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Abstract We prove the existence of entropy solution for the obstacle parabolic equations :
∂u
∂t − div

(
a(x, t, u,∇u) + Φ(u)

)
+ g(u)ϕ(x, |∇u|) = f in Q, where −div

(
a(x, t, u,∇u)

)
is a

Leray-Lions operator, Φ ∈ C0(R,RN ),The function g(u)ϕ(x, |∇u|) is a nonlinear lower order
term with natural growth with respect to |∇u|, without satisfying the sign condition and the
datum is assumed belongs to L1(Q).

1 Introduction

LetQ be the cylinder Ω×(0, T ), T > 0, Ω is a bounded domain of RN with the segment property,
and let ϕ and ψ two complementary Musielak Orlicz functions. In this work, we consider the
following boundary value problem:

u ≥ ζ a.e. in Q,
∂u
∂t − div

(
a(x, t, u,∇u) + Φ(u)

)
+ g(u)ϕ(x, | ∇u |) = f in Q,

u = 0 on ∂Ω× (0, T ),
u(x, 0) = u0(x) in Ω,

(1.1)

Let A : D(A) ⊂W 1,x
0 Lϕ(Q) −→W−1,xLψ(Q) be a mapping given by

A(u) = −div(a(x, t, u,∇u)),

where a : Ω × (0, T ) × R × RN → RN is a Carathéodory function (that is, measurable with
respect to x in Ω for every (t, s, ξ) in R × R × RN , and continuous with respect to (s, ξ) in
R×RN for almost every x in Ω) such that for all ξ and ξ∗ in RN , ξ 6= ξ∗,

a(x, t, s, ξ)ξ ≥ αϕ(x, | ξ |), (1.2)

[a(x, t, s, ξ)− a(x, t, s, ξ∗)][ξ − ξ∗] > 0, (1.3)

There exist two Musielak Orlicz functions ϕ and P such that P ≺≺ ϕ such that for a.e.
(x, t) ∈ Q and for all s ∈ R, ξ ∈ RN

| a(x, t, s, ξ) |≤ c(x, t) + k1P
−1
ϕ(k2 | s |) + k3ψ

−1
x ϕ(k4 | ξ |), (1.4)

where c(x, t) belongs to Eψ(Q), c ≥ 0, ki (i = 1, 2, 3, 4) to R+ and α ∈ R+
∗ .

We assume that there exists a positive function M such that

lim
t−→∞

M(t)

t
=∞, M(t) ≤ ess inf

x∈Ω
ϕ(x, t). (1.5)
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Φ : R→ RN is a continuous function, (1.6)

f ∈ L1(Q), f ≥ 0, (1.7)

u0 ∈ L1(Ω), u0 ≥ ζ(x) and ζ ∈ L∞(Ω) ∩W 1,x
0 Eϕ(Ω), (1.8)

and
g : R+ → R+ is an integrable function on R+. (1.9)

In the classical Sobolev spaces Dall’aglio-Orsina [17] and Porretta [34] proved the existence
of solutions for the problem (P), where b(u) = u and g is a nonlinearity with the following
”natural” growth condition (of order p ):

|g(x, t, s, ξ)| ≤ b(s) (|ξ|p + c(x, t)) , (1.10)

and which satisfies the classical sign condition,

g(x, t, s, ξ)s ≥ 0. (1.11)

The right hand side f is assumed to belong to L1(Q). This result generalizes analogous one
of Boccardo - Gallouët [14], see also [15, 16] for related topics.

|g(x, t, s, ξ)| ≥ β|ξ|p for |s| ≥ γ

In the framework of Orlicz-Sobolev spaces,in [2] the autors have studied the existence and
uniqueness result to the nonlinear parabolic equations whose prototype is

∂b(u)
∂t − ∆Mu− div

(
c̄(x, t)M̄−1M

(
α0
λ |b(u)|

))
= f in QT ,

u(x, t) = 0 on ∂Ω× (0, T ),
b(u)(t = 0) = b (u0) in Ω.

(1.12)

where −∆Mu = − div
(
(1 + |u|)2Du log(e+Du)

|Du|

)
, c̄ ∈ (L∞ (QT ))

N and M(t) = t log(e + t) is

an N -function. The data f and b (u0) in L1 (QT ) and L1(Ω).
Another approach to define a suitable generalized solution is that of entropy solution which was
introduced in [7] in the elliptic case and by Prignet [33] in the parabolic case.

Aharouch and Bennouna [3] have proved the existence and uniqueness of entropy solutions
in the framework of Orlicz-Sobolev spaces W 1

0LM (Ω) assuming the ∆2 condition on the N -
function M .

In the generalized-Orlicz spaces, the work [4] is a continuation of [3] where AlHawmi, Benki-
rane, Hjiaj and Touzani proved the existence and uniqueness of entropy solution for{

− div(a(x, u,∇u)) = f in Ω

u(x) = 0 on ∂Ω

where Φ = 0 and M̄ satisfy the ∆2 -condition. Antontsev and Shmarev [5] proved theorems
of existence and uniqueness of weak solutions of Dirichlet problem for a class of nonlinear
parabolic equations with nonstandard anisotropic growth conditions in the variable exponent
Lebesgue spaces. Equations of this class generalize the evolution p(x, t) -Laplacian of the type


∂u
∂t −

∑
i
∂
∂xi

[
ai(x, t, u) |Diu|pi(x,t)−2

Diu+ bi(x, t, u)
]
= 0 in QT

u(x, t) = 0 on ∂Ω× (0, T )
u(x, 0) = u0(x) in Ω

. (1.13)
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In general Musielak-Sobolev spaces, the authors in [1] have proved the existence of solutions
of the unilateral problem

Au− div Φ(x, u) +H(x, u,∇u) = µ

where A is a Leray-Lions operator defined on D(A) ⊂ W 1
0LM (Ω), µ ∈ L(Ω) +W−1EM̄ (Ω),

where M and M̄ are two complementary Musielak-Orlicz functions and both the first and the
second lower terms Φ and H satisfies only the growth condition and u ≥ ζ where ζ is a measur-
able function, and further works can be found in[8, 6, 9, 10, 11, 12, 13, 27, 28, 29, 30, 31, 32, 36].

This paper is motivated by recent advances in mathematical modeling of non-Newtonian
fluids and elastic mechanics, in particular, the electro-rheological fluids (smart fluids). This
important class of fluids is characterized by the change of viscosity which is not easy and which
depends on the electric field. These fluids, which are known under the name ER fluids, have
many applications in elastic mechanics, fluid dynamics etc.

The aim of this work is to solve the obstacle problem associated to (1.1) in the case where
f ∈ L1(Q) and without assuming any growth restriction on ϕ, Φ(u) 6≡ 0, while the function
g(u)ϕ(x, |∇u|) is not satisfying the sign condition. The existence of solutions is proved via a
sequence of penalized problems.

2 Background

Here we give some definitions and properties that concern Musielak-Orlicz spaces (see [37]).

