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Abstract In this paper, we study the weak stabilization of distributed homogeneous un-

bounded bilinear system
∂z(t)

∂t
= Az(t) + v(t)Bz(t); where the operator A is the infinitesi-

mal generator of a linear semigroup of contractions on real Hilbert space. The control operator
B is supposed linear bounded with respect to the graph norm of A. We propose a family of
feedback controls that ensure the partial weak stabilization of parabolic and hyperbolic systems.
Illustrating examples are provided.

1 Introduction

In this paper, we deal with the following infinite-dimensional bilinear system:

∂z(t)

∂t
= Az(t) + v(t)Bz(t), z(0) = z0 ∈ H, (1.1)

The real-valued function v(·) is the control and z(t) is the corresponding mild solution of (1.1).
The unbounded operatorA is the infinitesimal generator of a linearC0-semigroup of contractions
(S(t))t≥0 on a real Hilbert space H whose norm and inner product are denoted respectively by
‖ · ‖ and 〈·, ·〉. The unbounded linear control operator B : D(B) → H is A-bounded (a.k.a.
relatively bounded w.r.t. A) (see e.g. [16, 8, 5]); in the sense that D(A) ⊂ D(B) and there exist
constants α, β ∈ R+ such that

‖Bz‖ ≤ α‖Az‖+ β‖z‖, ∀z ∈ D(A)· (1.2)

Many authors treated the stabilization of the unbounded bilinear system by nonlinear feed-
back control (see, e.g., [12, 1, 7, 2, 6]). However, in [6], the authors consider the case when the
control operator B is A-bounded. They have provided sufficient conditions for strong and weak
stabilizations of the system (1.1) in parabolic and hyperbolic cases by the following bounded
control:

v(t) = − %〈Bz(t), z(t)〉
1 + |〈Bz(t), z(t)〉|

, where % > 0. (1.3)

The concept of partial stability, that is, stability with respect to a part of the system’s states
arises in the study of many engineering systems, such as flexible structures with elastic beams
and plates, satellite with moving masses, combustion systems, biocenology (see, eg., [22, 21,
18]). For instance, using the predators-prey model of Lotka-Volterra, the authors in [18] showed
that, if a part of prey is isolated, then the corresponding population increases without bound; in
contrast, a subset of the prey species remains stable.

The problem of partial stabilization of finite and infinite systems has been studied by many
authors (see, e.g., [14, 19, 21, 22, 15]). The authors used different methods, e.g., LaSalle’s invari-
ance principle, Hamilton’s principle, and Lyapunov’s method to establish sufficient conditions
ensuring partial stabilization. In the study [9], the authors have considered the bilinear system
(1.1), where the linear operator A generates a C0-semigroup of contractions on H , the control
operator B is bounded linear compact and the output operator C is bounded linear from a real
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Hilbert space H to a Banach space Y . The authors showed only that the feedback (1.3), partially
weakly stabilizes the system (1.1) provided that the following assumption holds:

〈BS(t)y, S(t)y〉 = 0, for all t ≥ 0 =⇒ Cy = 0. (1.4)

In this work, we extend the results of stabilization developed in [9, 6] to address the problem
of the unbounded partial weak stabilization of the system (1.1) in parabolic and hyperbolic cases.
Precisely we consider the case where the unbounded linear operator A generates a C0-semigroup
of contractions, the unbounded linear control operators B is A-bounded, the nonlinear output
operator C : D(C) ⊂ H → Y is unbounded from its domain D(C) to a Banach space Y . We
propose a family of controls that ensure the well-posedness and the partial stabilization of the
bilinear system (1.1).

The plan of this paper is as follows. The next section provides the basic material for un-
bounded operators, nonlinear semigroups, and the definition of partial weak stabilization. The
third section focuses on the well-posedness of the closed-loop systems. In the fourth section,
we present our main results, and we study the problem of partial weak stabilization. In the last
section, we give illustrating examples covering the parabolic and hyperbolic cases.

2 Review on nonlinear semigroups and unbounded operators

Let a linear operator A : D(A) ⊂ H → H be the infinitesimal generator of a C0-semigroup.
If B is A-bounded, then the operator B|D(A) (restriction of B to D(A)) admits a A−extension
denoted by B̃ defined in the following Definition.

