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Abstract. The notion of E-proximinality was recently introduced. In this paper, we prove
that E-proximinality is stable under c0-direct sum of Banach spaces. We present an example of
a proximinal hyperplane which is not E-proximinal. We also provide an alternate definition of
E-proximinality and prove its equivalence.

1 Introduction

Let X be a real Banach space. The closed unit ball of X is denoted by BX and the unit sphere
of X is denoted by SX . Also, X∗ denotes the dual of X. For x in X and r > 0, we set

B[x, r] = {y ∈ X : ‖x− y‖ ≤ r}, B(x, r) = {y ∈ X : ‖x− y‖ < r}.

We consider only closed subspaces in this paper. For any f in X∗, kerf denotes the kernel
of f . The set of all norm attaining functionals on X is denoted by NA(X) and NA1(X) =
NA(X) ∩ SX∗ . For any x in X and a subset C of X , the distance of x from C is denoted by
d(x,C). Let

PC(x) = {y ∈ C : ‖x− y‖ = d(x,C)}.

The subset C is said to be proximinal in X , if for each x ∈ X , the set PC(x) is non-empty . For
any δ > 0 we set

PC(x, δ) = {z ∈ C : ‖x− z‖ < d(x,C) + δ}.

We say a proximinal set C of a normed linear space X is strongly proximinal if for each x in X
and ε > 0, there exists δ > 0 such that

sup{d(z, PC(x)) : z ∈ PC(x, δ)} < ε.

For any f in X∗ we set,
JX(f) = {x ∈ SX : f(x) = ‖f‖}.

If f ∈ X∗, then we have

f ∈ NA(X)⇔ JX(f) 6= ∅ ⇔ ker f is proximinal in X.

Also, if H is proximinal, for any x in X , we have

PH(x) = x− f(x)

‖f‖
JX(f).

The notion of ball proximinality of a closed subspace was introduced in [1], motivated by an
example of Saidi, given in [10].

Definition 1.1. A subspace Y of a normed linear space X is ball proximinal in X if BY is
proximinal in X .
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It is easily verified (see [1] and [10]) that if Y is ball proximinal in X , then Y is proximinal in
X . That the converse is not true, was shown by Saidi’s counterexample [10]. Ball proximinality
has been studied in [1], [4] and [5]. In [4], subspaces with strong 1 1

2 - ball property were shown to
be ball proximinal. In [3], an example of a Chebyshev strongly proximinal hyperplaneH = kerf
that is not ball proximinal, is given. The characterizations of ball proximinal hyperplanes and
strongly ball proximinal hyperplanes are given in [5].

Strong proximinality was introduced in [2] and results related to this notion has been studied
in many research articles (see [1]-[5] and [7], [8]). In [9], it is shown that if Xi is a Banach
space which has the property that any M-ideal of finite codimension in Xi is an intersection of
M-ideals of codimension one, for all i ≥ 1, then X = (⊕c0Xi)i∈N also has the same property.
In this paper, we prove that E-proximinality is stable under c0-direct sum of Banach spaces. We
present an example of a proximinal hyperplane which is not E-proximinal. We also provide an
alternate definition of E-proximinality and prove its equivalence.

2 Alternate Definition of E-proximinality

We start this section by proving an equivalent definition for E-proximinality. The notion of
E-proximinality was introduced in [5].

Definition 2.1. [5] A proximinal subset Y of a Banach space X is called E-proximinal if for
any x in X and ε > 0 there exists an element y in PY (x) such that ‖y‖ < α(x) + ε, where

α(x) = inf{r > 0 : ∃(yn) ⊂ Y s.t ‖yn‖ ≤ r and lim
n→∞

‖x− yn‖ = d(x, Y )}.

The characterizations of E-proximinal hyperplanes and E-proximinal subspaces are given in
[6]. It is shown in [6] that every proximinal hyperplane is also E-proximinal in C(Q), where Q
is a compact Hausdorrf space. It is known from [6] that if X is Banach, f ∈ NA1(X) and the
pre-duality map is norm-to-weak upper semi continuous at f , then ker f is E-proximinal.