2.1 Musielak-Orlicz functions

Let Ω be an open subset of Rn.
A Musielak-Orlicz function ϕ is a real-valued function defined in Ω×R+ such that

a) ϕ(x, t) is an N-function i.e. convex, nondecreasing, continuous, ϕ(x, 0) = 0, ϕ(x, t) > 0 for
all t > 0 and

lim
t→0

sup
x∈Ω

ϕ(x, t)

t
= 0, lim

t→∞
inf
x∈Ω

ϕ(x, t)

t
= 0.

b) ϕ(·, t) is a Lebesgue measurable function.

Now, let ϕx(t) = ϕ(x, t) and let ϕ−1
x be the non-negative reciprocal function with respect to

t, i.e the function that satisfies

ϕ−1
x (ϕ(x, t)) = ϕ

(
x, ϕ−1

x (t)
)
= t.

The Musielak-orlicz function ϕ is said to satisfy the ∆2 -condition if for some k > 0, and a
non negative function h, integrable in Ω, we have

ϕ(x, 2t) ≤ kϕ(x, t) + h(x) for all x ∈ Ω and t ≥ 0. (2.1)

When 2.1 holds only for t ≥ t0 > 0, then ϕ is said to satisfy the ∆2 -condition near infinity.
Let ϕ and γ be two Musielak-orlicz functions, we say that ϕ dominate γ and we write γ ≺ ϕ,
near infinity (resp. globally) if there exist two positive constants c and t0 such that for almost all
x ∈ Ω

γ(x, t) ≤ ϕ(x, ct) for all t ≥ t0, ( resp. for all t ≥ 0 i.e. t0 = 0) .

We say that γ grows essentially less rapidly than ϕ at 0 (resp. near infinity) and we write γ ≺≺ ϕ
if for every positive constant c we have

lim
t→0

(
sup
x∈Ω

γ(x, ct)

ϕ(x, t)

)
= 0,

(
resp. lim

t→∞

(
sup
x∈Ω

γ(x, ct)

ϕ(x, t)

)
= 0

)
.

Remark 2.1. (see [30]) If γ ≺≺ ϕ near infinity, then ∀ε > 0 there exists a nonnegative integrable
function h, such that

γ(x, t) ≤ ϕ(x, εt) + h(x). for all t ≥ 0 and for a. e. x ∈ Ω. (2.2)
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2.2 Musielak-Orlicz-Sobolev spaces

For a Musielak-Orlicz function ϕ and a measurable function u : Ω −→ R, we define the func-
tional

ρϕ,Ω(u) =

∫
Ω

ϕ(x, |u(x)|)dx.

The set Kϕ(Ω) = {u : Ω −→ R measurable /ρϕ,Ω(u) <∞} is called the Musielak-Orlicz
class (or generalized Orlicz class). The Musielak-Orlicz space (the generalized Orlicz spaces)
Lϕ(Ω) is the vector space generated by Kϕ(Ω), that is, Lϕ(Ω) is the smallest linear space con-
taining the set Kϕ(Ω). Equivalently

Lϕ(Ω) =
{
u : Ω −→ R measurable /ρϕ,Ω

(u
λ

)
<∞, for some λ > 0

}
.

For a Musielak-Orlicz function ϕ we put: ψ(x, s) = supt>0{st−ϕ(x, t)}, ψ is the Musielak-
Orlicz function complementary to ϕ (or conjugate of ϕ ) in the sens of Young with respect to the
variable s in the space Lϕ(Ω) we define the following two norms:

‖u‖ϕ,Ω = inf
{
λ > 0/

∫
Ω

ϕ

(
x,
|u(x)|
λ

)
dx ≤ 1

}
,

which is called the Luxemburg norm and the so-called Orlicz norm by:

‖|u|‖ϕ,Ω = sup
‖v‖ψ≤1

∫
Ω

|u(x)v(x)|dx,

where ψ is the Musielak Orlicz function complementary to ϕ. These two norms are equivalent
(see [37])

We will also use the space Eϕ(Ω) defined by

Eϕ(Ω) =
{
u : Ω −→ R measurable /ρϕ,Ω

(u
λ

)
<∞, for all λ > 0

}
.

A Musielak function ϕ is called locally integrable on Ω if ρϕ (tχD) <∞ for all t > 0 and all
measurable D ⊂ Ω with meas (D) < ∞ Let ϕ a Musielak function which is locally integrable.
Then Eϕ(Ω) is separable (see [37], Theorem 7.10) .

We say that sequence of functions un ∈ Lϕ(Ω) is modular convergent to u ∈ Lϕ(Ω) if there
exists a constant λ > 0 such that

lim
n→∞

ρϕ,Ω

(
un − u
λ

)
= 0.

For any fixed nonnegative integer m we define

WmLϕ(Ω) = {u ∈ Lϕ(Ω) : ∀|α| ≤ m,Dαu ∈ Lϕ(Ω)} ,

and
WmEϕ(Ω) = {u ∈ Eϕ(Ω) : ∀|α| ≤ m,Dαu ∈ Eϕ(Ω)} ,

where α = (α1, . . . , αn) with nonnegative integers αi, |α| = |α1| + . . . + |αn| and Dαu denote
the distributional derivatives.
The space WmLϕ(Ω) is called the Musielak Orlicz Sobolev space.

Let

ρ̄ϕ,Ω(u) =
∑
|α|≤m

ρϕ,Ω (Dαu) and ‖u‖mϕ,Ω = inf
{
λ > 0 : ρ̄ϕ,Ω

(u
λ

)
≤ 1
}

for u ∈WmLϕ(Ω).
These functionals are a convex modular and a norm on WmLϕ(Ω), respectively, and the pair(
WmLϕ(Ω), ‖‖mϕ,Ω

)
is a Banach space if ϕ satisfies the following condition (see[37]):

there exist a constant c0 > 0 such that inf
x∈Ω

ϕ(x, 1) ≥ c0. (2.3)



508 Nourdine EL AMARTY, Badr EL HAJI and Mostafa EL MOUMNI

The spaceWmLϕ(Ω) will always be identified to a subspace of the product
∏
|α|≤m Lϕ(Ω) =

ΠLϕ, this subspace is σ (ΠLϕ,ΠEψ) closed.
The space Wm

0 Lϕ(Ω) is defined as the σ (ΠLϕ,ΠEψ) closure of D(Ω) in WmLϕ(Ω). and
the space Wm

0 Eϕ(Ω) as the (norm) closure of the Schwartz space D(Ω) in WmLϕ(Ω).
Let Wm

0 Lϕ(Ω) be the σ (ΠLϕ,ΠEψ) closure of D(Ω) in WmLϕ(Ω), the following spaces
of distributions will also be used:

W−mLψ(Ω) =

f ∈ D′(Ω); f =
∑
|α|≤m

(−1)|α|Dαfα with fα ∈ Lψ(Ω)

 ,

and

W−mEψ(Ω) =

f ∈ D′(Ω); f =
∑
|α|≤m

(−1)|α|Dαfα with fα ∈ Eψ(Ω)

 .

We say that a sequence of functions un ∈WmLϕ(Ω) is modular convergent to u ∈WmLϕ(Ω)
if there exists a constant k > 0 such that

lim
n→∞

ρ̄ϕ,Ω

(
un − u
k

)
= 0.

