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Abstract This work is concerned the study of a class of ill-posed Cauchy problems associated
with a densely defined linear operator A in a Banach space E. It is proved that if −A is the
generator of an analytic semigroup, then there exists a family of regularizing operators by using
the quasi-reversibility method, fractional powers and semigroups of linear operators.

1 Analytic Semigroups

1.1 Semigroups

We are interested here in linear equations of state defined by semigroups. Consider an equation
of state of the form : {

y′(t) = Ay(t) 0 < t < T,

y(t0) = y0,
(1.1)

this equation can be studied using an abstract approach depending on the properties of the
operator A. We can also study it by considering the properties of its solution y. This second
approach expresses, for an initial state y0 at time t0, the solution at time t + s, which can be
obtained indifferently from :
• the state y0, and its evolution up to time t+ s, or
• the state y0, and its evolution until time t, then from the state at time t to the state at time

t+ s.
This naturally leads to considering the semigroup approach. Given a Hilbert space E repre-

senting the state space, we consider the following definition.

Definition 1.1. We call a strongly continuous semigroup a family (Φ (t))t≥0 of operators of
L (E) satisfying the following properties :

1. Φ(0) = I.
2. Φ(t+ s) = Φ(t)Φ(s), for all t, s ≥ 0.
3. ‖Φ(t)y − y‖ → 0 when t→ 0+, for all y ∈ E.

The family of operators (Φ (t))t≥0 obviously depends on the dynamics A of the system. In
addition, we have the following definition.

Definition 1.2. The infinitesimal generator of the semigroup (Φ (t))t≥0 is the unbounded linear
operator A defined by :

Ay = lim
t→0+

Φ(t)y − y
t

, (1.2)

when this limit exists.
The domain of A, denoted D (A), is the set of y in E such that this limit exists

D (A) =

{
y ∈ E/ lim

t→0+

Φ(t)y − y
t

exist
}
. (1.3)

Immediate properties of the semigroups are given in the following proposition [5].
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Proposition 1.3. 1. ∀y ∈ D (A) ; Φ (t) y ∈ D (A) and d
dtΦ(t)y = AΦ (t) y = Φ(t)Ay.

2. D (A) is a subspace dense in E
(
D (A) = E

)
.

3. The operator A is closed.

Property of exponential growth of semigroup

Lemma 1.4. [2]
1. Let Φ(t) be a strongly continuous semigroup then there exists M ≥ 1 and ω ∈ R such that

‖Φ (t)‖ ≤Meωt;∀t ≥ 0.
2. If Φ(t) is a semigroup strongly continuous at the origin is the increase ‖Φ (t)‖ ≤ Meωt.

Then Φ (t) is strongly continuous at a point t > 0.

Semigroup and Laplace transform

Let us define the application Rλ : E → E by Rλy =
∫∞

0 e−λtΦ(t)ydt. It is clear that Rλ is a
linear operator. In addition we have

‖Rλy‖ ≤
∫ ∞

0

∥∥e−λtΦ(t)y
∥∥ dt ≤ M

Reλ− ω
‖y‖ ; ∀y ∈ E.

From which it follows that Rλ is a bounded linear operator.

Definition 1.5. The operator R (λ) = Rλ is called the Laplace transform of the semigroup
{Φ(t)}t≥0 .

Study of the growth of the Resolvent

Proposition 1.6. [2]

(R (λ,A))
n
=

1
(n− 1)!

∫ +∞

0
e−λttn−1

Φ(t)dt.

Generalized Yosida approximation

Lemma 1.7. [2] Let A : D (A) ⊂ E → E be a linear operator satisfying the following proper-
ties:

- A is a closed operator and D (A) = E.
- There exist ω ≥ 0 and M ≥ 1 such that Aω ⊂ ρ (A) and for λ ∈ Aω ; we have

∥∥R (λ,A)
n∥∥ ≤ M

(Reλ− ω)n
;∀n ∈ N∗.

-
∀λ ∈ Aω : lim

Reλ→∞
λR (λ,A) y = y; ∀y ∈ E,

thus
lim

Reλ→∞
λAR (λ,A) y = Ay;∀y ∈ D (A) .