Definition 2.1. [11, 20] Let a linear operator A : D(A) ⊂ H → H be the infinitesimal generator
of a C0-semigroup (S(t)), and let the operator D : D(A)→ H . The operator D̃ defined by:

D̃x = lim
λ→+∞

λDR(λ,A)x, ∀x ∈ D(D̃) := {x ∈ H / lim
λ→+∞

λDR(λ,A)x exists},

where R(λ,A) is the resolvent operator of A, is called the Yosida extension (a.k.a. the A-
extension) of D.

Remark 2.2. It is clear that, B̃ is an extension of B|D(A), indeed D(A) ⊂ D
(
B̃
)

and B̃ =

B|D(A) on D(A).

Now let us recall the following technical Theorem, which are useful to establish some results of
partial weak stabilization.

Theorem 2.3. [11, 6] Let a linear operator A : D(A) ⊂ H → H be the infinitesimal generator
of aC0-semigroup (S(t)). IfB is aA-bounded operator such that ‖BS(t0)‖ is bounded onD(A)

for some t0 > 0, then the A-extension B̃ of B|D(A) satisfies S(t)H ⊂ D(B̃), for all t ≥ t0.

Let us now recall the notion of nonlinear semigroups.

Definition 2.4. [17] LetH be a Hilbert space. A strongly continuous semigroup (T (t))t≥0 (even-
tually nonlinear) on H is a family of continuous maps T (t) : H −→ H, satisfying

(i) T (0) = identity,

(ii) T (t+ s) = T (t)T (s), for all t, s ∈ R+,

(iii) the function t→ S(t)x is continuous in t ≥ 0 for each x ∈ H .

If in addition ‖T (t)y1 − T (t)y2‖ ≤ ‖y1 − y2‖, for every t ≥ 0 and y1, y2 ∈ H , then T (t) is said
to be a contraction semigroup on H .

Remark 2.5. the infinitesimal generator of the contraction semigroup T (t) defined by:

Ay = lim
h→0+

T (h)y − y
h

, for all y ∈ D(A) := {y ∈ H / lim
h→0+

T (h)y − y
h

exists in H},

is dissipative, i.e, 〈Ay1 −Ay2, y1 − y2〉 ≤ 0, for all y1, y2 ∈ D(A) (see [17]).
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For φ ∈ H , the weak ω−limit set of φ is the (possibly empty) set defined by ωw(φ) = {ψ ∈
H; there exists a sequence tn → +∞, such that T (tn)φ ⇀ ψ, as n → +∞}. Recall that the
set ωw(φ) isinvariant under the action of any contraction semigroup (T (t))t≥0 (see [17]).

Let C : D(C) → Y be an unbounded (eventually nonlinear) operator with domain D(C) ⊃
D(A), where the output state-space Y is a Banach space equipped with the norm ‖.‖Y .
Let the following closed-loop system:

∂z(t)

∂t
= Az(t) + v(t)Bz(t), z(0) = z0 ∈ H, (2.1)

where the feedback control v(t) = h(z(t)), with h : D(A) ⊂ H → R. We are now ready to
present the definition of weak partial stability.

Definition 2.6. An equilibrium point α of the closed-loop system (2.1) is said to be partially
weakly stable with respect to C if the following properties are satisfied:

(i) for each z0 ∈ H there exists a unique mild solution z(t) defined for all t ≥ 0 such that
z(0) = z0,

(ii) the equilibrium point α of (1.1) is Lyapunov stable:
for any ε > 0, there is a number δ(ε) > 0 such that for any z0 ∈ H , ‖z0 − α‖ ≤ δ(ε), we
have ‖z(t)− α‖Y ≤ ε, for all t ≥ 0,

(iii) there is a number η > 0, such that, for any z0 ∈ D(A) with ‖z0 − α‖ ≤ η, we have
Cz(t)⇀ Cα, as t→ +∞.

In this case, we also say that the feedback v(t) = h(z(t)) partially weakly stabilizes the equilib-
rium point α.

Remark 2.7. Let ω be a nonempty subregion of Ω if, in the above definition, we consider the
output operator C = χω. We retrieve the notion of regional stability of the closed-loop systems.