For ϕ and her complementary function ψ, the following inequality is called the Young in-
equality (see[37]):

ts ≤ ϕ(x, t) + ψ(x, s), ∀t, s ≥ 0, x ∈ Ω, (2.4)
this inequality implies that

‖u‖ϕ,Ω ≤ ρϕ,Ω(u) + 1. (2.5)
In Lϕ(Ω) we have the relation between the norm and the modular

‖u‖ϕ,Ω ≤ ρϕ,Ω(u) if ‖u‖ϕ,Ω > 1, (2.6)

‖u‖ϕ,Ω ≥ ρϕ,Ω(u) if ‖u‖ϕ,Ω ≤ 1. (2.7)
For two complementary Musielak Orlicz functions ϕ and ψ, let u ∈ Lϕ(Ω) and v ∈ Lψ(Ω),

then we have the Holder inequality (see[37]):∣∣∣∣∫
Ω

u(x)v(x)dx

∣∣∣∣ ≤ ‖u‖ϕ,Ω‖|v|‖ψ,Ω. (2.8)

Lemma 2.2. [30]
Let Ω be a bounded Lipschitz domain in RN and let ϕ and ψ be two complementary Musielak-

Orlicz functions which satisfy the following conditions:
i)There exists a constant c > 0 such that inf x∈Ωϕ(x, 1) ≥ c.

ii) There exists a constant A > 0 such that for all x, y ∈ Ω with |x− y| ≤ 1
2 we have

ϕ(x, t)

ϕ(y, t)
≤ |t|

 A

log
(

1√
x−y

)

, ∀t ≥ 1. (2.9)

iii)

If D ⊂ Ω is a bounded measurable set, then
∫
D

ϕ(x, 1)dx <∞. (2.10)

iv) There exists a constant C > 0 such that ψ(x, 1) ≤ C a.e in Ω.

Under this assumptions,D(Ω) is dense in Lϕ(Ω) with respect to the modular topology,D(Ω)
is dense in W 1

0Lϕ(Ω) for the modular convergence andD(Ω̄) is dense in W 1Lϕ(Ω) the modular
convergence.

Consequently, the action of a distribution S in W−1Lψ(Ω) on an element u of W 1
0Lϕ(Ω) is

well defined. It will be denoted by < S, u >.
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2.3 Inhomogeneous Musielak-Orlicz-Sobolev spaces

Let Ω a bounded open subset of RN and let Q = Ω×]0, T [ with some given T > 0. Let ϕ and
ψ be two complementary Musielak-Orlicz functions. For each α ∈ NN denote by Dα

x the dis-
tributional derivative on Q of order α with respect to the variable x ∈ RN . The inhomogeneous
Musielak-Orlicz-Sobolev spaces of order 1 are defined as follows.

W 1,xLϕ(Q) = {u ∈ Lϕ(Q) : ∀|α| ≤ 1Dα
xu ∈ Lϕ(Q)}

et
W 1,xEϕ(Q) = {u ∈ Eϕ(Q) : ∀|α| ≤ 1Dα

xu ∈ Eϕ(Q)} .

This second space is a subspace of the first one, and both are Banach spaces under the norm

‖u‖ =
∑
|α|≤1

‖Dα
xu‖ϕ,Q

These spaces constitute a complementary system since Ω satisfies the segment property.These
spaces are considered as subspaces of the product space ΠLϕ(Q) which has (N + 1) copies.

We shall also consider the weak topologies σ (ΠLϕ,ΠEψ) and σ (ΠLϕ,ΠLψ) If u ∈W 1,xLϕ(Q)
then the function t → u(t) = u(·, t) is defined on [0, T ] with values in W 1Lϕ(Ω). If u ∈
W 1,xEϕ(Q), then u ∈ W 1Eϕ(Ω) and it is strongly measurable. Furthermore, the imbedding
W 1,xEϕ(Q) ⊂ L1

(
0, T,W 1Eϕ(Ω)

)
holds. The space W 1,xLϕ(Q) is not in general separable,

for u ∈W 1,xLϕ(Q) we cannot conclude that the function u(t) is measurable on [0, T ].
However, the scalar function t→ ‖u(t)‖ϕ,Ω is in L1(0, T ). The space W 1,x

0 Eϕ(Q) is defined
as the norm closure of D(Q) in W 1,xEϕ(Q). We can easily show as in [23] that when Ω has
the segment property, then each element u of the closure of D(Q) with respect of the weak ∗
topology σ (ΠLϕ,ΠEψ) is a limit in W 1,xLϕ(Q) of some subsequence (vj) ∈ D(Q) for the
modular convergence, i.e. there exists λ > 0 such that for all |α| ≤ 1∫

Q

ϕ

(
x,

(
Dα
xvj −Dα

xu

λ

))
dxdt→ 0 as j →∞,

this implies that (vj) converges to u in W 1,xLϕ(Q) for the weak topology σ (ΠLϕ,ΠLψ) Con-
sequently

D(Q)
σ(ΠLϕ,ΠEψ)

= D(Q)
σ(ΠLϕ,ΠLψ)

The space of functions satisfying such a property will be denoted by W 1,x
0 Lψ(Q) Furthermore,

W 1,x
0 Eϕ(Q) = W 1,x

0 Lϕ(Q) ∩ ΠEϕ(Q). Thus, both sides of the last inequality are equivalent
norms on W 1,x

0 Lϕ(Q). We then have the following complementary system:(
W 1,x

0 Lϕ(Q) F

W 1,x
0 Eϕ(Q) F0

)

where F states for the dual space ofW 1,x
0 Eϕ(Q). and can be defined, except for an isomorphism,

as the quotient of ΠLψ by the polar set W 1,x
0 Eϕ(Q)⊥. It will be denoted by F = W−1,xLψ(Q),

where

W−1,xLψ(Q) =

f =
∑
|α|≤1

Dα
xfα : fα ∈ Lψ(Q)


This space will be equipped with the usual quotient norm

‖f‖ = inf
∑
|α|≤1

‖fα‖ψ,Q

where the infimum is taken over all possible decompositions

f =
∑
|α|≤1

Dα
xfα, fα ∈ Lψ(Q)



510 Nourdine EL AMARTY, Badr EL HAJI and Mostafa EL MOUMNI

The space F0 is then given by

F0 =

f =
∑
|α|≤1

Dα
xfα : fα ∈ Eψ(Q)


and is denoted by F0 =W−1,xEψ(Q) .

3 Truncation Operator

Tk, k > 0, denotes the truncation function at level k defined on R by Tk(r) = max(−k,min(k, r)).
The following abstract lemmas will be applied to the truncation operators.

Lemma 3.1. ([38]) Let F : R −→ R be uniformly Lipschitzian, with F (0) = 0. Let ϕ be a
Musielak-Orlicz function and let u ∈W 1

0Lϕ(Ω). Then F (u) ∈W 1
0Lϕ(Ω) Moreover, if the set D

of discontinuity points of F ′ is finite, we have

∂

∂xi
F (u) =

{
F ′(u) ∂u∂xi a.e in{x ∈ Ω : u(x) ∈ D}

0 a.e in {x ∈ Ω : u(x) /∈ D}.

