj − pgij +Xwiwj +
1

4π

(
−gαβFiαFjβ +

1
4
gijFαβF

αβ

)
, (0.3)

where ρ is the energy density, p the pressure of the fluid and X is the null radiation density. The
ui describe the unit time-like four-velocity vector and the unit space-like vector wi denotes the
direction of the null radiation flow which can be taken along any one of the three directions ∂

∂x ,
∂
∂y , ∂

∂z . Without loss of generality let us choose y-direction as the direction of the null radiation
flow along which the magnetic field is assumed to be present. So that

wi =

(
0,

1√
A2z2 +B2

, 0, 0
)
. (0.4)

The electromagnetic field tensor Fij has only one non-zero component F31 because the magnetic
field is assumed to be along the y-direction. Subsequently Maxwell’s equations

Fij;k + Fjk;i + Fki;j = 0 , F ij;j = 0, (0.5)

lead to
F 31 = K, (0.6)

where K is a constant. Now assuming commoving coordinate system, the field Eqs. (2) for the
metric (1) with the help of (3) and (6) can be written as

B̈

B
+
C̈

C
+
Ḃ

B

Ċ

C
− 3

4
A2

B2C2 = 8πp+ 2A2C2K2 − (A2z2 +B2)A2C2K2

B2 , (0.7)

Ä

A
+
C̈

C
+
Ȧ

A

Ċ

C
+

1
4

A2

B2C2 = 8π(p+X)−A2C2K2, (0.8)

Ä

A
+
B̈

B
+
Ȧ

A

Ḃ

B
+

1
4

A2

B2C2 = 8πp+
(A2z2 +B2)A2C2K2

B2 , (0.9)

Ȧ

A

Ḃ

B
+

˙̇B
B

Ċ

C
+
Ȧ

A

Ċ

C
− 1

4
A2

B2C2 = −8πρ− (A2z2 +B2)A2C2K2

B2 . (0.10)

where an overhead dot denotes derivative with respect to cosmic time t.
Now we define some physical parameters before solving the field equations. The average scale
factor a and the volume scale factor V are define as

V = a3 = ABC. (0.11)

The generalized mean Hubble parameter H is given in the form

H =
1
3
(H1 +H2 +H3) , (0.12)
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where H1 = Ȧ
A , H2 = Ḃ

B and H3 = Ċ
C are the directional Hubble parameters in the directions of

x, y and z axis respectively. Using Eqs. (11) and (12), we obtain

H =
1
3
V̇

V
=

1
3
(H1 +H2 +H3) =

ȧ

a
. (0.13)

The mean anisotropy parameter ∆ is defined as

∆ =
1
3

3∑
i=1

(
∆Hi

H

)2

. (0.14)

The shear scalar σ2 is defined as

σ2 =
1
2

(
3∑
i=1

H2
i − 3H2

)
. (0.15)

The absolute temperature T for barotropic fluid p = γρ (0 ≤ γ ≤ 1) is defined as

T = T0ρ
γ

1+γ , (0.16)

where T0 is a constant. The entropy density s for barotropic fluid p = γρ (0 ≤ γ ≤ 1) is defined
as

s =
(1 + γ)

T0
ρ

1
1+γ . (0.17)

The deceleration parameter q in cosmology is the measure of the cosmic acceleration of the
universe expansion and is defined as

q = −aä
ȧ2 . (0.18)

It is mentioned here that q was supposed to be positive initially but recent observations from
the supernova experiments suggest that it is negative. Thus the behavior of the universe models
depends upon the sign of q. The positive deceleration parameter corresponds to a decelerat-
ing model while the negative value provides inflation. We also use a well-known relation [24]
between the average Hubble parameter H and average scale factor a given as

H = χa−n, (0.19)

where χ > 0 and n ≥ 0.This is an important relation because it gives the constant value of the
deceleration parameter. From Eqs. (13) and (19), we get

ȧ = χa−n+1, (0.20)

Using this value, we find that deceleration parameter is constant, i.e. q = n− 1. Integrating Eq.
(20), it follows that

a = (nχt+ k1)
1
n , n 6= 0 (0.21)

a = k2 exp(χt), n = 0 (0.22)

where k1 and k2 are constants of integration. Thus we obtain two values of the average scale
factor that correspond to two different models of the universe.