3 Considered systems and well-posedness

Let f : R+ → R be a nonnegative nondecreasing continuous function. The purpose of this
section is to study the partial stabilization of the system (1.1) using the control:

v(t) = −f(〈Bz(t), z(t)〉), (3.1)

where z is the solution of the corresponding closed-loop system, i.e.,

∂z(t)

∂t
= Az(t), (3.2)

where Ay = Ay − f(〈By, y〉)By, ∀y ∈ D(A) = D(A)·

In the sequel, we will analyze the well-posedness of the system (3.2).

Theorem 3.1. Let A generate a semigroup S(t) of contractions on H , and let B : D(B) −→ H
be a linear A-bounded operator such that:

(i) 〈Bξ1, ξ2〉 = 〈ξ1, Bξ2〉, ∀ ξ1, ξ2 ∈ D(A),

(ii) 〈Bξ1, ξ1〉 ≥ 0, ∀ ξ1 ∈ D(A),

(iii) the function f : R+ → R is nonnegative nondecreasing continuous,

(iv) the operator V : D(A) → R defined by V (ξ) = f(〈Bξ, ξ〉) is bounded by K ∈ [0, 1
α)

(where α is the constant given in (1.2))·

Then for all z0 ∈ H , the system (3.2) admits a unique solution z ∈ C([0,+∞[;H) given by
z(t) = etAz0·. Furthermore, A generates a contraction semigroup etA on H .
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Proof. Let us set ϕ(ξ) = 〈Bξ, ξ〉, ∀ξ ∈ D(A) and let us consider the map :

φ = g(ϕ), with g(z) =
1
2

∫ z

0
f(w)dw.

Let φ′, ϕ′ : D(A) → H are respectively the Gâteaux derivatives of φ and ϕ. Since B is
self-adjoint, then for all ξ ∈ D(A), we have

φ′(ξ) = f(〈Bξ, ξ〉)Bξ, for all ξ ∈ D(A)· (3.3)

Since B = B∗ ≥ 0 on D(A), then for all (ξ1, ξ2) ∈ D(A)2, we have:

µ2ϕ(ξ2) + 2µ < Bξ1, ξ2 > +ϕ(ξ1) = 〈B(ξ1 + µξ2), ξ1 + µξ2〉 ≥ 0, ∀µ ∈ R·

Thus |〈Bξ1, ξ2〉| ≤
√
ϕ(ξ1)

√
ϕ(ξ2), which implies that, we have:

ϕ(λξ1 + (1− λ)ξ2) ≤
(
λ
√
ϕ(ξ1) + (1− λ)

√
ϕ(ξ2)

)2
, ∀λ ∈ [0, 1].

Therefore ϕ is convex, since f is nonnegative nondecreasing then so is φ. It follows that φ′
is monotone. On the other hand, (3.3) combined with the continuity of f implies that φ′ is
hemicontinuous.
On the other hand, it comes from (1.2) that, we have:

‖V (ξ)Bξ‖ ≤ K (α‖Aξ‖+ β‖ξ‖), ∀ξ ∈ D(A).

Since A generates a semigroup of contractions and φ′(·) is monotone hemicontinuous andKα <
1, then the operator−A is maximal monotone, and henceA generate a semigroup of contractions
etAz0, and the function z(t) = etAz0 is a solution of (3.2) (see [3]).

Remark 3.2. For all z0 ∈ D(A), we have

‖z(t)‖ ≤ ‖z0‖, ∀t ≥ 0 (3.4)

and z(t) ∈ D(A) admits a right derivative at t (see [13]), which is such that:

d+z(t)

dt
= Az(t)· (3.5)

and we have
‖Az(t)‖ ≤ ‖Az0‖· (3.6)

Remark 3.3. (i) As examples of a function verifying the assumptions (iii) and (iv), one can
take f(s) = %

s

1 + s
or f(s) = c (where, %, c ≥ 0 ).

(ii) It is easy to verify that if the operator B is bounded from H to itself, then the condition (iv)
is superfluous.