Lemma 3.2. [40] (Poincare inequality). Let ϕ a Musielak Orlicz function which satisfies the
assumptions of lemma 2.2, suppose that ϕ(x, t) decreases with respect of one of coordinate of x
Then, there exists a constant c > 0 depends only of Ω such that∫

Ω

ϕ(x, |u(x)|)dx ≤
∫

Ω

ϕ(x, c|∇u(x)|)dx, ∀u ∈W 1
0Lϕ(Ω).

Lemma 3.3. Suppose that Ω satisfies the segment property and let u ∈ W 1
0Lϕ(Ω). Then, there

exists a sequence (un) ⊂ D(Ω) such that

un → u for modular convergence in W 1
0Lϕ(Ω)

Furthermore, if u ∈W 1
0Lϕ(Ω) ∩ L∞(Ω) then ‖un‖∞ ≤ (N + 1)‖u‖∞.

Lemma 3.4. [25] Let (fn) , f ∈ L1(Ω) such that
i) fn ≥ 0 a.e in Ω

ii) fn −→ f a.e in Ω

iii)
∫

Ω

fn(x)dx −→
∫

Ω

f(x)dx

then fn −→ f strongly in L1(Ω).

Lemma 3.5. (Jensen inequality). [39] Let ϕ : R −→ R a convex function and g : Ω −→ R is
function measurable, then

ϕ

(∫
Ω

gdµ

)
≤
∫

Ω

ϕ ◦ gdµ.

Lemma 3.6. (The Nemytskii Operator)[30] . Let Ω be an open subset of RN with finite measure
and let ϕ and ψ be two Musielak-Orlicz functions. Let f : Ω × R −→ R be a Carathéodory
function such that for a.e. x ∈ Ω and all s ∈ R :

|f(x, s)| ≤ c(x) + k1ψ
−1
x ϕ(x, k2|s|). (3.1)

where k1 and k2 are real positives constants and c(.) ∈ Eψ(Ω). Then the Nemytskii Operator
Nf defined by Nf (u)(x) = f(x, u(x)) is continuous from

P
(
Eϕ(Ω),

1
k2

)
=

{
u ∈ Lϕ(Ω) : d(u,Eϕ(Ω)) <

1
k2

}
.

into Lψ(Ω).

Furthermore if c(·) ∈ Eγ(Ω) and γ ≺≺ ψ then Nf is strongly continuous from P
(
Eϕ(Ω), 1

k2

)
to Eγ(Ω).
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4 Existence results

This section is devoted to study the following existence theorem.

Theorem 4.1. Assume that (1.2)-(1.9) hold. Then there exists at least one solution of the problem
(1.1), in the following sense:

u ≥ ζ a.e. in Q, Tk(u) ∈W 1,x
0 Lϕ(Q), Sk(u(., t)) ∈ L1(Ω).∫

Ω

Sk(u(T )− v(T )) dx+
〈∂v
∂t
, Tk(u− v)

〉
+

∫
Q

a(x, t, u,∇u)∇Tk(u− v) dx dt

+

∫
Q

Φ(u)∇Tk(u− v) dx dt ≤
∫
Q

g(u)ϕ(x, | ∇u |)Tk(u− v) dx dt

+

∫
Q

fTk(u− v) dx dt+
∫

Ω

Sk(u0 − v(0)) dx,

for every k > 0, and for all v ∈W 1,x
0 Lϕ(Q) ∩ L∞(Q) such that

∂v
∂t ∈W

−1,xLψ(Q) + L1(Q) and v ≥ ζ. Sk is the truncation defined by

Sk(τ) =

∫ τ

0
Tk(s) ds.

The proof of this Theorem is divided into six steps.

Step 1: Approximate problems and a priori estimate

Let’s consider the following approximate problem:
∂un
∂t − div

(
a(x, t, un,∇un) + Φn(un)

)
− nTn((un − ζ)−)

= g(un)ϕ(x, | ∇un |) + fn in Q,
un(x, 0) = u0n(x) in Ω,

(4.1)

where Φn is a Lipschitz continuous bounded function from R into RN ,
fn ⊂ D(Q) such that fn → f strongly in L1(Q) and (u0n) ⊂ D(Ω) such that u0n → u0 strongly
in L1(Ω). By Lemma 3.1 of [26], there exists at least one weak solution un ∈ W 1,x

0 Lϕ(Q)
of the problem (4.1). Let h > 0 and consider the following test function v = Th(un −

Tk(un)) exp
(∫ un

0
g(s) ds

)
in (4.1), we have

〈
∂un
∂t , Th(un − Tk(un))exp

(∫ un

0
g(s) ds

)〉
+

∫
{k<un≤k+h}

a(., un,∇un)∇un exp
(∫ un

0
g(s) ds

)
dx dt

+

∫
Q

a(., un,∇un)∇unTh(un − Tk(un))g(un) exp
(∫ un

0
g(s) ds

)
dx dt

+

∫
Q

Φn(un)∇
(
Th(un − Tk(un)) exp

(∫ un

0
g(s) ds

))
dx dt

−
∫
Q

nTn((un − ψ)−)Th(un − Tk(un)) exp
(∫ un

0
g(s) ds

)
dx dt

=

∫
Q

g(un)ϕ(x, | ∇un |)Th(un − Tk(un)) exp
(∫ un

0
g(s) ds

)
dx dt

+

∫
Q

fnTh(un − Tk(un)) exp
(∫ un

0
g(s) ds

)
dx dt

The Liptschitz character of Φn, Stokes formula together with the boundary condition un = 0 on
(0, T )× ∂Ω, make it possible to obtain∫

Q

Φn(un)∇
(
Th(un − Tk(un)) exp

(∫ un

0
g(s) ds

))
dx dt = 0. (4.2)
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Using (4.2) and (1.2), we have then,〈
∂un
∂t , Th(un − Tk(un))exp

(∫ un

0
g(s) ds

)〉
+

∫
{k<un≤k+h}

ϕ(x, | ∇un |) exp
(∫ un

0
g(s) ds

)
−n
∫
Q

Tn((un − ψ)−)Th(un − Tk(un)) exp
(∫ un

0
g(s) ds

)
dx dt

≤
∫
Q

fnTh(un − Tk(un)) exp
(∫ un

0
g(s) ds

)
dx dt.

We have 〈
∂un
∂t , Th(un − Tk(un))exp

(∫ un

0
g(s) ds

)〉
=

∫
Ω

∫ un(x,T )

0
Th(s− Tk(s)) exp

(∫ s

0
g(s) ds

)
−
∫

Ω

∫ u0n

0
Th(s− Tk(s)) exp

(∫ s

0
g(s) ds

)
.

So, we obtain

−n
∫
Q

Tn((un − ζ)−)Th(un − Tk(un)) exp
(∫ un

0
g(s) ds

)
dx dt ≤ Ch,

and also

−
∫
Q

nTn((un − ζ)−)
Th(un − Tk(un))

h
exp

(∫ un

0
g(s) ds

)
dx dt ≤ C.