3 Cosmological model of the Universe when n6=0

Here we discuss the model of universe when n 6=0 i.e., a = (nχt + k1)
1
n . The field equations

(7) − (10) constitute a system of four independent equations with six unknown parameters A,
B, C, X , ρ and p and therefore some additional constraint equations relating these parameters
are required to obtain explicit solutions of the system of the equations. Assuming

A = Cm, (0.23)
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B = Cl, (0.24)

where m and l is the proportionality constant. This condition is explained with reference to [25].
Solving Eq. (11) with the help of Eqs. (21), (23) and (24) we get

C = (nχt+ k1)
3

n(m+l+1) . (0.25)

From Eqs. (23) and (25) we get

A = (nχt+ k1)
3m

n(m+l+1) . (0.26)

From Eqs. (24) and (25) we get

B = (nχt+ k1)
3l

n(m+l+1) . (0.27)

The directional Hubble parameters Hi become

H1 +H2 = (m+ l)H3, (0.28)

H3 =
3χ

(m+ l+ 1)(nχt+ k1)
. (0.29)

The mean generalized Hubble parameter becomes

H =
χ

nχt+ k1
. (0.30)

while the volume scale factor turns out to be

V = a3 = (nχt+ k1)
3
n . (0.31)

The expansion scalar Θ and shear scalar σ2 take the form

Θ =
3χ

nχt+ k1
, (0.32)

σ2 =
3χ2

2(nχt+ k1)2

{
3(m2 + l2 + 1)
(m+ l+ 1)2 − 1

}
. (0.33)

The mean anisotropy parameter4 become

4 =
3(m2 + l2 + 1)
(m+ l+ 1)2 − 1. (0.34)

Subtracting two times Eq. (8) after adding Eqs. (7), (9) and using Eqs. (23), (24) and (25) we
get null radiation density

X =
1

16π

[
3χ2

(m+ l+ 1)(nχt+ k1)2 {n(2l −m− 1)

+
3(m2 − 2l2 −ml+ 2m+ 1)

(m+ l+ 1)

}
+ (nχt+ k1)

6(m−l−1)
n(m+l+1)

]
− K2

4π
(nχt+ k1)

6(m+1)
n(m+l+1) . (0.35)

Subtracting Eq. (7) from Eq. (10) and using Eqs. (23), (24), (25) and assume a barotropic
equation of state p = γρ (0 ≤ γ ≤ 1) we get energy density

ρ =
1

8π(1 + γ)

[
−3χ2

(m+ l+ 1)(nχt+ k1)2

{
n(l+ 1) +

3(m+ml − l2 − 1)
(m+ l+ 1)

}
−1

2
(nχt+ k1)

6(m−l−1)
n(m+l+1)

]
+

K2

4π(1 + γ)
(nχt+ k1)

6(m+1)
n(m+l+1) . (0.36)
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Using Eq. (36) in p = γρ (0 ≤ γ ≤ 1) we get pressure of the barotropic fluid

p =
γ

8π(1 + γ)

[
−3χ2

(m+ l+ 1)(nχt+ k1)2

{
n(l+ 1) +

3(m+ml − l2 − 1)
(m+ l+ 1)

}
−1

2
(nχt+ k1)

6(m−l−1)
n(m+l+1)

]
+

K2

4π(1 + γ)
(nχt+ k1)

6(m+1)
n(m+l+1) . (0.37)

Using Eq. (36) in Eq. (16) we get absolute temperature

T = T0

[
1

8π(1 + γ)

{
−3χ2

(m+ l+ 1)(nχt+ k1)2

{
n(l+ 1) +

3(m+ml − l2 − 1)
(m+ l+ 1)

}

−1
2
(nχt+ k1)

6(m−l−1)
n(m+l+1)

}
+

K2

4π(1 + γ)
(nχt+ k1)

6(m+1)
n(m+l+1)

] γ
1+γ

. (0.38)

Using Eq. (36) in Eq. (17) we get entropy density

s =
(1 + γ)

T0

[
1

8π(1 + γ)

{
−3χ2

(m+ l+ 1)(nχt+ k1)2

{
n(l+ 1) +

3(m+ml − l2 − 1)
(m+ l+ 1)

}

−1
2
(nχt+ k1)

6(m−l−1)
n(m+l+1)

}
+

K2

4π(1 + γ)
(nχt+ k1)

6(m+1)
n(m+l+1)

] 1
1+γ

. (0.39)

4 Cosmological model of the Universe when n = 0

Here we discuss the model of universe when n = 0 the average scale factor for this model of the
universe is a = k2 exp (χt). Solving Eq. (11) with the help of Eqs. (22), (23) and (24) we get

C = k
( 3
m+l+1)

2 exp

(
3χt

m+ l+ 1

)
. (0.40)

From Eqs. (23) and (40) we get

A = k
( 3m
m+l+1)

2 exp

(
3χmt

m+ l+ 1

)
, (0.41)

From Eqs. (24) and (40) we get

B = k
( 3l
m+l+1)

2 exp

(
3χst

m+ l+ 1

)
, (0.42)

The directional Hubble parameters Hi become

H1 +H2 = (m+ l)H3, (0.43)