4 Partial weak stability

In this section, we give sufficient conditions to obtain partial weak stabilization of (1.1) utilizing
the control (3.1). Along this section, let C : D(C) ⊂ H → Y be an unbounded (eventually
nonlinear) operator with domain D(C) ⊃ D(A), where Y is a Banach space. In the sequel, we
assume that B is A-bounded, then from Theorem (2.3), B|D(A) admits a A−extension denoted
by B̃.
Let us now introduce the following sets:

M = {ϕ ∈ D(A) / f(〈BetAϕ, etAϕ〉)〈BetAϕ, etAϕ〉 = 0, ∀t ≥ 0}

and
M̃ = {ϕ ∈ H / f(〈B̃etAϕ, etAϕ〉)〈B̃etAϕ, etAϕ〉 = 0, ∀t ≥ 0}
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and let us consider the following hypotheses:

(C1) : For all sequence (yj) ⊂ D(A), such that the sequence (‖yj‖) is decreasing and yj ⇀ y
in H , we have:

f(〈BS(t)yj , S(t)yj〉)〈BS(t)yj , S(t)yj〉 → 0, as j → +∞, ∀t ≥ 0 =⇒ there exists a subsequence (yγ(j))
such that Cyγ(j) ⇀ 0 as j → +∞·

(C2) : For all sequence (yn) ⊂ D(A), such that yn ⇀ y in H , we have the following impli-
cation:

1. The sequence (‖yn‖) is decreasing
2. (‖Ayn‖) is bounded,
3. f(〈Byn, yn〉)〈Byn, yn〉 → 0.

 =⇒ there exists a subsequence (yγ(n)) of (yn) such
that Cyγ(n) ⇀ 0 as n→ +∞.

Remark 4.1. By taking the null sequence in the conditions (C1) and (C2) , we obtain C0 = 0.

The following Theorem concerns the partial weak stability of the system (3.2).

Theorem 4.2. Suppose that

(i) the hypotheses of Theorem 3.1 are verified,

(ii) for some δ > 0; f(s) ≤ δs,

(iii) one of the conditions (C1), (C2) fulfilled.

Then for all z0 ∈ D(A), we have, Cz(t) ⇀ 0, as t→ +∞. Therefore the control (3.1) partially
weakly stabilizes the equilibrium point 0 of the system (3.2).

Proof. Let z0 ∈ D(A). According to Remark 3.2, the function τ → z(τ) admits a right
derivative at all time, then we have

d+‖z(τ)‖2

dτ
= 2〈Az(τ), z(τ)〉, ∀τ ≥ 0.

Moreover, A is dissipative, so that 〈Ay, y〉 ≤ 0, ∀y ∈ D(A). Then, we get∫ s2

s1

f

(
〈Bz(τ), z(τ)〉

)
〈Bz(τ), z(τ)〉dτ ≤ 1

2
(‖z(s1)‖2 − ‖z(s2)‖2), 0 ≤ s1 ≤ s2·

Thus, from (3.4), we deduce that∫ +∞

0
f

(
〈Bz(τ), z(τ)〉

)
〈Bz(τ), z(τ)〉 dτ < +∞, (4.1)

and ωw(z0) 6= ∅. Let ϕ0 ∈ ωw(z0) and let tj → +∞ such that z(tj) = etjAz0 ⇀ ϕ0, as j → +∞.
Let t ≥ 0, from (4.1), we get

lim
j→+∞

∫ t+tj

tj

f

(
〈Bz(τ), z(τ)〉

)
〈Bz(τ), z(τ)〉 dτ = 0· (4.2)

Using (1.2), (3.4) and (3.6), we deduce that

‖Bz(τ)‖ ≤ α

1− αK
‖Az0‖+

β

1− αK
‖z0‖ =: Mz0 , ∀τ ≥ 0· (4.3)

Since f is nonnegative, it follows from the dominated convergence theorem that, we have

f(〈Bz(t+ tj), z(t+ tj)〉)〈Bz(t+ tj), z(t+ tj)〉 → 0, as j → +∞. (4.4)

Moreover, the variation of constants formula gives

z(t+ tj) = S(t)z(tj) +

∫ t+tj

tj

V (z(τ))S(t+ tj − τ)(Bz(τ))dτ ·
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Thus, since S(t) is of contraction then