Let us now fix k >‖ ψ ‖∞, we deduce the fact that

nTn(un − ζ)(un − k)χ{un≤ψ}χ{k<un≤k+h} ≥ 0.

Letting h to tend to zero, one has

n

∫
Q

Tn((un − ζ)−) exp
(∫ un

0
g(s) ds

)
dx dt ≤ C,

and also,

n

∫
Q

Tn((un − ζ)−) ≤ C. (4.3)

Let us use as test function in (4.1), v = Tk(un) exp
(∫ un

0
g(s) ds

)
, then as above we obtain

∫
Q

ϕ(x, | ∇Tk(un) |) exp
(∫ un

0
g(s) ds

)
≤ C1k. (4.4)

By using the Lemma 3.2, we have∫
Ω

ϕ
(
x,
|Tk(un)|

c

)
dx ≤

∫
Ω

ϕ
(
x, |∇Tk(un)|

)
exp

(∫ un

0
g(s) ds

)
≤ C1k, (4.5)

where c is the constant of Lemma 3.2
Then (Tk(un))n is bounded in W 1,x

0 Lϕ(Q), and then there exist some
wk ∈W 1,x

0 Lϕ(Q) such that

Tk(un)⇀ wk weakly in W 1,x
0 Lϕ(Q) for σ(ΠLϕ,ΠEψ),

Tk(un)→ wk strongly in Eϕ(Q) and a.e. in Q.
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Let consider the C2 function defined by

ηk(s) =
{ s | s |≤ k

2 ,

k sign(s) | s |≥ k.
.

Multiplying the approximating equation by η
′

k(un), we get

∂ηk(un)
∂t − div

(
a(x, t, un,∇un)η

′

k(un)
)
+ a(x, t, un,∇un)η

′′

k (un)

−div
(

Φn(un)η
′

k(un)
)
+ Φn(un)η

′′

k (un)

= g(un)ϕ(x, | ∇un |)η
′

k(un) + fnη
′

k(un) + nTn((un − ζ)−)η
′

k(un)

in the distributions sense. we deduce then, ηk(un) is bounded in W 1,x
0 Lϕ(Q) and ∂ηk(un)

∂t in
W−1,xLψ(Q) + L1(Q). By Corollary 1 of [?], ηk(un) is compact in L1(Q).

4.1 Step 2: Convergence in measure of (un)n

Let k > 0 large enough, by using (4.5) and (1.5), we have

M(k)meas{|un| > k} =

∫
{|un|>k}

M(|Tk(un)|)dx

≤
∫
{|un|>k}

ϕ
(
x, |Tk(un)|

)
dx

≤
∫
Q

ϕ
(
x, |Tk(un)|

)
dxdt

≤ C1k.

Where c3 is a constant not dependent on k ,hence

meas{|un| > k} ≤ C1k

M(k)
−→ 0 as k −→∞.

For every λ > 0 we have

meas{|un − um| > λ} ≤ meas{|un| > k}
+ meas{|um| > k}
+ meas{|Tk(un)− Tk(um)| > λ}. (4.6)

Consequently, by (4.5) we can assume that (Tk(un))n is a Cauchy sequence in measure in Q.
Let ε > 0, then by (4.6) there exists some k = k(ε) > 0 such that

meas{|un − um| > λ} < ε, for all n,m ≥ h0(k(ε), λ).

Which means that (un)n is a Cauchy sequence in measure in Q, thus converge almost every
where to some measurable functions u. Then{

Tk(un)⇀ Tk(u) weakly in W 1,x
0 Lϕ(Q) for σ(ΠLϕ,ΠEψ)

Tk(un) −→ Tk(u) strongly in Eϕ(Q).
(4.7)

Now using the estimation (4.3) and Fatou’s Lemma, we obtain

(u− ζ)− = 0,

and so,
u ≥ ζ.
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Step 3: Almost everywhere convergence of the gradients

Lemma 4.2. Let un be a solution of the approximate problem (4.1). Then, there exists a subse-
quence also denoted by un such that

∇un → ∇u a.e. in Q.

we deduce then that,

a(., Tk(un),∇Tk(un))⇀ a(., Tk(u),∇Tk(u)) in (Lψ(Q))N for σ(ΠLϕ,ΠEψ).

Proof. of lemma 4.2: For m > k, we define the function

ρm(s) =


1 |s| ≤ m
m+ 1− |s| m < |s| < m+ 1
0 |s| ≥ m+ 1

and we set

T ∗k (s) =

(∫ Tk(s)

0
exp

(∫ t

0
g(s)ds

)
dt

)(
exp

(
−
∫ ∞

0
g(s)ds

))
Rm(s) =

∫ s

0
ρm(t) exp

(∫ t

0
g(s)ds

)
dt

ωiµ,j = Tk (vj)µ + e−µtτk (ψi)

where vj ∈ D(Q) such that vj ≥ T ∗k (ζ) and vj → T ∗k (u) with the modular convergence in
W 1,x

0 Lϕ(Q) (for the existence of such a function see [24] since ζ ∈ L∞(Ω) ∩W 1
0Eϕ(Ω).ζi is a

smooth function such that ζi → T ∗k (u0) strongly in L1(Ω)
and ‖ζi‖∞ ≤ ‖T ∗k (u0)‖∞ · ωµ is the mollifier function defined in [35]), the function ωiµ,j has

the following properties:
∂ωiµ,j
∂t = µ

(
Tk (vj)− ωiµ,j

)
, ωiµ,j(0) = Tk (ζi) ,

∣∣ωiµ,j∣∣ ≤ k
ω′µ,j → T ∗k (u)µ + e−µtTk (ζi) in W 1

0Lϕ(Q) for the modular convergence with respect to j
T ∗k (u)µ + e−µTk (ζi)→ T ∗k (u) in W 1

0Lϕ(Q) for the modular convergence with respect to µ

Now,by taking v =
(
T ∗k (un)− ωiµ,j

)
ρm (un) exp

(∫ un

0
g(s)ds

)
as a test function, we get

〈〈
∂un
∂t

, v

〉〉
+

∫
Q

a (., un,∇un)
(
∇T ∗k (un)−∇ωiµ,j

)
ρm (un) exp

(∫ un

0
g(s)ds

)
(4.8)

+

∫
Q

a (., un,∇un)∇un
(
T ∗k (un)− ωiµ,j

)
ρ′m (un) exp

(∫ un

0
g(s)ds

)
(4.9)

+

∫
Q

a (., un,∇un)∇ung (un)
(
T ∗k (un)− ωiµ,j

)
ρm (un) exp

(∫ un

0
g(s)ds

)
(4.10)

=

∫
Q

fnvdxdt+ n

∫
Q

Tn

(
(un − ζ)−

)
vdxdt+

∫
Q

g (un)ϕ (x, |∇un|) vdxdt

=: (4) + (5) + (6)

Let us recall that for un ∈ W 1,x
0 Lϕ(Q), there exists a smooth function unσ (see [21]) such that

unσ → un for the modular convergence in W 1,x
0 Lϕ(Q)