Remark 1.8. We can say that the bounded operators λAR (λ,A) are approximations for the
unbounded operator A. This is the reason for introducing the following theorem.

Theorem 1.9. [2] The family {Aλ}λ∈Aω ; where

Aλ = λAR (λ,A) = λ2R (λ,A)− λI,

is called the generalized Yosida approximation of operator A.
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Theorem 1.10. [13] Let {Φ(t)}t≥0 be a strongly continuous semigroup in a Banach space E
and let ω ∈ R and M ≥ 1 such that ‖Φ(t)‖ ≤ eωt, ∀t ≥ 0. Then the generator (A,D(A)) of
{Φ(t)}t≥0 has the following equivalent properties :

1. If λ ∈ C such that R(λ)y =
∫ +∞

0 e−λµΦ(µ)ydµ exist ∀y ∈ E, then λ ∈ ρ(A) and
R(λ,A) = R(λ).

2. If Reλ > ω then λ ∈ ρ(A) and the resolvent is given as in 1.
3. ‖R(λ,A)‖ ≤ M

Reλ−ω , for all Reλ > ω.

Corollary 1.11. [13] For each λ0 ∈ ρ(A) we have

d(λ0, σ(A))−
1

r(R(λ0, A))
≥ 1
‖R(λ0, A)‖

.

Hille-Yosida theorem

Theorem 1.12. [2] A linear operator A : D (A) ⊂ E −→ E is the infinitesimal generator of a
semi group Φ(t)t≥0 ∈ SG (M,ω) if and only if

1. A is a closed operator and D (A) = E.
2. It exists ω ≥ 0 and M ≥ 1 such that Aω ⊂ ρ (A) and for λ ∈ Aω; we have∥∥∥(λI −A)−n∥∥∥ ≤ M

(λ− ω)n
; ∀n ∈ N∗.

Definition 1.13. For λ > ω we define the approaching yosida of A by Aλ = λ2R (λ,A)− λI =
λAR (λ,A) . With

lim
λ→+∞

Aλy = Ay; ∀y ∈ D (A) .

1.2 Analytic Semigroups

Sectorial Operator

Definition 1.14. A closed linear operator (A,D(A)), of dense domain in a Banach space E is
called sectorial (of angle α) if there exists α, 0 < α ≤ π

2 such that the sector

Σα+π
2
=
{
λ ∈ C : |argλ| < π

2
+ α− {0}

}
⊂ ρ(A).

And if for all β ∈ (0, α), there exists Mβ ≥ 1 such that

‖R(λ,A)‖ ≤ Mβ

|λ|
,∀0 6= λ ∈ Σπ

2 +α−β .

Definition 1.15. Let (A,D(A)) be a sectorial operator with angle α. We define Φ(0) = I and
the operator Φ(y) for y ∈ Σα by

Φ(y) =
1

2πi

∫
Γ

eµyR(µ,A)dµ.

Where Γ is a piecewise smooth path (or piecewise smooth curve).

Proposition 1.16. [13] Let (A,D(A)), a sectorial operator with angle α then for all y ∈ Σα,Φ(y)
are linear operators bounded on E satisfying the following properties :

1. ‖Φ(t)‖ is uniformly bounded “uniform boundedness” for y ∈ Σα′ , if 0 < α′ < α.
2. The application y → Φ(y) is analytic in Σα.
3. Φ(y1 + y2) = Φ(y1)Φ(y2) for all y1, y2 ∈ Σα.
4. The application y → Φ(y) is strongly continuous in y ∈ Σα′ ∪{0}, if 0 < α′ < α.
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Analytic Semigroup

Definition 1.17. A family of operators {Φ(y)}y∈Σα∪{0} ⊂ L(E) is called analytic semigroup of
angle α ∈ (0, π2 ] if :

1. Φ(0) = I and Φ(y1 + y2) = Φ(y1)Φ(y2),∀y1, y2 ∈ Σα.
2. The application y → Φ(y) is analytic in Σα.
3. lim

Σα′3y→0
Φ(y)x = x,∀x ∈ E and 0 < α′ < α.