‖z(t+ tj)− S(t)z(tj)‖ ≤Mz0

∫ t+tj

tj

∣∣∣∣f(〈Bz(τ), z(τ)〉)∣∣∣∣dτ ·
From Schwarz’s inequality, we obtain

‖z(t+ tj)− S(t)z(tj)‖ ≤
√
t Mz0

√√√√∫ t+sj

tj

(
f(〈Bz(τ), z(τ)〉)

)2

dτ ·

Taking into account that, for all s ≥ 0, we have f(s) ≤ δs, we derive

‖z(t+ tj)− S(t)z(tj)‖ ≤
√
δt Mz0

√∫ t+tj

tj

f(〈Bz(τ), z(τ)〉)〈Bz(τ), z(τ)〉dτ · (4.5)

Which by (4.1), gives
lim

j→+∞
[z(t+ tj)− S(t)z(tj)] = 0· (4.6)

Furthermore, from (1.2), (3.6) and the fact that S(t) is of contractions, we get

‖BS(t)z(tj)‖ ≤
α

1−Kα
‖Az0‖+

Kαβ + β

1−Kα
‖z0‖· (4.7)

Since B is self-adjoint, then the above inequality combined with (4.3), (4.6), gives

〈BS(t)z(tj), S(t)z(tj)〉 − 〈Bz(t+ tj), z(t+ tj)〉 → 0, as j → +∞·

Based on this, (4.7) and the continuity of f , we obtain

f(〈BS(t)z(tj), S(t)z(tj)〉)
(
〈BS(t)z(tj), S(t)z(tj)〉−〈Bz(t+tj), z(t+tj)〉

)
→ 0, as j → +∞·

Then using (4.4) and Heine-Cantor theorem, we deduce that

f(〈BS(t)z(tj), S(t)z(tj)〉)〈BS(t)z(tj), S(t)z(tj)〉 → 0, as j → +∞· (4.8)

If (C1) is verified, then we conclude that there exists a subsequence (z(tγ(j))) of (z(tj)) such that
Cz(tγ(j)) ⇀ 0 as j → +∞. Following the same techniques and using (3.4) and condition (C1),
we deduce that 0 is the unique limit for Cz(t). Thus we conclude that Cz(t)⇀ 0 as t→ +∞.

Furthermore, from (4.4), we have f
(
〈Bz(tj), z(tj)〉

)
〈Bz(tj), z(tj)〉 → 0 as j → +∞. More-

over, according to the Remark 3.2, we have (‖Az(tj)‖)j≥1 is bounded. This if (C2) is verified,
then there exists a subsequence (z(tγ(j))) of (z(tj)) such that Cz(tγ(j)) ⇀ 0 as j → +∞.
Following similar procedures we show that Cz(t) has a unique limit point. We conclude that
Cz(t)⇀ 0 as t→ +∞. Which completes the proof of the Theorem.

On the other hand, under the following hypothesis:

(C3) : There exists t0 > 0 such that ‖BS(t0)‖ is bounded on D(A) and for all sequence
(yn) ⊂ D(A) and y ∈ H such that the sequence (‖yn‖) is decreasing and yn ⇀ y in H; there
exists a subsequence (yγ(n)) such that for all t ≥ t0, we have BS(t)yγ(n) → B̃S(t)y in H, as
n→ +∞.

We have the following partial weak stabilization result:

Theorem 4.3. Suppose that:

(i) The hypotheses of Theorem 3.1 are verified,

(ii) for some δ > 0; f(s) ≤ δs,

(iii) the condition (C3) holds,
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(iv) the operator C sends every bounded subsets of D(A) into weakly compact subsets of Y .

Then

1. If the assumption M̃ ⊂ ker(C) holds, then for all z0 ∈ D(A), we have Cz(t) ⇀ 0, as
t→ +∞. Therefore the control (3.1) partially weakly stabilizes an equilibrium point ϕ0 of
the system (3.2).

2. If the condition M̃ = {0} holds, then for all z0 ∈ D(A), we have Cz(t) ⇀ C(0), as
t → +∞. Therefore the control (3.1) partially weakly stabilizes the equilibrium point 0 of
the system (3.2).