Let X be a Banach space and Y be a proximinal subspace of X . For x in X , consider the two
conditions:

a) d(x, Y ) = d(x,BY ) and b) inf{‖y‖ : y ∈ PY (x)} ≤ 1.

Clearly b) implies a). It is easy to check that if Y is strongly proximinal, or Y is ball proxim-
inal then also we have a) implies b) and in these instances, a) and b) are equivalent.

It is clear that strong proximinality implies E-proximinality and ball proximinality implies
E-proximinality. In [5], an example of an E-proximinal hyperplane which is not strongly prox-
iminal is given. Also, it is easy to see that the example given in [3] is E-proximinal but it is not
ball proximinal.

An alternate and natural way to view the equivalence of a) and b) arises from an observation
from [3], which points out the equivalence of the two conditions below, for a subspace Y of a
normed linear space X .

(I) Every x ∈ X such that d(x, Y ) = d(x,BY ) has a nearest point in BY ,
or equivalently, d(x, Y ) = d(x,BY )⇒ PBY

(x) = PY (x) ∩BY 6= ∅.

(II) If for x ∈ X,
α(x) = inf{r > 0 : ∃(yn) ⊂ Y s.t ‖yn‖ ≤ r and lim

n→∞
‖x− yn‖ = d(x, Y )}

then there is an element y in PY (x) with ‖y‖ = α(x). That is, a nearest point which achieves
the smallest norm of a minimizing sequence can be found.

For completeness, we prove the equivalence of the two conditions (I) and (II) given above.
We begin by showing that the infimum α(x) is attained. That is, there exists a minimizing
sequence (yn) of x satisfying ‖yn‖ ≤ α(x) for all n ≥ 1.

To see this, let d = d(x, Y ). Note that for each k ∈ N, there exists a minimizing sequence
(ynk)∞n=1 such that

sup
n
‖ynk‖ < α(x) +

1
k
and ‖x− ykk‖ < d+

1
k
.
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For all n ∈ N, let γn = α(x)
α(x)+1/n and zn = γnynn. Then we have ‖zn‖ ≤ α(x) for all n ≥ 1.

Now lim
n→∞

γn = 1 and

‖x− zn‖ ≤ ‖x− ynn‖+ ‖ynn − zn‖

< d+
1
n
+ |1− γn| ‖ynn‖ .

Hence lim
n→∞

‖x− zn‖ ≤ d. But d ≤ ‖x− zn‖ , ∀ n ∈ N, since zn ∈ Y . So d ≤ lim
n→∞

‖x− zn‖ .
This with the above inquality implies lim

n→∞
‖x− zn‖ = d. Thus (zn)∞n=1 is the required minimiz-

ing sequence.
We now proceed with the proof for equivalence of (I) and (II) which also shows that (I)

implies Y is proximinal. We only prove (I) implies (II), the other implication being obvious.
Pick any x ∈ X\Y . Let (yn)∞n=1 be a minimizing sequence for x. Then (yn)∞n=1 is a bounded

sequence and there exists r > 0 such that ‖yn‖ ≤ r for all n ≥ 1. Let z = x
r . Then (ynr )

∞
n=1

is a minimizing sequence for z and clearly yn
r ∈ BY for all n ≥ 1. Hence d(z, Y ) = d(z,BY ).

By (I), there exists w ∈ BY ∩ PY (z). Then rw ∈ PY (x) and ‖rw‖ = r ‖w‖ ≤ r. This implies
PY (x) 6= φ and since x ∈ X\Y was chosen arbitrarily, Y is proximinal in X . Further, since the
choice of the minimizing sequence (yn) was arbitrary, (II) holds.

We now go on to describe the alternate definition for E-proximinality. For this purpose, we
first prove the equivalence of the two conditions given below.
(i) The subspace Y is proximinal and

d(x, Y ) = d(x,BY )⇒ inf{‖y‖ : y ∈ PY (x)} ≤ 1.

(ii) If (yn)∞n=1 is a minimizing sequence for x with ‖yn‖ ≤ r for all n ≥ 1, then given ε > 0 there
exists y0 ∈ PY (x) such that ‖y0‖ < r + ε.
We prove (i) implies (ii), since the other implication is trivial.