Definition 1.18. If in addition ‖Φ(t)‖ is bounded in Σα′ for all 0 < α′ < α, then we say that
{Φ(y)} is a bounded analytic semigroup.

It can also be defined in the following equivalent way :

Definition 1.19. Let 0 < α ≤ π
2 . If the C0-semigroup (Φ(t))t≥0 admits an analytic extension in

Σα verifying :
lim

Σα′3y→0
Φ(y)x = x, ∀x ∈ E and β ∈ (0, α).

Then (Φ(t)) is said to be an analytic semigroup of angle α its generator is the generator
of (Φ(t))t≥0. In addition, the analytic semigroup of angle α is said to be bounded if for each
β ∈ (0, α), there exists Mβ > 0 such that ‖Φ(t)‖ ≤Mβ of all t ∈ Σβ .

It is known that, if A the generator of an analytic semigroup of angle α, then for each β ∈
(0, α), there exists ω ∈ R such that A − ω is the generator of a bounded analytic semigroup of
angle β. The following criterion on the semigroup generators will also be used in the following.

Lemma 1.20. [13] Let 0 < α ≤ π
2 . Then the following properties are equivalent :

1. A is the generator of a bounded analytic semigroup of angle α.
2. For all β ∈ (0, α) , there existsMβ > 0, such that e±iθA is the generator of a C0-semigroup

(Φθ(t))t≥0, satisfying :
‖Φθ(t)‖ ≤Mβ ,∀t ≥ 0, θ ∈ (0, α).

3. The application ]0,+∞[ 3 t → Φ(t) ∈ B(E)1, is differentiable and there is a constant
C > 0, such that

‖Φ(t)‖ ≤ C

t
,∀t ≥ 0.

4. A is the generator of a strongly continuous semigroup (Φ(t))t≥0 in E, and there exists a
constant C ′ > 0, such that for all r > 0, s 6= 0, we have

‖R(r + is, B)‖ ≤ C ′

|s|
.

5. A is sectorial.

We now move on to a small introduction to fractional exponents.

Definition 1.21. Let −A be the generator of an analytic semigroup of angle α (α ∈
(
0, π2

]
) and

let 0 ∈ ρ(A) for b > 0, the fractional power of A is defined as follows :

A−b = − 1
2πi

∫
Γ(γ)

µ−bR(λ,A)dµ,
π

2
− α < γ < π.

Here and in the following λb is considered as the main branch. In this definition, the function
µ→ µ−b is a branch of the fractional power function in C−R−, i.e.

µ−b = e−b lnµ, lnµ = ln |µ|+ iθ,−π < θ = argµ < π.

In this work, we need several properties of fractional powers which are grouped in the fol-
lowing lemma :

1B is the Banach algebra.
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Lemma 1.22. [13].
1. A−b ∈ B(E) is injective for b > 0.
2. Ab is a closed operator and D(A) ⊂ D(Ab′) for b > b′ > 0.
3. Abx = Ab−nAnx, for x ∈ D(An), n > b, n ∈ N.
4. If B ⊂ Ab and D(B) ⊂ D(Ab′), b > b′ > 0 then B is closable and B = Ab, where B is

the closure of B.

Analytic semigroup generated by −Ab and A − εAb

In this part we show that the two operators −Ab and A − εAb are generators of analytic semi-
groups under certain appropriate conditions on the operator A.

Theorem 1.23. [13] Let −A be the generator of a bounded analytic semigroup of angle α (0 <
α ≤ π

2 ) and let 0 ∈ ρ(A). Then −Ab is the generator of a bounded analytic semigroup of angle(
π
2 −

(
π
2 − α

))
b, where b ∈

(
1, π

π−2α

)
.

Theorem 1.24. [13]Suppose that the operator A satisfies the conditions of the theorem 1.10. Let
Aε = A − εAb, where ε > 0 and b ∈

(
1, π

π−2α

)
. Then for all β ∈

(
0, π2 − (π2 − α)b

)
, Aε is the

generator of an analytic semigroup {Φε(t)} d ’angle β, satisfying : ‖Φε(t)‖ ≤M exp
(
Cε

1
1−b t

)
for t ≥ 0, where M and C are positive constants independent of ε.