∂unσ
∂t →

∂un
∂t for the modular conver-

gence in W−1,xLψ(Q) + L1(Q).〈〈
∂un
∂t

, v

〉〉
= lim

σ→0+

∫
e

(unσ)
′ (
T ∗k (unσ)− ωiµ,j

)
ρm (unσ) exp

(∫ unσ

0
g(s)ds

)
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= lim
σ→0+

(∫
Q

(Rm (unσ)− T ∗k (unσ))
′ (
T ∗k (unσ)− ωiµ,j

)
dxdt+

∫
0

(
T ∗k (unσ)

T
T ∗k (unσ)− ωiµ,j

)
dxdt

)

= lim
σ→0+

[∫
Ω

(Rm (unσ)− T ∗k (unσ))
(
T ∗k (unσ)− ωjµ

)
dx
]T

0

−
∫
Q

(Rm (unσ)− T ∗k (unσ))
(
T ∗k (unσ)− ωiµ,j

)′
dxd t

+

∫ T∗k

Ω

(unσ)
′ (
T ∗k (unσ)− ωiµ,j

)
dxdt =: I1 + l2 + l3

Remark also that,

Rm (unσ) ≥ T ∗k (unσ) if unσ < k and Rm (unσ) > k = T ∗k (unσ) ≥
∣∣ωiµ,j∣∣ if unσ ≥ k

I1 =

∫
Ω

(Rm (unσ) (T )− T ∗k (unσ) (T ))
(
T ∗k (unσ) (T )− ωiµ,j(T )

)
dx

−
∫

Ωn

(Rm (unσ) (0)− T ∗k (unσ) (0))
(
T ∗k (unσ) (0)− ωiµ,j(0)

)
dx =: I1

1 + I2
1

I1
1≥
∫
unσ(T )≤k

(Rm (unσ) (T )− T ∗k (unσ) (T ))
(
T ∗k (unσ) (T )− ωiµ,j(T )

)
dx

and it is easy to see that

lim supσ→0+ I
1
1 ≥ ε(n, j, µ)

I2
1 =−

∫
unσ(0)≤k

(Rm (unσ) (0)− T ∗k (unσ) (0)) (T ∗k (unσ) (0)− ζi) dx

−
∫
unσ(0)>k

(Rm (unσ) (0)− T ∗k (unσ) (0)) (T ∗k (unσ) (0)− ζi) dx

For the first part, it is the same as I1
1 and for the second part, we have

I2
1 ≥ ε(n, j, µ)−

∫
unσ(0)≥k

(Rm (unσ) (0)− T ∗k (unσ) (0)) (T ∗k (unσ) (0)− ζi) dx

lim sup
σ→0+

I1 ≥ ε(n, j, µ)−
∫
u0n≥k

(Rm (u0n)− T ∗k (u0n)) (T
∗
k (u0n)− ζi) dx =: J1

Now by letting n→∞, we get

lim
n→∞

J1 = −
∫
u0≥k

(Rm (u0)− T ∗k (u0)) (T
∗
k (u0)− ψi) dxdt

and by letting i→∞, one has
lim sup
ε→0t

I1 ≥ ε(n, j, i, µ)

About I2, we remark that T ∗k (unσ)
′
= 0 if unσ > k, then

I2 = −
∫
dn0≤k

(Rm (unσ)− T ∗k (unσ))
(
T ∗k (unσ)− ωiµ,j

)′
dxd t

+

∫
unσ>k

(Rm (unσ)− T ∗k (unσ))
(
ωiµ,j

)′
dxd t =: I1

2 + l22

As in I1, I
1
2 ≥ ε(n, j, µ), and

l22 =

∫
dn0>k

(Rm (unσ)− T ∗k (unσ))
(
ωiµ,j

)′
dxd t
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≥ µ
∫
unσ>k

(Rm (unσ)− T ∗k (unσ)) (Tk (vj)− T ∗k (unσ))
′ dxd t

thus by using the fact that

(Rm (unσ)− T ∗k (unσ))
(
T ∗k (unσ)− ωiµ,j

)
χunσ >k≥ 0.

lim sup
σ→0+

ı22 ≥ µ
∫
u2>k

(Rm (un)− T ∗k (un)) (Tk (vj)− T ∗k (un))
′ dxd t = ε(n, j)

Concerning I3

I3 =

∫
e
T ∗k (unσ)

′ (
T ∗k (unσ)− ωiµ,j

)
dxdt

=

∫
Q

(
T ∗k (unσ)− ωiµ,j

)′ (
T ∗k (unσ)− ωiµ,j

)
dxdt+

∫
Q

(
ωiµ,j

)′ (
T ∗k (unσ)− ωiµ,j

)
dxdt

set Υ (s) = s2/2, Υ ≥ 0, then

I3 =

[∫
Ω

Υ
(
T ∗k (unσ)− ωiµ,j

)
dx
]T

0
+ µ

∫
Q

(
Tk (vj)− ωiµ,j

) (
T ∗k (unσ)− ωiµ,j

)
dxdt

≥ ε(n, j, µ)−
∫

Ω

Υ (T ∗k (unσ(0))− ζi) dx+µ
∫
Q

(Tk (vj)− T ∗k (unσ))
(
T ∗k (unσ)− ωiµ,j

)
dxdt (as in I2) .

so,

lim sup
σ→0+

≥ ε(n, j, µ)−
∫

Ω

Υ (T ∗k (u0n)− ζi) dx+ µ

∫
Q

(Tk (vj)− T ∗k (un))
(
T ∗k (un)− ωiµ,j

)
dxdt

= −
∫

Ω

Υ (T ∗k (u0)− ζi) dx+ µ

∫
Q

(Tk (vj)− T ∗k (u))
(
T ∗k (u)− ωiµ,j

)
dxdt+ ε(n, j, µ)

and we deduce
lim sup
σ→0+

≥ ε(n, j, i, µ).

Then we conclude that〈〈
∂un
∂t

,
(
T ∗k (un)− ωiµ,j

)
ρm (un) exp

(∫ un

0
g(s)ds

)〉〉
≥ ε(n, j, i, µ).

Now for the terms of (4.8),(4.9),(4) and (5).
Let us remark that

(i) ∇T ∗k (u) =
(

exp
(
−
∫ ∞

0
g(s)ds

))
exp

(∫ Tk(u)

0
g(s)ds

)
∇Tk(u) =: λ(u)∇Tk(u).