Assume (i) and let (yn)∞n=1 be a minimizing sequence for x with ‖yn‖ ≤ r for all n ≥ 1.
Then clearly d(xr , Y ) = d(xr , BY ). So inf{

∥∥y
r

∥∥ : y ∈ PY (x)} ≤ 1. This implies inf{‖y‖ : y ∈
PY (x)} ≤ r. So there exists y0 ∈ PY (x) such that ‖y0‖ < r + ε.

Hence (i) and (ii) are equivalent and (i) provides an alternate definition of E-proximinality
which is summed up in the following theorem.

Theorem 2.2. Let Y be a proximinal subspace of a Banach space X . If for every x in X
satisfying d(x, Y ) = d(x,BY ), we have inf{‖y‖ : y ∈ PY (x)} ≤ 1, then Y is E-proximinal.

3 E-proximinality in Direct Sum Spaces

In this section, we consider the infinite c0-direct sum of Banach spaces. We first prove a distance
formula which is needed in the sequel.

Proposition 3.1. Let Yi be a subspace of the Banach space Xi for each i ∈ N. Consider the
c0-direct sums X = (⊕c0Xi)i∈N and Y = (⊕c0Yi)i∈N. Let x ∈ X \ BY and x =

∑
i∈N

xi. Then

d(x,BY ) = max{d(xi, BYi
) : 1 ≤ i <∞}.

Proof. Since x ∈ X\BY , we have d(x,BY ) > 0 and lim
i→∞

‖xi‖ = 0. This implies lim
i→∞

d(xi, BYi) =

0. Hence there exists n0 ∈ N such that d(xi, BYi
) < d(x,BY ) for all i > n0. We know that

d(x,BY ) = inf
y∈BY

‖x− y‖. So given ε > 0, there exists z = (zi)∞i=1 ∈ BY such that

‖x− z‖ < d(x,BY ) + ε.

Note that zi ∈ BYi for all i ∈ N. It is clear that

‖x− z‖ = max{‖xi − zi‖ : 1 ≤ i <∞}.

Hence
‖xi − zi‖ < d(x,BY ) + ε, ∀ 1 ≤ i <∞.
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This implies
d(xi, BYi

) ≤ ‖xi − zi‖ < d(x,BY ) + ε, ∀ 1 ≤ i <∞.

Since this is true for every ε > 0, we get,

d(xi, BYi
) ≤ d(x,BY ), ∀ i ≥ 1.

Hence

max
1≤i<∞

d(xi, BYi) ≤ d(x,BY ). (3.1)

To prove the reverse inequality, let d = max
1≤i<∞

d(xi, BYi). Let ε > 0 be given. Then there exists

zi ∈ BYi
such that

‖xi − zi‖ < d(xi, BYi) + ε, ∀ i ≥ 1.

Let z =
∑
i∈N

zi. Then clearly z ∈ BY and max
1≤i<∞

‖xi − zi‖ < d + ε. That is, ‖x− z‖ < d + ε.

Since this is true for every ε > 0, we get,

d(x,BY ) ≤ d (3.2)

From (3.1) and (3.2), we get d(x,BY ) = max{d(xi, BYi
) : 1 ≤ i <∞}.

We now show that E-proximinality is stable under infinite c0-direct sum of Banach spaces.

Theorem 3.2. Let {Xi : i ∈ N} be a family of Banach spaces and Yi be an E-proximinal
subspace of Xi for each i ∈ N. Consider the following direct sums X = (⊕c0Xi)i∈N and
Y = (⊕c0Yi)i∈N. Then Y is E-proximinal in X .

Proof. Pick x = (xi) ∈ X such that d(x, Y ) = d(x,BY ). We have to show that inf{‖y‖ : y ∈
PY (x)} ≤ 1. We have d = d(x, Y ) = sup

1≤i<∞
d(xi, Yi). Now x ∈ X implies that d(xi, Yi) → 0

as i→∞. Choose i0 ∈ N such that

d(xi, Yi) ≤ ‖xi‖ ≤
d

2
< d, ∀ i > i0. (3.3)

Since d(x, Y ) = max
1≤i≤i0

d(xi, Yi), there exists m ∈ N, 1 ≤ m ≤ i0 such that d(x, Y ) =

d(xm, Ym). In this case

d(x, Y ) = d(xm, Ym) ≤ d(xm, BYm
) ≤ d(x,BY ) = d(x, Y ).