2 Regularization of a class of ill-posed Cauchy problems associated with
generators of analytic semigroups

The ill-posed Cauchy problems are practical problems, have received a lot of attention since the
1960s of the last century. For this reason, the objective of this domain was to study the following
abstract Cauchy problem : {

y′(t)

y(0)
=

=

Ay(t); 0 < t ≤ T,
x,

(2.1)

where −A is the generator of an analytic semigroup of angle α in the Banach space E, where
0 < α < π

2 .

Definition 2.1. The function y : R+ → E is called classical solution of (2.1) if :
1. y ∈ C([0,+∞],D(A)) provides the norm of the graph.
2. y ∈ C1([0,+∞], E).
3. y checks the equation (2.1) and checks the initial condition y(0) = x with x ∈ D(A).

Corollary 2.2. [1] For a closed operator A : D(A) ⊂ E → E associated with the problem (2.1)
is well posed if and only if A is the generator of a strongly continuous semigroup.

Lemma 2.3. Let (T (t))t≥0 be a C0-semigroup of bounded operators, if ∀t > 0, T−1(t) exists
and it is bounded, then Φ(t) = T−1(t) is a C0−semigroup of bounded operators where its
infinitesimal generator is −A. In addition if

U(t) =

{
T (t)

T−1(−t)
for t ≥ 0,
for t ≤ 0.

Then U(t) is a strongly continuous group of bounded operators.

Proof. We show that Φ(t) is a strongly continuous semigroup.
X Φ(t) = T−1(0) = I.
X Φ(t+ s) = [T (t+ s)]−1 = [T (t).T (s)]−1 = T−1(s).T−1(t), hence

Φ(t+ s) = Φ(s).Φ(t).
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X Now we show the strong continuity of Φ(t).
We have x = T (s)y for s > 0, then :

‖Φ(t)x− x‖ =
∥∥T−1(t)x− x

∥∥
=
∥∥T−1(t)T (t)T (s− t)y − T (s)y

∥∥
= ‖T (s− t)y − T (s)y‖ → 0, when t→ 0.

So Φ(t) is strongly continuous. Finally, for x ∈ D(A) we have

lim
t→0

Φ(t)x− x
t

=
T−1(t)x− x

t
= −Ax.

So −A is the infinitesimal generator of Φ(t).

Theorem 2.4. Let (T (t))t≥0 be a strongly continuous semigroup of bounded operators. If 0 ∈
ρ(T (t0)) for a certain t0 > 0, then 0 ∈ ρ(T (t)) for all t > 0 and T (t) can be extended into a
C0-semigroup (strongly continuous group).

Proof. Since 0 ∈ ρ(T (t0)) then by lemma 2.3 T (nt0) is bijective, ∀n ≥ 1.
Let T (t)x = 0, choose n such that nt0 > t. We have

T (nt0)x = T (nt0 − t)T (t)x.

So T (t)x = 0 implies that x = 0. Then T (t) is injective for all t > 0.
According to the semi-group properties ImT (t) ⊃ ImT (t0), for t ≤ t0.
For t > t0, let t = kt0 + t1, with 0 ≤ t1 < t0, thus T (t) = [T (t0)]kT (t1), and therefore

ImT (t) ⊂ ImT (t0).

So we have : ImT (t) = E,∀t > 0. This is the proof that the operator is surjective.
T (t) is bijective and ImT (t) = E, for all t > 0, and according to the closed graph theorem

0 ∈ ρ(T (t)),∀t > 0.

Proposition 2.5. Let −A be the generator of an analytic semigroup (Φ(t)) and let 0 ∈ ρ(Φ(t0))
for some t0 > 0. Then A ∈ B(E).

Proof. We can assume without loss of generality that −A is the generator of a bounded analytic
semigroup of angle α for a certain α ∈

(
0, π2

]
, otherwise we consider the analytic semigroup

{eωtΦ(t)} generator (ω −A) for a certain ω ∈ R.