H3 =
3χ

m+ l+ 1
. (0.44)

The mean generalized Hubble parameter become

H = χ. (0.45)

The volume scale factor become

V = a3 = k3
2exp(3χt). (0.46)

The expansion scalar Θ and shear scalar σ2 take the form

Θ = 3χ, (0.47)
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σ2 =
3χ2

2

{
3(m2 + l2 + 1)
(m+ l+ 1)2 − 1

}
. (0.48)

The mean anisotropy parameter ∆ become

4 =
3(m2 + l2 + 1)
(m+ l+ 1)2 − 1. (0.49)

Subtracting two times Eq. (8) after adding Eqs. (7), (9) and using Eqs. (40), (41) and (42) we
get null radiation density

X =
1

16π

[
9χ2

(m+ l+ 1)2

{
(m+ 1)2 − 2(l+ 1)2 − l(m− 1) + 4

}
+k

6(m−l−1)
(m+l+1)

2 exp

{
6χ(m− l − 1)t
(m+ l+ 1)

}]
−
K2k

6(m+1)
(m+l+1)

2
4π

exp

{
6χ(m+ 1)t
(m+ l+ 1)

}
. (0.50)

Subtracting Eq. (7) from Eq. (10) and using Eqs. (40), (41), (42) and assume a barotropic
equation of state p = γρ (0 ≤ γ ≤ 1) we get energy density

ρ =
1

8π(1 + γ)

[
−9χ2(ml+m− l2 − 1)

(m+ l+ 1)2 − 1
2
k

6(m−l−1)
(m+l+1)

2 exp

{
6χ(m− l − 1)t
(m+ l+ 1)

}]

+
K2k

6(m+1)
(m+l+1)

2
4π(1 + γ)

exp

{
6χ(m+ 1)t
(m+ l+ 1)

}
. (0.51)

Using Eq. (51) in p = γρ (0 ≤ γ ≤ 1) we get pressure of the barotropic fluid

p =
γ

8π(1 + γ)

[
−9χ2(ml+m− l2 − 1)

(m+ l+ 1)2 − 1
2
k

6(m−l−1)
(m+l+1)

2 exp

{
6χ(m− l − 1)t
(m+ l+ 1)

}]

+
K2k

6(m+1)
(m+l+1)

2
4π(1 + γ)

exp

{
6χ(m+ 1)t
(m+ l+ 1)

}
. (0.52)

Using Eq. (51) in Eq. (16) we get absolute temperature

T = T0

[
1

8π(1 + γ)

{
−9χ2(ml+m− l2 − 1)

(m+ l+ 1)2 − 1
2
k

6(m−l−1)
(m+l+1)

2 exp

{
6χ(m− l − 1)t
(m+ l+ 1)

}}

+
K2k

6(m+1)
(m+l+1)

2
4π(1 + γ)

exp

{
6χ(m+ 1)t
(m+ l+ 1)

}
γ

1+γ

. (0.53)

Using Eq. (51) in Eq. (17) we get entropy density

s =
(1 + γ)

T0

[
1

8π(1 + γ)

{
−9χ2(ml+m− l2 − 1)

(m+ l+ 1)2 − 1
2
k

6(m−l−1)
(m+l+1)

2 exp

{
6χ(m− l − 1)t
(m+ l+ 1)

}}

+
K2k

6(m+1)
(m+l+1)

2
4π(1 + γ)

exp

{
6χ(m+ 1)t
(m+ l+ 1)

}
1

1+γ

. (0.54)

5 Discussions and Conclusions

This paper is devoted to explore the solutions of Bianchi type-II cosmological model with null
radiation flow and magnetic field in GR. We use the power law relation between average Hub-
ble parameter H and average scale factor a to find the solution. The assumption of constant
deceleration parameter leads to two models of universe, i.e. power law model and exponential
model.
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• In power law model of the universe, corresponds to n 6= 0 with average scale factor a =

(nχt+ k1)
1
n universe exhibits initial singularity of the POINT-type at t = − k1

nχ . At the
initial moment t = − k1

nχ , the physical and kinematical parameters ρ, X , Θ, σ2 and H
tend to infinity and the magnetic field disappeared but the volume scale factor V vanishes
here. The metric functions A, B and C vanishes at this point of singularity. The isotropy
condition σ2

Θ
→ 0 as t → ∞ is also satisfied. Moreover ρ, X , Θ, σ2 and H tend to a finite

limit as t→ 0.

• The exponential model of the universe corresponds to n = 0 with average scale factor
a = k2 exp (χt). It is non-singular hence there does not exist any physical singularity for
this model. The physical parameters ρ, X , Θ, σ2 and H are all finite for sufficiently large
values of t. While metric functions A, B and C do not vanish for this model.
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