Hence
d(x, Y ) = d(xm, Ym) = d(xm, BYm

) = d(x,BY ).

We now proceed to construct a sequence (yn)∞n=1 ⊆ Y such that yn ∈ PY (x) for all n ≥ 1
and sup

n
‖yn‖ = 1. For this, for each i ∈ N, we construct a sequence (zni)∞n=1 in Yi such that

lim
n→∞

‖zni‖ = 1 and ‖xi − zni‖ ≤ d(x, Y ) for all n ≥ 1 and set yn =
∑
i∈N

zni, for all n ≥ 1.

By Proposition 3.1, we have d(x,BY ) = sup
1≤i<∞

d(xi, BYi
). For any n ∈ N, let zni = 0

for all i > i0, where i0 is given by (3.3). Fix i ∈ {1, 2, ..., i0}. We discuss three cases for the
construction of the sequence (zni)∞n=1 ⊆ Yi as follows.
Case 1. d(xi, Yi) = d(x, Y ).
Note that

d(x, Y ) = d(xi, Yi) ≤ d(xi, BYi
) ≤ d(x,BY ) = d(x, Y ).

Hence d(xi, Yi) = d(xi, BYi
) in this case. Since Yi is E-proximinal in Xi, we can get a sequence

(zni)∞n=1 ⊆ PYi
(xi) such that lim

n→∞
‖zni‖ = 1 and ‖xi − zni‖ = d(x, Y ).
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Case 2. d(xi, Yi) < d(x, Y ) and d(xi, BYi
) < d(x,BY ).

Since d(x,BY ) > d(xi, BYi
), there exists ηi > 0 such that

d(x,BY ) > d(xi, BYi
) + ηi.

Now get a sequence (zni)∞n=1 ⊆ BYi
such that

‖xi − zni‖ < d(xi, BYi
) + ηi, ∀ n ≥ 1.

Then note that lim
n→∞

‖xi − zni‖ < d(x,BY ) = d(x, Y ).

Case 3. d(xi, Yi) < d(x, Y ) and d(xi, BYi
) = d(x,BY ).

Note that in this case

d(xi, Yi) < d(xi, BYi) = d(x,BY ) = d(x, Y ).

We now proceed as follows. Let εni > 0 be such that lim
n→∞

εni = 0. Pick any sequence

(vni)∞n=1 ⊆ BYi such that

‖xi − vni‖ < d(x, Y ) + εni, ∀ n ≥ 1.

Choose δi > 0 be such that d(xi, Yi) = d(x, Y ) − δi. Pick any ui ∈ PYi(xi) such that ‖ui‖ ≤
1 + ρi, for some ρi > 0. For any n ≥ 1, set λni = δi

δi+εni
. Then note that

λniεni − δi(1− λni) = 0. (3.4)

Set zni = λnivni + (1− λni)ui for all n ≥ 1. Then

‖xi − zni‖ ≤ λni ‖xi − vni‖+ (1− λni) ‖xi − ui‖
< λni(d(x, Y ) + εni) + (1− λni)(d(x, Y )− δi)
= d(x, Y ) + λniεni − δi(1− λni)
= d(x, Y ) by (3.4).

Also

‖zni‖ ≤ ‖λnivni‖+ ‖(1− λni)ui‖
≤ λni + (1− λni)(1 + ρi)

= 1 +
ρiεni
δi + εni

.

Since lim
n→∞

εni = 0, we get lim
n→∞

‖zni‖ = 1.
For any n ≥ 1, define zni ∈ Yi for all 1 ≤ i ≤ i0 as in the above cases. Recall that we

have set zni = 0 for i > i0 and for n ≥ 1. Then we have lim
i→∞

zni = 0 for all n ≥ 1. Now

define yn ∈ Y = (⊕c0Yi)i∈N as yn = (⊕c0zni)i∈N for each n ≥ 1. Then (yn)∞n=1 is a sequence
in (⊕c0Yi)i∈N.