0 ∈ ρ(Φ(t0)) =⇒ 0 ∈ ρ(Φ(t)),∀t ≥ 0,

thus 0 ∈ ρ{eωtΦ(t)} “according to the theorem 2.4”.
If (ω−A) is the generator of an analytic semigroup of angle β ∈ (0, α), then A is a generator

of a C0-semigroup, and according to the Hille-Yosida theorem we have

∃M,ω′ ≥ 0 : { λ ∈ C : Reλ > ω′} ⊂ ρ(A)
and ‖R(λ,A)‖ ≤ M

Reλ−ω′ , Reλ > ω′.

As A generates a C0-semigroup Φ−1(t), and according to the lemma 2.3, Φ−1(t) bounded,
then we can extend it to a analytic semigroup.

And as −A is the generator of an analytic semigroup (Φ(t)) of angle α ∈ (0, π2 ) then A is the
generator of an analytic semigroup of angle β ∈

(
π
2 − α,

π
2

)
⊂
(
0, π2

)
.

Then there is a constant Mβ > 0 such that

‖R(λ,A)‖ ≤ Mβ

|λ|
‚ Reλ > 2ω′, |arg λ| ≤ β.
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So we have : {
1)

{
λ ∈ C : |argλ| ≤ π

2 − α
}
⊂ ρ(A),

2) ∃Mβ > 0 : ‖R(λ,A)‖ ≤ Mβ

|λ| ‚ |arg λ| ≤ β,

where the constant Mβ can be replaced by a larger one if necessary, so

‖R(λ,A)‖ ≤ Mβ

|λ|
, |λ| > 2ω′.

And according to the proposition ([8] page 63) we obtain A ∈ B(E).

The problem (2.1) is generally ill-posed. For this, consider the inverse problem corresponding
to (2.1) {

v′(t)

v(0)
=

=

−Av(t); 0 < t < T,

u.
(2.2)

Like −A the generator of an analytic semigroup in E, Cauchy’s problem (2.2) is well-posed.
This means that (2.2) admits a solution for each u ∈ E, and (2.2) is stable. Let us denote by
(Φ(t))t≥0 the semigroup generated by −A. Then v(t) = Φ(t)u, 0 ≤ t ≤ T , is the only solution
of (2.2). On the other hand if y(t), (0 ≤ t ≤ T ) is the solution of (2.1). Then y(T − t), (0 ≤ t <
T ) is obviously the solution of (2.2) with the initial element y(T ) = u. By the uniqueness of the
solutions of (2.2) we obtain that

v(t) = y(T − t); 0 ≤ t < T.

That is
Φ(t)y(T ) = y(T − t); 0 ≤ t < T.

For t = T , we have
Φ(T )y(T ) = y(0) = x.

For the change of variable t = T −t, the operator A generates the semigroup Φ(T −t), where
y(T ) = u. Hence

y(t) = Φ(T − t)y(T ).

Then
Φ(t)y(t) = Φ(t)Φ(T − t)y(T ); 0 ≤ t ≤ T.

That is
Φ(t)y(t) = Φ(T )y(T ) = x; 0 ≤ t ≤ T.

Since Φ(t) is inversible for each t ≥ 0 ([8] page 69), we obtain

y(t) = Φ
−1(t)x for 0 ≤ t ≤ T.

According to the proposition 2.5, Φ−1(t), t ≥ 0 is not a family of bounded linear operators.
So (2.1) is not stable. An important method for dealing with the ill-posed Cauchy problem (2.1)
is the quasi-reversibility method. This method leads to the regularization of (2.1). Using the
solution of the well-posed Cauchy problem :{

y′ε(t)

yε(0)
=

=

(A− εAb)yε(t); 0 ≤ t ≤ T,
x.

(2.3)

Approach the solution of (2.1) where ε > 0 andAb, (b > 1) is defined as the fractional power.
The main result of this work is : If −A the generator of an analytic semigroup. Then there is
the family of regularized for the ill-posed Cauchy problem (2.1). Using the quasi-reversibility
method.
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2.1 Regularization of 2.1

We start with the definition of regularization families for the operators.