Concerning (4.8)∫
Q

a (., un,∇un)
(
∇T ∗k (un)−∇ωiµ,j

)
ρm (un) exp

(∫ un

0
g(s)ds

)
dxdt

=

∫
un≤k

a (., un,∇un)
(
∇T ∗k (un)−∇ωiµ,j

)
ρm (un) exp

(∫ un

0
g(s)ds

)
dxdt

+

∫
un>k

a (., un,∇un)
(
∇T ∗k (un)−∇ωiµ,j

)
ρm (un) exp

(∫ un

0
g(s)ds

)
dxdt

=

∫
Q

a (., Tk (un) ,∇Tk (un))
(
∇T ∗k (un)−∇ωiµ,j

)
exp

(∫ un

0
g(s)ds

)
dxdt

+

∫
un>k

a (., un,∇un)
(
∇T ∗k (un)−∇ωiµ,j

)
ρm (un) exp

(∫ un

0
g(s)ds

)
dxdt

recall that ρm (un) = 1 on {|un| ≤ k}
Let s > 0, Qs = {(x, t) ∈ Q : |∇Tk(u)| ≤ s} , Qsj = {(x, t) ∈ Q : |∇Tk (vj)| ≤ s}
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∫
Q

a (., un,∇un)
(
∇T ∗k (un)−∇ωiµ,j

)
ρm (un) exp

(∫ un

0
g(s)ds

)
dxdt

=

∫
Q

(
a (., Tk (un) ,∇Tk (un))− a

(
., Tk (un) ,∇Tk (vj)χsj

))
×
(
∇T ∗k (un)−∇Tk (vj)χsj

)
exp

(∫ un

0
g(s)ds

)
dxdt

+

∫
Q
a
(
., Tk (un) ,∇Tk (vj)xsj

) (
∇T ∗k (un)−∇Tk (vj)χsj

)
exp

(∫ un

0
g(s)ds

)
dxdt

+

∫
Q
a (., Tk (un) ,∇Tk (un))∇Tk (vj)xsj exp

(∫ un

0
g(s)ds

)
dxdt

−
∫

Q
a (., un,∇un)∇ωiµ,jρm (un) exp

(∫ un

0
g(s)ds

)
dxdt

= J1 + J2 + J3 + J4

thanks to (4.7) we have

T ∗k (un)⇀ T ∗k (u) weakly in W 1,x
0 Lϕ(Q) for σ (ΠLϕ,ΠEψ) (4.11)

T ∗k (un)→ T ∗k (u) strongly in Eϕ(Q) and a.e in Q (4.12)

By using (1.4), we can deduce the existence of a measurable function hk such that

a (., Tk (un) ,∇Tk (un))⇀ hk in (Lψ(Q))
N for σ (ΠLM ,ΠEψ)

J2 =

∫
Q

a
(
., Tk(u),∇Tk (vj)χsj

) (
∇T ∗k (u)−∇Tk (vj)χsj

)
exp

(∫ u

0
g(s)ds

)
dxdt+ ε(n)

since

a
(
., Tk (un) ,∇Tk (vj)xsj

)
→ a

(
., Tk(u),∇Tk (vj)χsj

)
strongly in (Eψ(Q))

N

a
(
., Tk(u),∇Tk (vj)χsj

)
→ a (., Tk(u),∇Tk(u)χs) strongly in (Eϕ(Q))

N

and

∇Tk (vj)χsj → ∇T ∗k (u)χs strongly in (Lψ(Q))
N

Then,
J2 = ε(n, j)

Following the same way as in J2, one has

J3 =

∫
Q

hk∇T ∗k (u) exp
(∫ u

0
g(s)ds

)
dxdt+ ε(n, j, µ, s)

For the terms J4 :

J4 =−
∫
Q

a (·, Tm+1 (un) ,∇Tm+1 (un))∇ωiµ,jρm (un) exp
(∫ un

0
g(s)ds

)
dxdt

=−
∫
‖n|≤k

a (., Tm+1 (un) ,∇Tm+1 (un))∇ωiµ,jρm (un) exp
(∫ un

0
g(s)ds

)
dxdt

−
∫
k<|un|≤m+1

a (., Tm+1 (un) ,∇Tm+1 (un))∇ωiµ,jρm (un) exp
(∫ un

0
g(s)ds

)
dxdt
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Letting n→∞, then

J4 = −
∫
k<|u|≤m+1

hk∇ωiµjρm(u) exp
(∫ u

0
g(s)ds

)
dxdt

−
∫
|u|≤k

hm+1∇ωiµ,jρm(u) exp
(∫ u

0
g(s)ds

)
dxdt+ ε(n)

By letting firstly j →∞ and after that µ→∞, we get

J4 = −
∫
Q

hk∇T ∗k (u) exp
(∫ u

0
g(s)ds

)
dxdt+ ε(n, j, µ).

Then,

(1) =
∫

Q

(
a (., Tk (un) ,∇Tk (un))− a

(
..Tk (un) ,∇Tk (vj)χsj

)) (
∇T ∗k (un)−∇Tk (vj)xsj

)
× exp

(∫ un

0
g(s)ds

)
dxdt+ ε(n, j, µ, s)

Concerning(4.9)∣∣∣∣∫
Q

a (., un,∇un)∇un
(
T ∗k (un)− ωin,j

)
ρ′m (un) exp

(∫ un

0
g(s)ds

)∣∣∣∣
≤ C(k)

∫
m<|u1|≤m+1

a (., un,∇un)∇un exp
(∫ un

0
g(s)ds

)
dxdt

Let Θm(s) = T1 (s− Tm(s)) and Θ
∗(s) =

∫ s

0
Θm(t) exp

(∫ t

0
g(s)ds

)
dt.

Using v = Θm (un) exp
(∫ un

0
g(s)ds

)
as a test function in the approximated problem (4.1),

〈u′n, v〉+
∫

Q
a (., un,∇un)∇unΘ

′
m (un) exp

(∫ un

0
g(s)ds

)
dxdt

≤
∫

Q
fnvdxdt+ n

∫
Q
Tn

(
(un − ζ)−

)
Θ
′
m (un) exp

(∫ un

0
g(s)ds

)
dxdt

So ∫
Ω

[Θ∗m (un(t))]
T
0 +

∫
m<|un|≤m+1

a (., un,∇un)∇un exp
(∫ un

0
g(s)ds

)
dxdt

≤
∫
‖n|≥m

fnvdxdt+ n

∫
|un|≥m

Tn

(
(un − ζ)−

)
Θ
′
m (un) exp

(∫ un

0
g(s)ds

)
dxdt

and we easily obtain (since Θ∗m ≥ 0 ):∣∣∣∣∣
∫
m<|un|≤m+1

a (., un,∇un)∇un exp
(∫ un

0
g(s)ds

)
dxdt

∣∣∣∣∣ ≤ ε(n,m)

so,
(4.9) ≤ ε(n,m)

With the same techniques as above, we can deduce that

(4) ≤ ε(n, j, µ)
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Concerning (5), we have

(5) = n

∫
e
Tn (un − ζ)−

)(
T ∗k (un)− Tk (vj)µ

)
ρm (un) exp

(∫ un

0
g(s)ds

)
dxdt

+ n

∫
Q
Tn

(
(un − ζ)−

)(
Tk (vj)µ − ω

i
µ,j

)
ρm (un) exp

(∫ un

0
g(s)ds

)
dxdt

≤n
∫

Q
Tn

(
(un − ζ)−

)(
T ∗k (ζ)− Tk (vj)µ

)
ρm (un) exp

(∫ un

0
g(s)ds

)
dxdt

+ n

∫
Q
Tn

(
(un − ζ)−

)(
Tk (vj)µ − ω

i
µ,j

)
ρm (un) exp

(∫ un

0
g(s)ds

)
dxdt

since Tk (vj)µ ≥ T
∗
k (ζ) and Tk (vj)µ − ω

i
µ,j ≤ 0, we deduce that

(5) ≤ 0

Taking now into account the estimation of (4.8),(4.9),(4) and (5), we obtain∫
Q

(
a (., Tk (un) ,∇Tk (un))− a

(
., Tk (un) ,∇Tk (vj)χsj

))
×
(
∇T ∗k (un)−∇Tk (vj)χsj

)
exp

(∫ un

0
g(s)ds

)
dxdt

≤ ε(n, j, µ, i, s,m).