Proof. 1. Let z0 ∈ D(A), and let tj → +∞ such that z(tj) = etjAz0 ⇀ ϕ0 ∈ ωw(z0), as
j → +∞. From the condition (C3), there exists a subsequence of (tj), still denoted by (tj), such
that for all t ≥ t0, we have

f(〈BS(t)z(tj), S(t)z(tj)〉)〈BS(t)z(tj), S(t)z(tj)〉 → f(〈B̃S(t)ϕ0, S(t)ϕ0〉)〈B̃S(t)ϕ0, S(t)ϕ0〉, as j → +∞·

According to (4.8), we conclude that

f(〈B̃S(t)ϕ0, S(t)ϕ0〉)〈B̃S(t)ϕ0, S(t)ϕ0〉 = 0. (4.9)

Thus ϕ0 ∈ M̃. Since M̃ ⊂ ker(C), then Cϕ0 = 0. According to the conditions (iv) on the
operator C, then there exists a subsequence of (tj), still denoted by (tj), such that Cz(tj) ⇀
Cϕ0 = 0, as j → +∞. Using the same methods as in the proof of Theorem 4.2, we show that
Cz(t) has a unique limit point. We conclude that Cz(t)⇀ 0 as t→ +∞.

2. Let z0 ∈ D(A), and let tj → +∞ such that z(tj) = etjAz0 ⇀ ϕ0 ∈ ωw(z0), as j → +∞.
From (4.9), ϕ0 ∈ M̃, then ϕ0 = 0. Using the same techniques as in 1. we conclude that
Cz(t)⇀ C(0) as t→ +∞.

Remark 4.4. (i) The condition (iv) of Theorem 4.3 is verified for example for any linear
bounded operator C ∈ L(X,Y ).

(ii) In the particular case that B ∈ L(H), C ∈ L(H,Y ) and f(s) =
%s

s+ 1
(where % is the gain

control), the condition M̃ ⊂ ker(C) is equivalent to the assumption (1.4). Then the first
result of the Theorem (4.3) is the unbounded generalization of the result in [9].

(iii) As a class of operators that satisfy the assumption (C3), the linear compact operators B.

5 Applications

5.1 Heat equation

Let Ω = (0, 1) and let us consider the bilinear system given by the following heat equation:
∂z

∂t
(t, x) = ∆z(t, x)− v(t)∆z(t, x), on (0,+∞)×Ω

z′(t, 0) = z′(t, 1) = 0, ∀ t > 0
z(0, x) = z0(x), on Ω·

(5.1)

Let us consider the following conventional state-space H = L2(Ω) and Az = ∆z, for all z ∈
D(A) = {z ∈ L2(Ω) / ∆z ∈ L2(Ω), z′(0) = z′(1) = 0}, and let λj = −π2(j−1)2, j = 1, ... is
the eigenvalues of A associated to the eigenvector ψ1(x) = 1 and ψj =

√
2 cos((j−1)πx), j =

2, .... The operator Bz = −∆z with domain D(B) := D(A) is self adjoint, positive and it is
A-bounded with α = 1 and β = 0.
Then we can state the following result concerning the weak stability of (5.1).

Proposition 5.1. For 0 < % < 1 and for any z0 ∈ L2(Ω), the system (5.1), controlled by the

feedback v(t) = −%

∫
Ω

|∇z(t, x)|2 dx

1 +

∣∣∣∣ ∫
Ω

|∇z(t, x)|2dx
∣∣∣∣ admits a unique mild solution z ∈ C([0,+∞[;H).

Furthermore, for all z0 ∈ D(A), we have the following results:
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(i) there exists c ∈ R such that z(t)⇀ c1Ω in L2(Ω), as t −→ +∞.

(ii) for a constant γ ≥ 1 and for any a ∈ L2(Ω) verifying
∫ 1

0
a(x)dx = 0, we have:

∫ 1

0
z(t, x)γa(x)dx→ 0, as t −→ +∞.

Proof. Let ϕ ∈ D(A) such that 〈BS(t)ϕ, S(t)ϕ〉 = 0. Since, for all t ≥ 0, AS(t) = S(t)A then

we have BS(t)ϕ = −
+∞∑
j=1

λje
tλj 〈ϕ,ψj〉ψj , which implies that

〈BS(t)ϕ, S(t)ϕ〉 = −
+∞∑
j=1

λje
tλj |〈ϕ,ψj〉|2.