Definition 2.6. A family {Rε, t, ε > 0, t ∈ [0, T ]} ⊂ B(E) is called a regularization family of
operators for (2.1) if for each solution y(t), (0 ≤ t ≤ T ) of (2.1) with the initial element x and
for all δ > 0, there exists ε(δ) > 0 such that :

1. ε(δ)→ 0, (δ → 0).
2.
∥∥Rε(δ),txδ − y(t)∥∥→ 0, (δ → 0) for each t ∈ [0, T ], when ‖ xδ − x ‖≤ δ.

We note that the regularization family of operators for (2.1) is not trivial if the problem (2.1)
does not have the solution y(t) ≡ 0 only.

Indeed, it is known (Voir [8] page 67) that (2.1) has a unique solution for each initial element
x ∈ D, where D is a subspace dense in E.

The main result of this work is as follows :

Theorem 2.7. Suppose that −A is the generator of an analytic semigroup, then there exists a
regularization family of operators for the problem (2.1).

Proof. We first consider the case where −A is the generator of a bounded analytic semigroup
of angle α and 0 ∈ ρ(A), where

(
0 < α < π

2

)
, let y(t) (0 ≤ t ≤ T ) a solution of (2.1) with the

initial element x, checking :
‖xδ − x‖ ≤ δ.

By using the quasi-reversibility method for (2.3) with the initial element xδ, the approximate
problem admits a unique solution

yε,δ(t) = Vε(t)xδ.

Where Vε(t) is the semigroup generated by Aε in the theorem 1.23.
We define

Rε,t = Vε(t) for ε > 0 and 0 ≤ t ≤ T.

Then
{Rε,t, ε > 0, t ∈ [0, T ]} ⊂ B(E).

When t = 0 it is clear that

‖Rε,0xδ − y(0)‖ = ‖Vε(0)xδ − y(0)‖
= ‖xδ − x‖ → 0 when δ → 0.

When t ∈ [0, T ], we have

‖Rε,txδ − y(t)‖ ≤ ‖Rε,txδ −Rε,tx‖+ ‖Rε,tx− y(t)‖
= 41 +42, ε > 0.

For estimate 42, we note that x = Φ(t) y(t). Using the inverse problem (2.2) where {Φ(t)}
is the semigroup generated by −A.

According to the representation of the analytic semigroup we have

Φ(t) =
1

2πi

∫
Γ(η)

eλtR(λ,−A)dλ.

Where π
2 < η < π − γ.

According to the proof of the theorem 1.24 (see [13]), the resolving identity and the Cauchy
theorem that

Rε,tx = Vε(t)x = − 1
2πi

∫
Γ(γ)

e(µ−εµ
b)tR(µ,A)xdµ

= − 1
2πi

∫
Γ(γ)

e(µ−εµ
b)tR(µ,A)

{
1

2πi

∫
Γ(η)

eλtR(λ,−A)dλ

}
y(t)dµ.
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Where π
2 − α < γ < π

2b .
Because x = Φ(t) y(t). We have

Rε,tx = −
(

1
2πi

)2 ∫
Γ(γ)

e(µ−εµ
b)t

{∫
Γ(η)

eλt
R(µ,A) +R(λ,−A)

µ+ λ
y(t)dλ

}
dµ,

since

R(µ,A)×R(λ,−A) = R(µ,A) +R(λ,−A)
µ+ λ

.

Thus

Rε,tx = − 1
2πi

∫
Γ(γ)

e(µ−εµ
b)tR(µ,A)

{
1

2πi

∫
Γ(η)

eλt(µ+ λ)−1y(t)dλ

}
dµ

− 1
2πi

∫
Γ(η)

eλtR(λ,−A)

{
1

2πi

∫
Γ(γ)

(µ+ λ)−1e(µ−εµ
b)ty(t)dµ

}
dλ

= − 1
2πi

∫
Γ(η)

e(µ−εµ
b)t−µtR(µ,A)y(t)dµ,

since

1
2πi

∫
Γ(η)

eλt

λ− (−µ)
y(t)dλ = e−µty(t) and

1
2πi

∫
Γ(η)

(µ+ λ)−1e(µ−εµ
b)ty(t)dµ = 0.