On the other hand,

∫
Q
(a (., Tk (un) ,∇Tk (un))− a (..Tk (un) ,∇T ∗k (u)χs)) (∇T ∗k (un)−∇T ∗k (u)χs) exp

(∫ un

0
g(s)ds

)
dxdt

−
∫

Q

(
a (., Tk (un) ,∇Tk (un))− a

(
., Tk (un) ,∇Tk (vj)xsj

))
×
(
∇T ∗k (un)−∇Tk (vj)xsj

)
exp

(∫ vn

0
g(s)ds

)
dxdt

=

∫
Q
a (., Tk (un) ,∇Tk (un))

(
∇Tk (vj)χsj −∇T ∗k (u)χs

)
exp

(∫ un

0
g(s)ds

)
dxdt

−
∫

Q
a (., Tk (un) ,∇T ∗k (u)χs)

(
∇Tk (vj)xsj −∇T ∗k (u)χs

)
exp

(∫ un

0
g(s)ds

)
dxdt

+

∫
Q
a
(
., Tk (un) ,∇T ∗k (vj)χsj

) (
∇T ∗k (un)−∇Tk (vj)χsj

)
exp

(∫ un

0
g(s)ds

)
dxdt,

each term of the last right hand side is of the form ε(n, j, s), which gives

∫
Q

(a (., Tk (un) ,∇Tk (un))− a (., Tk (un) ,∇T ∗k (u)χs)) (∇T ∗k (un)−∇T ∗k (u)χs) exp
(∫ un

0
g(s)ds

)
dxdt

=

∫
Q

(
a (., Tk (un) ,∇Tk (un))− a

(
., Tk (un) ,∇Tk (vj)χsj

))
×
(
∇T ∗k (un)−∇Tk (vj)χsj

)
exp

(∫ un

0
g(s)ds

)
dxdt
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+ε(n, j, s)

Following the same technique used in [20] we have for all r < s :

∫
Q
(a (., Tk (un) ,∇Tk (un))− a (., Tk (un) ,∇T ∗k (u))) (∇T ∗k (un)−∇T ∗k (u)) dxdt→ 0

(4.13)
On the other hand, we have

(λ (un)− λ(u))∇Tk(u)χ |∇Tk(u)≤r} → 0 strongly in (Eϕ(Q))
N

and

a (., Tk (un) ,∇Tk (un))−a (., Tk (un) ,∇Tk(u))⇀ hk−a (., Tk(u),∇Tk(u)) weakly in (Lψ(Q))
N

which gives

∫
0t
(a (., Tk (un) ,∇Tk (un))− a (., Tk (un) ,∇Tk(u)))∇Tk(u) (λ (un)− λ(u)) dxdt→ 0

(4.14)
By using the decomposition:

∇T ∗k (un)−∇T ∗k (u) = λ (un) (∇Tk (un)−∇Tk(u)) + (λ (un)− λ(u))∇Tk(u)

and taking into account of (4.11), (4.12), (4.13),(4.14) and the monotonicity condition,we get

lim
n→∞

∫
Qr

(a (., Tk (un) ,∇Tk (un))− a (., Tk (un) ,∇Tk(u))) (∇Tk (un)−∇Tk(u)) dxdt = 0

thus,there exists a subsequence also denoted by un such that

∇un → ∇u a.e.in Q

We deduce then that,

a (., Tk (un) ,∇Tk (un))⇀ a (., Tk(u),∇Tk(u)) in (Lψ(Q))
N for σ (ΠLϕ,ΠEψ)

Step 4: Modular convergence of the truncations

We have proved that∫
Q

(
a(., Tk(un),∇Tk(un))− a(., Tk(un),∇Tk(vj)χsj)

)(
∇T ∗k (un)−∇Tk(vj)χsj

)
× exp

(∫ un

0
g(s) ds

)
dx dt ≤ ε(n, j, µ, i, s,m),

where

T ∗k (s) =
(∫ Tk(s)

0
exp

(∫ t

0
g(s) ds

)
dt
)(

exp
(
−
∫ +∞

0
g(s) ds

))
.

We can also deduce that∫
Q

(
a(., Tk(un),∇Tk(un))− a(., Tk(un),∇T ∗k (u)χs)

)(
∇T ∗k (un)−∇T ∗k (u)χs

)
× exp

(∫ un

0
g(s) ds

)
dx dt

=

∫
Q

(
a(., Tk(un),∇Tk(un))− a(., Tk(un),∇Tk(vj)χsj)

)(
∇T ∗k (un)−∇Tk(vj)χsj

)
× exp

(∫ un

0
g(s) ds

)
dx dt+ ε(n, j, s).
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Then, ∫
Q

a(., Tk(un),∇Tk(un))∇T ∗k (un) dx dt

≤
∫
Q

a(., Tk(un),∇Tk(un))∇T ∗k (u)χs dx dt

+

∫
Q

a(., Tk(un),∇T ∗k (u)χs)(∇T ∗k (un)− Tk(u)χs) dx dt+ ε(n, j, µ, i, s,m).

We deduce that,

lim supn

∫
Q

a(., Tk(un),∇Tk(un))∇T ∗k (un) dx dt

≤
∫
Q

a(., Tk(u),∇Tk(u))∇T ∗k (u)χs dx dt+ lim
n
ε(n, j, µ, i, s,m),

then,

lim supn

∫
Q

a(., Tk(un),∇Tk(un))∇T ∗k (un) dx dt

≤
∫
Q

a(., Tk(u),∇Tk(u))∇T ∗k (u)χs dx dt

≤ lim infn
∫
Q

a(., Tk(un),∇Tk(un))∇T ∗k (un) dx dt,

as n→∞, we deduce

a(., Tk(un),∇Tk(un))∇T ∗k (un)→ a(., Tk(u),∇Tk(u))∇T ∗k (u) in L1(Q).

Using the same argument as above, we obtain

a(., Tk(un),∇Tk(un))∇Tk(un)→ a(., Tk(u),∇Tk(u))∇Tk(u) in L1(Q),

by Vitali’s theorem and (1.2) we get

∇Tk(un)→ ∇Tk(u) for the modular convergence in (Lϕ(Q))N .

Step 5: Passing to the limit

Using the approximated function of the Lemma 3.2 of [26], the passing to the limit is easy by
adapting the same way as in [20, 21, 22].

As a conclusion of Step 1 to Step 5, the proof of our existence result is achieved.
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