Then, there exists c0 ∈ R, such that ϕ = c01Ω. We deduce that M̃ = {c 1Ω / c ∈ R}. On the
other hand, the condition (C3) holds (see [10]). Let a ∈ L2(Ω) verifying

∫ 1
0 a(x)dx = 0 and a

constant γ ≥ 1, it is easy to see that, the operators Cξ = ξ − c1Ω and Cξ =

∫ 1

0
ξ(x)γa(x)dx,

with D(C) = H1(Ω), verify the condition (iv) of Theorem 4.3. By using Theorem 4.3, we

deduce that for all z0 ∈ D(A), we have: z(t) ⇀ c1Ω in L2(Ω) and
∫ 1

0
z(t, x)γa(x)dx ⇀ 0, as

t −→ +∞.

5.2 Transport equation

Let Ω =]0,+∞[ and let us consider the bilinear system given by the following transport equation
in the state-space H = L2(Ω):

∂z

∂t
(t, x) = −∂z

∂x
(t, x) + v(t)χω(x)a(x)z(t, x), on ]0,+∞[×Ω

z(t, 0) = 0, on ]0,+∞[

z(0, x) = z0(x) on Ω·

(5.2)

where ω is a non empty subset of Ω, a is such that a(x) > 0, a.e x ∈ ω,
∫
ω
x a2(x) dx < +∞,

a ∈ L2(Ω) and a 6∈ L4(Ω) (for example a(x) =
1

4
√
x(x2 + 1)

). Let us defined the unbounded

linear operator Az = −∂z
∂x

, for all z ∈ D(A) =: {y ∈ H1(Ω) / y(0) = 0}. The control operator
B is defined by By = χωay , for all y ∈ D(A). It is easy to see that the operator B is unbounded
from L2(Ω) to L2(Ω). Moreover by Morrey’s inequality (see [4]), there exists k > 0 such that
for all z ∈ D(A) we have |z(x)| ≤ k

√
x ‖∇z‖L2(Ω), a.e x ∈ Ω, then∫ +∞

0
|χω(x)a(x)z(x)|2dx ≤ k2 ‖∇z‖2

L2(Ω)

∫
ω

xa2(x) dx,

which implies that B is A−bounded with α = k

√∫
ω

x a2(x) dx.

We are ready to state the following result:

Proposition 5.2. Suppose that a(x) > 0, a.e x ∈ ω ⊂ Ω and
∫
ω

x a2(x) dx < +∞ .

Then there exists ρ0 > 0 such that for any 0 < % < ρ0 and for all z0 ∈ L2(Ω), the system

(5.2) controlled by the feedback v(t) = −%
∫
ω
a(x) |z(x, t)|2 dx

1 +
∫
ω
a(x) |z(x, t)|2dx

admits a unique solution

z ∈ C([0,+∞[;H), and for all z0 ∈ H1
0 (Ω), we have: χωz(t)⇀ 0 in L2(Ω), as t→ +∞.
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Proof. Let (yn)n∈N ⊂ H1
0 (Ω) a sequence such that yn ⇀ y in H and < Byn, yn >→ 0, as n→

+∞, there exists a subsequence of (yn)n∈N still denoted by (yn)n∈N such that χωa(x)y2
n(x)→ 0,

a.e x ∈ Ω as n → +∞. Moreover by Morrey’s inequality, there exists C > 0 such that for all
test function ϕ, we have |χωyn(x) ϕ(x)| ≤ C‖∇yn‖L2(Ω)

√
x |ϕ(x)|, a.e x ∈ Ω . If in addition

(Ayn)n∈N is bounded inH , then. This combined with the dominated convergence theorem, gives
〈χωyn, ϕ〉 → 0 as n → +∞, we conclude that χωyn ⇀ 0 in H , as n → +∞. Then y = 0, thus
the condition (C2) is verified. We can conclude by using Theorem 4.2.

6 Conclusion

To sum up, the study’s objective was to examine the partial weak stabilization of unbounded
bilinear systems in real Hilbert space. The well-posedness of our nonlinear closed-loop system
was established. The partial weak stabilization results were developed; various examples illus-
trating the obtained results are given covering both parabolic and hyperbolic cases. This work
opens up other questions, such as the partial strong stabilization, the robustness of the controls
(3.1), and the asymptotic estimates of the system’s output.
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