According to the proof of the theorem 1.23 (see [13]), Rε,tx = U(εt)y(t) where {U(t)} is
the semigroup generated by −Ab in the theorem 1.10. By the strong continuity of {U(t)} we
obtain :

42 = ‖Rε,tx− y(t)‖ = ‖U(εt)u(t)− y(t)‖ → 0, (δ → 0). (2.4)

When ε→ 0, (δ → 0). Concerning41, it follows from Theorem 1.23 that

41 = ‖Rε,txδ −Rε,tx‖ ≤ ‖xδ − x‖ . ‖Rε,t‖
≤ δ ‖Rε,t‖ ≤ δ ‖Vε(t)‖

≤ δ M exp
(
Cε

1
1−b t

)
,

where C, M > 0 are independent of ε and t. We choose

ε =

[
−TC

(
ln
√
δ
)−1

]b−1

, 0 < δ < 1. (2.5)

Then ε→ 0, (δ → 0) and41 ≤ δM exp
(
Cε

1
1−bT

)
of (2.5), we find

41 ≤ δ M exp

TC ([−TC (ln
√
δ
)−1

]b−1
) 1

1−b
 ,

where

41 ≤ δ M exp

(
TC

[
−TC

(
ln
√
δ
)−1

]−1
)

≤ δ M exp
(
− ln
√
δ
)
=
δM√
δ
=
√
δM.

Thus
41 ≤

√
δM → 0, (δ → 0). (2.6)
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By combining (2.4) with (2.6), we get

∀t ∈ [0, T ], ‖Rε,txδ − y(t)‖ → 0; (δ → 0).

So {Rε,t} is a regularization family of operators of (2.1). Let us deal with the general case
when −A is the generator of an analytica semigroup. From the remark appearing after the
definition 1.18 there exists a constant ω ∈ R such that (A − ω) is the generator of a bounded
analytic semigroup and 0 ∈ ρ(A − ω). As above, there is a family of regularizing operators
{Rε,t} for the problem : {

v′(t)

v(0)
=

=

(A− ω)v(t), 0 < t ≤ T,
x.

(2.7)

Let y(t), (0 ≤ t ≤ T ) be a solution of (2.1) with the initial element x. So

v(t) = e−ωty(t), 0 ≤ t ≤ T,

is the solution of (2.7) with the initial element x. So for each t ∈ [0, T ], we have∥∥eωtRε(δ),txδ − y(t)∥∥ = eωt
∥∥Rε(δ),txδ − e−ωty(t)∥∥

≤ eωt
∥∥Rε(δ),txδ − v(t)∥∥→ 0; (δ → 0).

That is to say {eωtRε,t} is the regularization family of operators for (2.1).

Remark 2.8. From the proof of the theorem 2.7 and (Theorem 1.24 (see [13])) we can give the
representation of the regularization family of operators for (2.1) as follows :

Rε,t = −
1

2πi

∫
Γ(γ)

e(w+µ−εµb)tR(ω + µ,A)dµ; ε > 0, t > 0.

Where π
2 − α < δ < π

2b and ω is the bound in the exponential estimate of the semigroup
e−At, t ≥ 0.

3 Conclusion

Our contribution in this work is the ill-posed inverse problems. Exactly study the regularization
of a class of ill-posed Cauchy problems associated with generators of analytic semigroups.

The method of regularization is consists in replacing an ill-posed problem by a well-posed
problem and whose solutions are approximations of the solutions of the initial problem.

For this, the first section consists of a reminder of some mathematical concepts and properties
of the theory of analytic semigroups.

The second section is devoted to the example of ill-posed Cauchy problem associated with
the generators of analytic semigroups.

As a perspective, we propose to study an ill-posed inverse problem by the Tikhonov regular-
ization method or the Lavrentiv method.
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