Let ε > 0 be given. Then for any n ≥ 1, we have ‖yn‖ = max
1≤i≤i0

‖zni‖. Since lim
n→∞

‖zni‖ ≤ 1

for all 1 ≤ i ≤ i0, there exists Ni ∈ N such that | ‖zni‖ − 1| < ε for all n ≥ Ni. Let N =
max{Ni : 1 ≤ i ≤ i0}. Then ‖yn‖ < 1 + ε for all n ≥ N and hence lim sup

n
‖yn‖ = 1.

Having defined the sequence (zni)∞i=1 for all the possible three cases we note that in all
the cases lim

n→∞
‖zni‖ ≤ 1 and ‖xi − zni‖ ≤ d(x, Y ). Hence for yn = (⊕c0zni)i∈N, we have

lim sup
n
‖yn‖ = 1 and

d(x, Y ) ≤ ‖x− yn‖ = sup
1≤i<∞

‖xi − zni‖ ≤ d(x, Y ).

Hence yn ∈ PY (x) for all n ≥ 1 and lim sup
n
‖yn‖ = 1. This implies inf{‖y‖ : y ∈ PY (x)} ≤ 1

if d(x, Y ) = d(x,BY ). Since x ∈ X was chosen arbitrarily, this implies Y is E-proximinal in X .

Remark 3.3. The finite `∞-direct sum can be considered as an infinite c0-direct sum by adding
infinitely many zero subspaces. Hence from the above theorem, it now follows that E-proximinality
is stable under finite `∞-direct sums.
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4 Example of a proximinal hyperplane which is not E-proximinal

Now we present an example of a proximinal hyperplane which is not E-proximinal. The con-
struction of the example is based on a renorming in the space `1.

Example 4.1. Let (en)n≥1 be the canonical basis of `1(N). For n ≥ 3, we let vn = n−1
n (e1 +

e2 − en). Set

B = conv‖.‖{(±e1) ∪ (±
3
4
e2) ∪ (±

n− 1
n

en)n≥3 ∪ ±(vn)n≥3}.

The setB is the closed unit ball of an equivalent norm denoted by ‖.‖B on `1. Note that dB(u,H)
denotes the distance of u from H with respect to ‖.‖B norm. Let (e∗n)n≥1 denote the coordinate
functionals. We have ‖e∗1‖B∗ = 1 and e∗

−1

1 (1)∩B = {e1}. Hence H = ker(e∗1) is proximinal in
(`1, ‖.‖B). If u = e1 + e2, then PH(u) = e2 and dB(u,H) = 1. Moreover

‖u− vn‖B =

∥∥∥∥n− 1
n

en +
1
n
(e1 + e2)

∥∥∥∥
B

→ 1.

Hence dB(u,BH) = 1. Note that (vk)k≥3 ⊆ B and e∗2(vk) =
k−1
k → 1 as k →∞. Further

‖e2 − vk‖1 =

∥∥∥∥e2 −
k − 1
k

(e1 + e2 − ek)
∥∥∥∥

1

=

∥∥∥∥e2

k
+
k − 1
k

(ek − e1)

∥∥∥∥
1

≤ 1
k
+
k − 1
k
‖ek − e1‖1

=
1
k
+ 2

(
1− 1

k

)
→ 2 as k →∞.

Let (wk)k≥1 ⊆ B and wk = lim
n→∞

zkn , where

zkn = λ1ne1 + λ2n

(
3
4
e2

)
+ λ3n

(
k − 1
k

ek

)
+ λ4nvk

and
4∑
i=1

λin = 1, λin > 0 for all 1 ≤ i ≤ 4, 1 ≤ n <∞. Then

e∗2(wk) = lim
n→∞

e∗2(zkn) = lim
n→∞

[
λ2n

3
4
+ λ4n

k − 1
k

]
.

Now lim
k→∞

e∗2(wk) = 1 implies lim
n→∞

λ4n = 1 andwk = vk.Hence if (wk)k≥1 ⊆ B and e∗2(wk)→
1, then ‖e2 − wk‖1 → 2. This implies that ‖e2‖B > 1. Note that dB(u,H) = dB(u,BH) =
1, PH(u) = e2 and ‖e2‖B > 1. Hence inf{‖y‖B : y ∈ PH(u)} > 1. It now follows that H is
proximinal but not E-proximinal.
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